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Logic locking and Integrated Circuit (IC) camouflaging are the most prevalent protection schemes that can

thwart most hardware security threats. However, the state-of-the-art attacks, including Boolean Satisfiability

(SAT) and approximation-based attacks, question the efficacy of the existing defense schemes. Recent ob-

fuscation schemes have employed reconfigurable logic to secure designs against various hardware security

threats. However, they have focused on specific design elements such as SAT hardness. Despite meeting the

focused criterion such as security, obfuscation incurs additional overheads, which are not evaluated in the

present works. This work provides an extensive analysis of Look-up-table (LUT)–based obfuscation by ex-

ploring several factors such as LUT technology, size, number of LUTs, and replacement strategy as they have

a substantial influence on Power-Performance-Area (PPA) and Security (PPA/S) of the design. We show that

using large LUT makes LUT-based obfuscation resilient to hardware security threats. However, it also results

in enormous design overheads beyond practical limits.

To make the reconfigurable logic obfuscation efficient in terms of design overheads, this work proposes

a novel LUT architecture where the security provided by the proposed primitive is superior to that of the

traditional LUT-based obfuscation. Moreover, we leverage the security-driven design flow, which uses off-

the-shelf industrial EDA tools to mitigate the design overheads further while being non-disruptive to the

current industrial physical design flow. We empirically evaluate the security of the LUTs against state-of-the-

art obfuscation techniques in terms of design overheads and SAT-attack resiliency. Our findings show that the

proposed primitive significantly reduces both area and power by a factor of 8× and 2×, respectively, without

compromising security.
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1 INTRODUCTION

Massive integration of billions of transistors on a single integrated circuit (IC) has improved the
performance of the IC at the cost of added design complexity. The increasing costs of manufac-
turing such intricate designs and the trend of incorporating heterogeneous IC components from
various vendors for IP development have given rise to the era of “fabless manufacturing.” Despite
the cost-effectiveness of this trend, exposing designs to third-party vendors and fabrication facili-
ties may expose the hardware designs to an array of hardware security threats. While the threat
of malware, which is a software entity, can be mitigated with software methods [36–39], we need
active countermeasures to thwart hardware attacks. Obfuscating the design makes it hard to un-
derstand the underlying design and thus helps curb some of the hardware attacks. The IP supply
chain provides many opportunities for adversaries to employ state-of-the-art techniques to reverse
engineer or compromise a customer’s design, such as IC reverse engineering (RE) and hardware
Trojans [13, 32, 46].

To combat this pervasive threat, hardware design-for-trust (DFTr) mechanisms, such as wa-
termarking, IC metering, IC camouflaging, split manufacturing, camouflaging, and logic locking
[1, 7, 10, 11, 33], have shown good resilience to many of the existing potential hardware-level re-
verse engineerings and tampering techniques [52]. Increased interest within the logic locking and
IC camouflaging research community has persuaded Mentor Graphics, a major CAD tool provider,
to release TrustChain, which is a CAD framework that supports logic locking and camouflaging
as a means of curbing various hardware security threats [41].

Numerous obfuscation techniques, namely, logic locking and camouflaging, have been proposed
to thwart existing hardware security threats. Some of these techniques make use of reconfigurable
logic, a method based on hardware reconfiguration and/or transformation, such as Look Up Ta-

bles (LUTs) [5, 18, 45]. However, some recently introduced attacks have exploited vulnerabilities
in various available logic obfuscation schemes. Boolean satisfiability (SAT)-based attacks are
among the most effective de-obfuscation/de-camouflaging techniques. These attacks can reverse
engineer a target design even when state-of-the-art logic locking and camouflaging protection
mechanisms [19, 43] are used. Recent works in the domain of reconfigurable obfuscation make
use of diverse approaches like increasing the number of reconfigurable blocks [45] or using differ-
ent replacement strategies [20] to reinforce the security against the SAT-attack.

In this work, we demonstrate that security can be compromised despite considering all substan-
tial and compelling factors for reconfigurable logic obfuscation. Furthermore, most of the existing
work lacks the discussion on the impact of the reconfigurable obfuscation on the design in terms
of Power, Performance, Area (PPA) overhead. Prior works focus on either security [20] or the
overhead impact [48] of the proposed primitive and lack the comprehensive study of the vital
elements that contributes to the overall success of the obfuscation technique. Moreover, the obfus-
cation strategies have been crafted based on heuristics, which may not apply to all designs and
thus requires customization of IP-design flows.

Compared to the prior works, we comprehensively explore the design space of LUT-based ob-
fuscation (a variant of reconfigurable obfuscation) to showcase its unparalleled resiliency and effi-
ciency against state-of-the-art attacks. Using the design space exploration process, we study four
factors that impact the design overhead and security of LUT-based obfuscation. These four factors
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consist of (1) technology of the LUT used for logic obfuscation, (2) the size of LUT (LUT scale-up),
(3) the number of cells replaced by LUTs (LUT count or scale-out), and (4) the replacement strategy.
Further, based on the thorough experimental evaluation (i.e., an investigation of all possible com-
binations for these factors), we provide a LUT-based obfuscation, resilient against the SAT attack.
Our investigations substantiate that the LUT size (LUT scale-up) plays a crucial role in enhanc-
ing the resiliency of the obfuscation scheme, even in the presence of a weak replacement policy
such as random replacement. This reduces the IP designer’s efforts as they do not have to abide
by the obfuscation strategies developed based on heuristics. Finally, we gauge the LUT-based ob-
fuscation’s impact on the power-performance (delay)-area (PPA) overheads. Considering the large
overheads imposed due to the large size of LUT, large-scale obfuscation using LUTs is idealistic
and practically impossible to be used for obfuscation. There has not been any comprehensive anal-
ysis of the trade-off between resiliency and overhead across many different LUT topographies and
scales, making LUT-based obfuscation an open challenge.

To overcome the challenge mentioned above by the LUT-based obfuscation, the incurred over-
head by the LUT-based obfuscation must be reduced radically while offering robust resiliency
against various hardware security attacks. However, both of these goals are conflicting for LUT-
based obfuscation, and given the impossible nature of satisfying both goals at once, the IP owner
usually achieves one objective at the expense of the other. For example, reducing the LUT size
mitigates the hefty overheads but at the cost of reduced SAT-attack resiliency. However, in the
proposed primitive of the LUT-obfuscation, the obfuscation leverages from the LUT’s enhanced
reconfigurability while achieving both goals of reducing the design overheads and increasing at-
tack resiliency.

The proposed novel LUT obfuscation is also rigorously tested for various metrics including
power, performance, area, and security by utilizing different benchmarks such as GPS, which is a
representative example of the size and complexity of real-world designs. The current work is the
extension of our previous work [14] and the current work expands the contribution of our [14] as
follows.

(i) Investigate and evaluate current state-of-the-art re-configurable obfuscation techniques: We
perform an extensive case study of the state-of-the-art reconfigurable obfuscation tech-
niques. Among various reconfigurable obfuscation, we primarily focus on LUT-based ob-
fuscation and evaluate it on four primary parameters: (1) LUT technology, (2) LUT size,
(3) number of LUTs, and (4) replacement strategy as they significantly influence design per-
formance and metrics. Additionally, we study each parameter’s impact on hardware security
and design overheads by performing extensive design space exploration.

(ii) We elaborate on the Proposed STT-LUT with Scan Chain Programming, and the Full im-
plementation details of the custom layout of Magnetic Tunnel Junction (MTJ) latch in
standard cell format along with the area breakdown between different blocks that are used
for the obfuscation purposes. We have also added the results on the PPA of an STT-LUT for
28 nm technology.

(iii) We discuss the replacement strategies and provide theoretical analysis along with the com-
plexity analysis of the proposed replacement strategies. Moreover, the discussion on how
replacement strategy can be leveraged to increase the Clause-driven Conflict Learning

(CDCL) runtime is discussed.
(iv) Additional details on testing the IP after obfuscation and the validation results are presented.

Moreover, we have added a detailed comparison of the proposed LUT obfuscation against
other state-of-the-art proposed obfuscation techniques such as Anti-SAT SFLL-HD0 and In-
terLock obfuscation.
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(v) Finally, to show the feasibility of the proposed novel LUT solution, we present a case study
for the GPS module, which has around 170K gates.

Among the above contributions, we have provided minuscule details of the iterative design flow
used to implement the proposed LUT-based obfuscation technique using off-the-shelf EDA tools to
optimize PPA and security. The proposed flow is non-disruptive to the standard Complementary

Metal-Oxide Semiconductor (CMOS) Application Specific Integrated Circuit (ASIC) design
flow, which is vital for the accelerated design and manufacturing time. The resulting obfuscation
flow can be generalized and scaled to various designs. Last, we discuss the performance of the
LUT-based obfuscation against various attacks and obfuscation strategies.

2 LOGIC OBFUSCATION AND SAT ATTACK: BACKGROUND

2.1 Logic Obfuscation

Logic obfuscation aims to conceal the functionality of the design by inserting additional logic
gates. These gates can be key-programmable XOR/XNOR gates or MUXes for interconnection.
The ambiguity is created in the circuit due to the newly added gates. The strength of the logic
obfuscation also depends on the location of the gate insertion [25, 27, 33]. Traditional attacks such
as justification/sensitization [26] try to reverse engineer the design using heuristic techniques;
however, with more advanced logic obfuscation, the attacker has been able to extract the keys
using Automatic Test Generation Pattern (ATPG) [21, 43].

2.2 SAT Attack

Boolean Satisfiability attack (SAT attack) [43] is used to determine the correct key of the obfus-
cated or logic locked circuit. The SAT attack is an “oracle-guided attack,” where the threat model
assumes that an attacker has access to the activated IC along with the locked gate-level netlist,
which can be retrieved through invasive reverse engineering [43] or through the GDSII of the
design. The input to the SAT solver is a boolean formula in Conjunctive Normal Form (CNF)

obtained from the transformation of the obfuscated netlist. Distinguishing Inputs also known as
DIPs, helps the SAT-attack in eliminating the incorrect keys iteratively.

DIPs can be found using a miter circuit, which is used to check the equivalence of two hardware
designs. The miter circuit is built using two copies of the locked netlist obtained after invasive
reverse engineering efforts, with their outputs XORed together. The input is common to both
instances of the locked netlists, which are part of the miter circuit. However, each of the locked
netlists is programmed with a different key. The DIP is found when the two circuits’ output differs,
making the output of XOR gate or miter circuit “1.” These two different outputs indicate that one
of the keys is wrong, and the input that helped us distinguish between the keys is termed as
distinguishing input. The found DIP is applied to the oracle circuit to identify the correct output.
The SAT-attack in every iteration tries to find a new DIP until no new DIP exists.

2.3 Post-SAT Obfuscation and Challenges

After the advent of the SAT attack, the advanced logic locking and camouflaging algorithms have
largely focused on increasing SAT-attack iterations required for successfully unlocking the logic
locked circuit [43]. Another way of increasing the SAT attack time is to decrease the number of
wrong keys getting eliminated in each iteration, such that the SAT attack needs more iterations
and, consequently, more execution time. Various defense primitive such as SARLock [49], Anti-SAT
[47], CamoPerturb [50], and SFLL-HD0 (Stripped Functionality Logic Locking) [53] abides by
the tenet of using a logic function that increases the number of SAT-iteration, resulting in longer
SAT-execution times. Few obfuscation schemes are based on the addition of the cyclic loop in the
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Fig. 1. (a) Sample circuit used for obfuscation with gates G4, G6, G7, G9 selected for obfuscation. (b) Obfus-

cation with LUT with representation of the LUT for SAT-attack simulation.

circuit, especially stateful/oscillating cycles [31, 35]. When the SAT attack encounters these cycles,
the SAT solver either returns the wrong key, or else the SAT solver gets stuck in an infinite loop.
And thus, it is unable to find the correct key required to restore the functionality of the obfuscated
IP.

Although there have been advancements in logic locking techniques [9], researchers have been
able to find the vulnerabilities in many of the most prominent obfuscation schemes. Attacks such as
CycSAT, SMT-Solver [4, 6, 8, 31] show that by considering just a few conditions and pre-processing
steps, designs obfuscated with cyclic obfuscation can be reverse-engineered. The state-of-the-art
attack SFLL-HD [53] has also been successfully defeated using FALL-attack [40], which does not
require an oracle IC to find the correct key making the attack even more feasible. Apart from these
attacks, the mentioned SAT-resilient schemes are vulnerable to other types of attacks, such as Sig-

nal Probability Skew (SPS) attacks [51], and approximate-SAT attacks [34]. These vulnerabilities
in the obfuscation techniques have impelled us to propose and build a more comprehensive and
robust obfuscation scheme that can resist many hardware security threats.

3 INVESTIGATION ON LUT-BASED OBFUSCATION

The recent work in the reconfigurable logic obfuscation uses the reconfigurable devices to protect
the IP against various hardware security attacks [2, 5, 18, 20, 24, 30, 45, 48]. We primarily consider
the LUT-based obfuscation as it can represent all of the possible reconfigurable-based obfuscation
scenarios given its ability to reconfigure. In obfuscation using LUT, the gates are selected from
the design and are mapped to the LUTs. For example, to obfuscate a 2-input AND gate with LUT,
one can replace the AND gate in the IP with the LUT whose configuration bits are set to “0001.”
Obfuscation using LUT thus results in a netlist as a hybrid mixture of ASIC and programmable
FPGA styles. In the LUT-based obfuscation, the keys that denote the logical function of the LUT can
be stored in a tamper-proof non-volatile memory. Without prior knowledge of the content of the
non-volatile memory contents, the attacker does not have access to the IP’s intended functionality
and thus refrains the attacker from reverse engineering the IP. Figure 1 shows the LUT-based
obfuscation, where part of the circuit is mapped to the LUT.

While storing the LUT configuration bits in tamperproof memory thwarts the attacker from
understanding the content and functionality of the LUT, the attacker can still use SAT-attack to
restore the content of the LUT. The attack on the LUT-based obfuscation using SAT-attack is de-
scribed here. The SAT attack simulation does not offer the ability to model the LUT directly. Hence,
we model the LUT-based obfuscation using the MUXes where each LUT is replaced with a (2+)-
level MUX. The work in Reference [43] can be leveraged to attack the existing reconfigurable
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Fig. 2. De-obfuscation time of the various benchmarks obfuscated with LUT of size 2. Each benchmark is

obfuscated with varying obfuscation ranging from 5% to 35% [14].

schemes such as References [2, 5, 18, 28, 45]. Figure 1(b) shows the representation of the LUT of
size 2 for SAT simulation. The LUT of size 2 is built using 2:1 MUX. Since the attacker is inter-
ested in finding the LUT’s configuration bits’ content, representing the functionality imparted by
the LUT, the MTJ’s are treated as the key inputs. The SAT-solver tries to find the value of these
key inputs during the de-obfuscation process. After replacing all the LUT with their equivalent
representation using MUXes, one can perform the SAT attack.

Figure 2 shows the resiliency of obfuscation using a reconfigurable block against the SAT attack.
The LUT of size 2 is chosen, because one can model the existing reconfigurable blocks proposed in
previous work [20, 24, 30, 48] using LUT of size 2 for SAT-attack modeling. Consider Figure 1, Gate
G8 can be replaced with an emerging device proposed in Reference [24], which can implement at
most 16 different combinations. For SAT simulation, we can replace it with LUT of size 2. The gate
selection for obfuscation is made using random replacement policy [33]. Further, the obfuscation
percentage is varied from 5% up to 35%. The obfuscation percentage of 5% corresponds to 5% of
total gates being replaced with LUT of size 2. Each data point on the graph is the averaged run of
10 different SAT-solver execution. The benchmarks in Figure 2 are arranged in ascending order on
the Y-axis, while the SAT de-obfuscation time is shown on the X-axis. The X-axis has a logarithmic
scale for better representation.

From the result, it can be concluded that all the designs can be reverse engineered using the
SAT-attack within 5 days (432×105 s).

Obfuscating 35% of the circuit to render the security against the SAT attack is not a viable
solution from the manufacturing perspective, as it adds an enormous amount of overhead and
manufacturing costs. Therefore, traditional reconfigurable obfuscation does not cater to provid-
ing resiliency. Modern works in the reconfigurable obfuscation domain that are crafted to thwart
SAT attacks, such as Reference [20] lacks investigations of PPA overheads. In contrast, the work
in Reference [48] acknowledges the overheads but fails to acknowledge their solution’s resiliency
against the well-known and most prevalent SAT attack. It is intuitive to use the large LUTs for ob-
fuscation, because the number of possible functions rendered by a LUT is enormous. Therefore, to
render better resiliency, one should employ reconfigurable blocks that can employ more functions.
A Look-up table of input size n can provide 22n

logical functions, thus increasing the search space
for the SAT-solver exponentially.
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Fig. 3. (a) Proposed STT-LUT with scan chain programming. (b) Full custom layout of MTJ latch in standard

cell format and area breakdown between different blocks.

While leveraging the larger sizes of the Look-up table seems the best idea, the implementation
of LUT for obfuscation results in increased design overheads. Therefore, the trade-off to address
is (1) whether to use a few numbers of large LUTs or (2) use more numbers of small LUT size to
defend the SAT attack. To answer this question, we perform an extensive design-for-security space
exploration for LUT-based obfuscation using four critical factors, namely, (1) LUT technology,
(2) LUT size, (3) number of LUTs, and (4) replacement strategy to find the impact of each on SAT-
resiliency.

3.1 Implementation of MTJ-based STT-LUT

In this section, we first discuss the design implementation of the MTJ-based LUT used in our work,
followed by the impact of the SRAM- and MTJ-based LUT on the design overheads

3.1.1 Design and Integration of Spin Transfer Torque (STT)-based LUT. As STT-based LUTs have
shown higher PPA efficiency [45], we consider STT-based LUT design and obfuscation in this
work. STT technology can provide incredible features like (1) higher integration density than
Static RAMs (SRAM), (2) high endurance and retention time, (3) near-zero leakage, and (4) soft
error resilience [14–16]. Additionally, STT-LUTs have shown the ability to be highly integrative
in the CMOS fabrication process [45]. Thus, STT-LUT, due to its virtue of on-die reconfigurability,
enables us to achieve high performance and security against various hardware RE threats.

Additionally, for STT-based LUTs, reconfigurable bits are stored in a magnetic tunnel junc-

tion (MTJ) inserted between metal layers. The delayering process involved in the reverse engi-
neering of IPs to retrieve the netlist results in the destruction of the structure of the MTJ device
and, thus, will result in loss of data stored in the MTJ. The MTJ, in this manner, serves as the tamper-
proof memory to store the configuration of the LUT. The custom part of the design is implemented
using the standard cell-based ASIC design flow. Since the ASIC standard cells are implemented in
the static logic style, the resulting designs are static. This limits the LUT design to have a static
type interface for connection with the static ASIC standard cells. Also, the existing STT-LUT de-
sign styles, in which a dynamic circuit such as a dynamic sense amplifier residing between the
LUT inputs and the output is not suitable for the obfuscation [3]. In contrast, we propose an STT-
LUT with a design concept in which the path from the LUT inputs to the LUT output is a MUX,
as shown in Figure 3(a). The MUX of the LUT is a 2n to 1 (2n : 1) CMOS MUX implemented in
static style, which can be written as a synthesizable RTL code for automatic implementation and
optimization by the logic synthesizer tool in the process of design compilation.
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Fig. 4. MTJ latch with scan chain programming.

Each configuration bit is stored by a MTJ latch with scan chain programmability, as shown in
Figure 4. The MTJ latch uses a pair of differentially programmed MTJs for non-volatile storage, a
pre-charge sense amplifier for sensing the state of the MTJs, and three write driver schemes for
parallel writing MTJs simultaneously, with each MTJ receiving full voltage swing, offering more
write current. The Sense Enable (SE) signal must be low during the write operation, and the
Write Enable (WE) signal must be low during the sensing operation. To avoid conflict of state
between the pre-charge state of the sense amplifier (when SE=0) and the state of the write driver
outputs in the write mode, the pre-charge path toVDD is disconnected via the PMOS driven by the
WE signal. The MTJ latch uses a dynamic latched sense amplifier that needs to be fired (SE low
to high pulse) once on every power-up to convert the resistive state of the MTJs into the volatile
voltage states at the outputs (Q and QB). In this configuration, the MTJs are read-only once, and for
the remaining time in the active mode, the LUT read power and delay are determined by the static
MUX. Moreover, by not reading from the MTJs repetitively in the active mode as in the dynamic
STT-LUT styles, the stress is removed from the MTJs, enhancing their lifetime. Another critical
thing to note here is that the scan chain used to program the LUT is separate from the one used
in the design for testing and thus does not require critical MUX to switch from functional mode to
test mode. Apart from programming the MTJ’s, the separate scan-chain also allows us to thwart
the Scan and Shift attack, which is discussed in Section 5.4.

The MTJ latch is designed in a full-custom manner and needs to be optimized for sensing relia-
bility and area. The custom-designed MTJ latch is delivered as a standard cell for integration into
the ASIC design flow. The full-custom design and optimization of the one-bit MTJ latch cell are
performed in the Synopsys generic 28 nm process. The write drivers tend to require large transis-
tors to produce sufficient current needed for MTJ write. The write transistors need to be optimized
so that the write operation can succeed under process variations. We have performed a statistical
transistor sizing optimization on the write driver for achieving near zero (less than 0.1%) write
failure rate under process variation. After the write driver sizing optimization, the read path (i.e.,
the sense amplifier) transistor sizes are statistically optimized for achieving less than 0.1% sensing
failure rate at the smallest possible area. Moreover, a minimum-sized scan flip-flop is inserted in
front of the MTJ latch to store the data written to the MTJ latch. These scan flip-flops will form
a scan chain for loading the configuration bits to the MTJ latches in a design. Figure 3(b) shows
the full-custom layout of the one-bit MTJ latch designed in the format of a standard cell layout
(fixed height). The write drivers occupy most of the layout area (37.5%), since the MTJ write cur-
rent is still reasonably large. Notice that the MTJ devices are stacked on top of this layout between
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Fig. 5. Comparison of (a) power, (b) delay, and area of STT-LUT and standard cells in 28 nm.

two metal layers (assuming M3 and M4) and do not occupy the 2D area. M3 pins are placed for
connection to the MTJ layers.

3.1.2 STT-based LUT Versus CMOS-based LUT. Figure 5 shows the comparison of the area of
the MTJ latch and STT-LUTs, along with the areas of other standard cells in 28 nm. The MTJ latch
area is 6× to 15× that of basic logic gates, and 3× larger than SRAM-based D flip-flop (FF). The
MTJ latch, however, shows much less leakage power. It has 7× to 11× less leakage power than
basic CMOS logic gates and 20× smaller than SRAM-based D-FF.

The delay and active mode power of the STT-LUT are determined by the multiplexer part of the
LUT, which is optimizable by the logic synthesizer. Figure 5 presents the comparison of delay and
active mode power for various fan-in STT-LUTs with standard cells. LUT2 to LUT7 have delays
comparable to the standard cell delays. Due to the large MTJ latch area, LUTs are noticeably larger
than the standard cells, and their area increases exponentially with fan-in. While it is evident that
the scale at which the LUT’s overheads increases is exponential, we can leverage LUTs up to a
specific size where the increase in overhead is linear. The LUTs of sizes 8 and 9 have power in
hundreds of uW, which is way larger than the standard cells, but we must also keep in mind that
LUTs will replace the collection of gates. Going beyond LUT of size 8 and above makes it hard to
find a collection of gates that can be effectively mapped to the LUT. Moreover, overheads at such
high input LUT are hard to offset as they increase exponentially. This study helps us in establishing
a practical bound until which we can scale up the LUTs.

The traditional methods have used SRAM-based Lookup tables for obfuscation, which are
volatile and require programming during startup. Loading large keys for SRAM-LUTs comes with
the added cost of time, power, and area overheads. One needs to also account for the overhead of
programming and storage circuitry. With STT-LUT, using non-volatile MTJs, programming is re-
quired once in the trusted regime. Since the programming of the key will be done once, write
circuitry can be shared between MTJs, reducing both area and power overhead of the design.
Moreover, with SRAM-based LUT, there is a key movement from tamper-proof memory to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 6, Article 56. Pub. date: June 2022.



56:10 G. Kolhe et al.

SRAM cells for programming SRAM-based LUT on device startup, which can raise more security
concerns.

Compared to the SRAM-based LUT, the STT-MTJ have only one downside in our case, i.e., the
MTJ-based STT-LUT technology has not matured or commercialized. However, given that shortly,
when the MTJ-based STT-LUTs emerge, it will benefit the LUT-based obfuscation in many ways.
Thus, in our quest to realize LUTs as a feasible means of obfuscation, in this study, we proceed
with STT-LUTs.

3.2 Replacement Strategies

The location of the gate(s) selected for the obfuscation is one of the critical factors that define
the strength of the obfuscation. The replacement strategy finds the gate for obfuscation based on
heuristics. As replacement strategies affect the SAT-resiliency and the PPA overheads, we study
the effect of replacement strategy in this work. There are several conditions that an effective re-
placement strategy needs to meet to provide resiliency against the SAT attacks. The two most
important conditions are (1) low corruptibility and (2) avoiding unintentionally correct key gener-
ation. By considering these conditions, we introduce a replacement strategy and compare it with
the random placement strategy [33]. To better evaluate the impact of each condition, we compare
three different strategies in this work as follows.

3.2.1 Random Selection (RND). In random selection algorithm, the gates are selected for obfus-
cation in the random fashion. We use this method as a baseline for comparison as opposed to the
independent selection in Reference [45].

3.2.2 Low Output Corruptibility (LC). The state-of-the-art SAT-solvers use the CDCL algorithm
to find the solution. The CDCL works by searching for the conflicting clauses to learn clauses
effectively. Comparing the two different outputs of the same netlist upon application of the input
pattern with different keys helps find the conflicting clause. If the hamming distance between the
two obtained outputs is high, then finding the conflicting clause and distinguishing input is easy.
An obfuscation strategy that influences more than one primary output (PO) of a circuit on the
application of a wrong key input will result in the higher hamming distance, and the probability of
hamming distance > 1 will be significant; (more than one primary output differs from the Oracle).
This phenomenon is also known as the property of the obfuscation strategy to have high output

corruptibility. High corruptibility leads to higher hamming distances, which in contrast, provides
the SAT-solver with an opportunity to find the conflict clauses much faster, resulting in lower de-
obfuscation time. Due to this phenomenon, the maximum of one output must be different when a
wrong key is applied to increase SAT execution time. This is called having low output corruptibility;
if fewer (the best is 1), then outputs are different after applying different keys and input. This
phenomenon can also be thought of as reducing the observability in the presence of obfuscation,
such that the effect of the wrong key can only be observed at fewer primary outputs. Due to this,
sensitizing the key-input to the primary output becomes intricate.

For the IP to exhibit the low output corruptibility, we employ a Breadth-first-search on the
graph, which consists of graphs as a node and edges being the connection between the logical
gates. While traversing from logic cone outputs (LCO) toward the inputs, a dictionary with all
the gates and their corruptibility will be created, which allows us to pick the combination of the
gates with the lowest output corruptibility. After traversing, based on the number of gates targeted
for obfuscation, we do the multi-objective optimization, where we try to maximize the number of
gates selected for obfuscation while minimizing the output corruptibility.
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ALGORITHM 1: Avoiding Unintentionally Correct Key Generation (LC_NoGen)

1: for each LCO in Logic_cones do � LCO: Logic Cone Output

2: gate_list = BFS(LCO); � Get all gates in the logic cone

3: for each gate in gate_list do

4: gate.listLCOs = find_affected_LCOs(gate)
Find all the Logic Cone Output gates, which are affected by the current gate.

5: for each (gate in circuit) do

6: for each (LCO in gate.listLCOs) do

7: tag_key(LCO)
8: if isExist(tag_key(LCO)) then

9: dictionary.add(gate)
10: else

11: dictionary.add(gate)
12: dictionary.addtag((tag_key(LCO))

13: CriticalPath = PrimeTime(Get Critical Path)
Get List of gates that are on Critical Path using Synopsys PrimeTime.

14: for each (tag in dictionary) do

15: for each (gate in tag) do

16: if isExist(Parent(gate) in tag)
17: or isExist(gate in CriticalPath) then

18: dictionary[tag].delete(gate)
Remove gates that are adjacent to each other to avoid back-to-back LUT replacement.

Remove gates on critical path list

19: tag_key = Optimize ()
find tag_key which have maximum gate coverage with lowest Output Corruption

20: for each (gate in tag_key) do

21: Replace_LUT(gates, target_no)
Replace gates with LUT.

3.2.3 Avoiding Unintentionally Correct Key Generation (LC_NoGen). As the LUT is a reconfig-
urable unit, it can implement 22n

possibilities where n is the size of the LUT. Obfuscating two gates
back to back with LUTs can potentially generate additional correct keys. When the number of cor-
rect keys is increased, the SAT solver’s search space to find the working key is reduced, thereby
reducing the de-obfuscation time. Consider an example where two “NOT” gates are replaced with
LUTs. In this scenario, if the LUTs are configured as buffers instead of NOT, then the circuit will
still be equivalent to the oracle, and thus we have two correct keys instead of one. This means the
probability of finding a key is doubled instantaneously. Therefore, obfuscating the gates with LUTs
directly connected in a back-to-back fashion decreases the SAT solver’s search space significantly.
Due to the virtue of the reconfigurability in the LUTs, we must reduce the number of correct keys,
and thus extra care should be taken to avoid this condition.

By considering the above case of avoiding the obfuscation of two gates directly connected, we
propose a LC_NoGen replacement strategy. The pseudocode for the LC_NoGen replacement strat-
egy is illustrated in Algorithm 1. The algorithm involves traversing the graph followed by the
dictionary creation. The dictionary is filtered to eliminate the back-to-back gates and gates that
contribute to the critical path, and we use an optimizer that maximizes gate coverage while re-
ducing the output corruption. The complexity of traversing the graph with V vertices and E edges
is given as O (V + E). With fewer modifications, the dictionary creation and filtering can be done
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Fig. 6. De-obfuscation time using SAT-attack for different (1) replacement strategy, (2) LUT size (scale up),

and (3) number of LUTs (scale out) in ISCAS-85 c7552 [14].

while traversing the graph, and thus, the overall complexity for traversing the graph and dictionary
creation is given as O (V +E). The optimization problem, however, is a combinatorial optimization
problem. While finding the optimal set of gates for obfuscation is an NP-hard problem, we use
off-the-shelf ILP solvers to get the sub-optimal solution using an approximation algorithm. The
problem of gate selection with minimum output corruptibility is treated as a variant of a classical
problem of minimum vertex cover. The task at hand is to choose a minimum number of nodes,
that maximizes the cover. The gates selected by the optimizer are replaced with the LUT, and We
demonstrate that by considering the LC_NoGen, the Security per PPA overhead footprint is im-
proved. The proposed algorithm can also be scaled to other obfuscation techniques for inserting
the obfuscation as this algorithm finds the optimal place for inserting a gate that minimizes the
output corruptibility.

Figure 6 illustrates the performance of the discussed obfuscation strategies against the SAT
attack. With the improved obfuscation strategies, the de-obfuscation time of the SAT solver is
increased, and in most of the cases, obfuscation using LC_NoGen, strategy outweighs the Random
and LC obfuscation, which shows that high security can be obtained with a lower number of
gates obfuscated. The lower number of gates used for obfuscation results in lower PPA overhead.
However, while providing higher security at the cost of lower PPA overheads, these obfuscation
schemes tend to have low output corruptibility.

While, however, it can be observed that for the LUT with size 8 and above, obfuscating ∼1%
of overall gates with any obfuscation strategy also renders the time-out states for the SAT solver.
Moreover, we can get both the security against the SAT-attack and the increased output corrupt-
ibility with random obfuscation scheme using a large LUT size. Therefore, by scaling up the

size of the LUT for obfuscation, the LUT-based obfuscation can break the trade-off of

SAT-resiliency with output corruptibility. Increasing the size of the Look-up tables increases
the resiliency of the IP regardless of the replacement strategy.

The experiment also shows that using a larger LUT size overweigh the benefits of using

a better gate replacement policy. Another observation from the experiment is that change in
the obfuscation coverage from 1% to 3% (i.e., changing the number of LUTs inserted in the circuit)
also increases the runtime of SAT-solver. Thus, in the next section, we compare the effect of the
size of LUT versus the number of gates obfuscated (obfuscation coverage) on the circuit resiliency
in more detail.

3.3 LUT Size Versus Number of LUTs

To get the best security results using LUT-based obfuscation, it is wise to leverage the large size
of the LUT, because increasing the LUT’s size can thwart the SAT attack and increase the output
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Fig. 7. De-obfuscation time of C7552 benchmark with different number of LUTs and different sizes of LUT

using SAT-attack [14].

corruptibility. This advantage of using larger LUT sizes is that LUTs are modeled using the log2

(n)-level MUX-based structure, and with the increasing size of LUT, the SAT attack will replace
them with the deep MUX trees. As discussed, the SAT-attack leverages the CDCL algorithm for
finding the distinguish input. However, when a symmetrical structure of the MUX-tree is used for
the obfuscation, there is no shortleaf in finding the conflict clause while running the SAT-attack.
The increasing size of LUT grows the MUX tree deep, and consequently, the search space and the
efforts for finding the conflicting clause are increased, making the resulting instance an SAT-hard.
In the following example, we show how the de-obfuscation time rises exponentially, with larger
LUTs to find the keys’ value.

For replacement using larger LUT sizes, combinations of gates are replaced using large LUT.
Figure 1(a) shows an example of the large-sized LUTs used for the obfuscation. The 2-input gates
(G4, G6, G7, G9,) are replaced using LUT of size 4. For SAT-simulation, the LUTs are represented
using MUX-tree as shows in Figure 1(b). To evaluate the effect of LUT size versus the number of
LUTs, we obfuscate the multiple gates with varying LUT sizes in a similar manner.

Figure 7 shows SAT execution time with more details on the ISCAS-85 C7552 benchmark for
different sizes of LUTs used for obfuscation. This experiment shows that a similar trend of lever-
aging larger LUT size provides higher resiliency than utilizing more LUTs for obfuscation. We can
see that SAT execution time increases at the near exponential rate in both directions, i.e., scale-up
(increasing the size of LUTs) and scale-out (increasing the number of LUTs). However, obfuscating
only a single gate with an LUT of size 13 can render a time-out state for the SAT solver.

To further substantiate these results and understand and compare the impact of LUT scale up
versus scale out on SAT execution time, we use a regression model to demonstrate the relationship
between SAT execution time and these two parameters. Figure 8 provides two different scenarios
to accurately model the relationship between SAT deobfuscation time and the size of LUTs, as
well as the number of LUTs. As shown in Figure 8(a), one factor (LUT size or number of LUTs)
is fixed in each curve. LUT size is constant in one of them, while the number of LUTs is swept
from 1 to 29. In another curve, the number of gates obfuscated is constant, and the size of LUTs
has been swept from 2 to 8. Based on the independent (one-variable) exponential regression model
illustrated on curves, it is clear to observe that the LUT scale-up has significantly more influence
on SAT execution time compared to the LUT scale-out.

Figure 8(b) shows another similar situation for C7552 that proves that the LUT scale-up is more
effective than the LUT scale-out. Also, according to a multi-dimensional linear regression, the
impact coefficient of the number of gates obfuscated using LUT on SAT execution time is 72.347.
However, the impact coefficient of using a large size of LUT is 1,969.25. This regression coefficient
demonstrates that LUT size is the most important factor for security purposes than the number
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Fig. 8. LUT scale up vs. scale out: Comparison between the impact of LUT size and number of LUTs on SAT

execution time on (a) ISCAS-85 C2670, (b) ISCAS-85 C7552 [14].

of LUTs used and replacement strategies. Therefore, to render the best security, instead of

opting for obfuscating more number of gates, we should replace a few gates with large

LUT sizes.

The thorough experiment on LUT-based obfuscation by considering (1) LUT technology,
(2) LUT size, (3) number of LUTs, and (4) replacement strategy, it can be concluded that scaling up
the size of the LUTs for obfuscation yields the excellent resiliency against state-of-the-art attacks.
However, the investigation on PPA shows a sharp increase in the design overheads when using the
large size of LUT. Figure 9 shows the Area and Power overhead for LUT-based obfuscation. Every
point from Figure 7 was synthesized using Synopsys Design Compiler using TSMC 65nm library
to obtain the power and area overheads. It can be observed that to render the timeout state for
SAT solver using the LUT-based obfuscation, the PPA incurred is at least 10× the baseline version
of C7552 with no obfuscation. The enormous obfuscation overhead due to leveraging the

traditional LUT-based obfuscation makes the LUT-obfuscation an idealistic method for

hardware security. This experiment also lets us find the smallest LUT size that results in SAT-
resilient obfuscation with lower PPA. For this example, the LUT of size 8 results in SAT timeout
with the lowest PPA among all samples, and thus in the following experiments, we use LUT of size
8 as the baseline for comparing our proposed novel LUT.

Given the benefits of the LUT-based obfuscation, and to realize it as a realistic solution, we
need to (1) radically reduce the PPA overheads and (2) do not compromise the security against
the various attacks. However, both the goals are contradictory to each other with the discussed
LUT-based obfuscation. We can reduce the size and number of LUTs, but that compromises the
security against the SAT attack. The following section discusses a novel LUT design that benefits
from configurable barriers for obfuscation and mitigates the incurred area and power overheads.

4 PROPOSED NOVEL LUT CONFIGURATION

Using large LUT sizes for obfuscation offers increased SAT resiliency as it creates a SAT-hard
instance. The resulting instance is SAT-hard as the CDCL algorithm, which is responsible for find-
ing the DIP, needs to consider the increased search space. However, with the larger LUT sizes,
the LUT obfuscation renders an idealistic method, and to make it an efficient method of obfus-
cation, we must break the trade-off between security offered by the LUT-based obfuscation and
the imposed PPA overheads. In the proposed method, we study the Davis-Putnam-Logemann-

Loveland (DPLL) algorithm (or one of its derivatives), which is used to perform CDCL, and how
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Fig. 9. Normalized area and power overhead of LUT-based obfuscation. Points that result in SAT execution

time out are marked as SAT-resilient configuration [14].

Fig. 10. Median number of recursive DPLL tree pruning/backtracking for random 3-SAT formulas, based on

the ratio of clauses to variables [12, 22].

we can create SAT-hard problem using the small size of the LUT such that increased security can
be obtained at the lower PPA footprint compared to the traditional LUT-based obfuscation.

For the SAT attack modeling, the obfuscated netlist is represented using the MUX tree, as dis-
cussed in Section 3. In the SAT solver, the ratio of the clause to variable can be used to evalu-
ate the obfuscation strategy’s security quantitatively. The resulting obfuscation instance can be
called SAT-hard if the clause to variable ratio is around 4.2 [23]. Figure 10 shows that the ratio
from 3 to 6 provides much higher DPLL calls, and 4.3 clauses per variable are the best ratio for
generating the most computational SAT-hard instance, as it generates the highest number of DPLL
calls. For example, a 100-variable and 300-clause instance (clause/variable = 3 is called as “under-
constrained,” because there are many satisfying assignments), or a 100-variable and 5000-clause
instance (clause/variable = 50 is called as “over-constrained,” because the contradictions can often
be easily found) can be solved using the SAT solver very quickly. However, the SAT solver takes a
long time to solve a 3-SAT instance, constructed with 100 variables and 450 clauses.

Table 1 shows the Tseytin transformation [44] of various logic gates into their respective CNF
expression. From this table, only XOR/XNOR and MUX have 4 clauses per gate. This is when
the clauses to variables ratio are 1 and 4/3 in MUX and XOR/XNOR, respectively. Despite the
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Table 1. Tseytin Transformation of Basic Logic Gates [12]

Gate Operation CNF (sub-expression)

C = AND(A,B) C = A.B (A ∨ B ∨C ) ∧ (A ∨C ) ∧ (B ∨C )

C = NAND(A,B) C = A.B (A ∨ B ∨C ) ∧ (A ∨C ) ∧ (B ∨C )

C = OR(A,B) C = A + B (A ∨ B ∨C ) ∧ (A ∨C ) ∧ (B ∨C )

C = NOR(A,B) C = A + B (A ∨ B ∨C ) ∧ (A ∨C ) ∧ (B ∨C )

C = BUFF(A,B) C = A (A ∨C ) ∧ (A ∨C )

C = NOT(A,B) C = A (A ∨C ) ∧ (A ∨C )

C = XOR(A,B) C = A ⊕ B (A ∨ B ∨C ) ∧ (A ∨ B ∨C ) ∧ (A ∨ B ∨C ) ∧ (A ∨ B ∨C )

C = XNOR(A,B) C = A ⊕ B (A ∨ B ∨C ) ∧ (A ∨ B ∨C ) ∧ (A ∨ B ∨C ) ∧ (A ∨ B ∨C )

C = MUX(S ,A,B) C = A.S + B.S (S ∨A ∨C ) ∧ (S ∨A ∨C ) ∧ (S ∨ B ∨C ) ∧ (S ∨ B ∨C )

observation that the XOR/XNOR has a larger clause to variables ratio for a single gate, MUXes
provides a better building block for constructing SAT-hard circuits. This is because: (1) with
no unit propagation and purification, for having four variables, a MUX can make the recursive
DPLL tree one level deeper, (2) unit propagation and purification steps in the DPLL algorithm
provide more simplified and smaller formula using enhanced Gaussian elimination while the
contribution of XOR/XNOR gates is much higher [42]. Hence, MUXes needs more DPLL recursive
tree prunings/backtrackings compared to XORs/XNORs. Moreover, since unit propagation and
purification satisfy fewer equations or clauses, the clause to variable ratio will increase.

The next step for building an SAT hard problem is to push the clause to the variable ratio in
the desired range of 3 to 6 (4.3 being the best). This prevents the propagation and purification
algorithm from simplifying the circuit before branching into a recursive DPLL tree. This agenda
of pushing the clause to the variable ratio in the desired range can be achieved by building a MUX
tree. This property can be utilized to reinforce security offered by the conventional LUT-based ob-
fuscation. We combine the traditional LUTs with an extra layer of LUT whose input size is fixed to
2. The size of the small LUTs is restricted to 2 to impose lower PPA overheads. The resulting novel
LUT combines a large LUT with the addition of the smaller LUTs at its input. The scenario can be
visualized as adding MUX-tree by large LUT, supplemented by another 2-input LUT, which resides
at the select line of the previously inserted MUX-tree as shown in Figure 11(b). By adding 2-input
LUT, the MUX tree can be imagined to grow in 2D space. (For example, a traditional LUT can
be represented by the MUX tree growing in the horizontal direction, and the addition of MUXes
on their select lines grows the MUX-tree in the vertical direction.) The proposed modification of
adding another layer of LUTs to the LUT-based obfuscation benefits the IP from both reconfig-
urable and routing obfuscation. The additional layer of LUT increases the possible function of the
large LUTs, thus increasing the search space for the SAT-solver. To restore the functionality of
the IP, one has to find the correct functionality of both the small and large LUT simultaneously.
For the n-LUT2 followed by LUTn , the number of possible functions implemented is

Fpossible = n × 222

︸︷︷︸

Functions implemented by LUT2

× 22n

︸︷︷︸

Functions implemented by LUTn

.
(1)

When the output of one LUT feeds into input of another LUT indirectly, the number of possible
functions grows even rapidly:

Ftotal = FLU T 1 × FLU T 2. (2)

Moreover, the attacker’s difficulty increases as the change in keys of the previous LUT is masked
by the current LUT. Indirectly cascading LUTs in LC_NoGen further decreases the observability. In-
creased difficulty due to MUX-tree increases the search space, while reduced observability elevates
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Fig. 11. (a) Proposed novel (LUTn+n:LUT2). (b) SAT-representation of proposed obfuscation with size 4

(LUT4+4:LUT2).

the security offered by the proposed novel LUT. With the growing search space, the probability of
finding a correct key is significantly reduced. The probability of finding a single key when 2 LUT7 +
7:LUT2 are added in the circuit is given by

P =
1

1.452496e + 81
, (3)

where

• 1.452496e+81 is a number of functions implemented by 2 LUT7 + 7:LUT2, which are cascaded
indirectly.

As the security obtained by the novel LUT is superior compared to the traditional LUT,

we can reduce the LUT size required for the obfuscation, resulting in lower PPA and thus

breaking the trade-off between security and the PPA.

Figure 11(a) shows the generic version of the proposed novel LUT. For the process of obfuscation
using traditional LUT, the gates are identified and replaced using LUT8 as LUT8 renders the time-
out scenario as shown in Figure 9 with the lowest possible PPA. On the contrary, in the novel
LUT, the gate is always replaced with the combination of 2-input LUT and LUTn such that n < 8
where n is the size of LUT. Part (b) of the figure shows LUT4, which is preceded by 4-LUT2. For
the de-obfuscation using the SAT-attack, one can model the novel LUT block with the equivalent
circuit shown in Figure 11(b).

Once we have replaced the gates with the proposed novel LUT, we empirically validated the
clause to variable ratio of the obfuscated block. Figure 12 denotes the clause to variable ratio of both
pre-obfuscation (Original) circuit and obfuscated circuit. It is evident that, after the LUT insertion,
the Clause to Variable ratio falls in the range of 4–5, which creates a SAT-hard instance.

ASIC Iterative Security-driven Design Flow

Here, we provide an overview of the proposed methodology used to obfuscate the design using the
proposed LUT. As seen earlier, spin-transfer torque (STT) MTJ-based LUTs have demonstrated
higher PPA efficiency than the CMOS-based LUT. Due to this fact, we leverage the STT-based
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Fig. 12. Effect of obfuscation on the Clause to Variable Ratio.

LUT to construct the novel LUT in this work. The STT provides state-of-the-art performance and
features such as (1) near-zero leakage, (2) soft error resiliency, (3) improved endurance and re-
tention time, and finally (4) high integration density than SRAMs [45]. Besides enabling on-die
re-configurability and providing high performance, the STTs are also highly integrative in the
CMOS fabrication process.

For the integration of the STT-LUT, the LUT is defined as the Verilog module, which contains
the instances of MTJ or NV latch cells and the RTL-level code of an input multiplexer. When the
gates are identified for the obfuscation, they are replaced with the proposed novel LUT block,
which is nothing but the new netlist with NV-LUTs containing the RTL code of the multiplexer.
Upon insertion of these blocks into the netlist, the firm macros containing the RTL of multiplexers
are re-synthesized and optimized for optimizing the overheads. To further optimize the design, we
introduce the iterative-based design flow for inserting the novel LUT in the design.

Figure 13 illustrates the proposed concept of the iterative security-driven ASIC design flow for
overhead optimization.1 The main aim of this iterative flow is to find optimal gates for obfuscation
such that overheads are mitigated. As per our study, the LUT’s size is the most influential
factor for SAT-resiliency, and even for a random gate selection, LUT-obfuscation results in SAT
timeout, as seen in Figure 7. This gives the user flexibility to choose gates, as they do not have
to abide by a particular obfuscation rule or policy. Even if the gate-selection policy (LC_NoGen)
discussed in our work is used, the proposed flow is non-disruptive to the industrial design flow.
In the proposed flow, the netlist is passed as the input along. Any High-level synthesis tools or
RTL-syntheses tools can be used to generate the netlist after the insertion of the novel LUT. We
use Python scripts as a wrapper around industrial tools such as Synopsys DC, PrimeTime, and
VCS to automate the flow. The given flow supports the netlist generated with any library and
does not restrict the designer in library support. The script first creates a Verilog Module Object

(VMO) data structure of the standard cell library, which is then used to define the synthesized
netlist abstractly. The result is a complete map of the flattened netlist, defined as interconnected
VMO instances. The script reads a configuration file, which contains the list of the gates to be
replaced and the configuration of the LUT to generate the Configurable Logic Elements (CLE).
The gates to be replaced are given by the LC_NoGen, or by the user. The configuration of a given
LUT is defined by the number of inputs to both the primary and preceding LUT. The generated
CLE is added to the standard cell VMO collection and replaces the VMO instances of the gates in

1Gray part in Figure 13 is iterative to obtain the best result.
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Fig. 13. Iterative-based security-driven design flow for PPA optimization with optimal security solution.

the top layer selected for the replacement. The program creates and runs an exhaustive test bench
to extract the individual CLE configuration keys in parallel using a logic simulator (i.e., VCS). The
output configuration keys are then chained together to form the top-level configuration key. The
script finally generates RTL blocks that are inserted within the synthesized netlist, and after a final
synthesis stage, the synthesized obfuscated design is provided along with its configuration key.

There are two modes of LUT insertion supported by the script. The first insertion mode as-
sumes that a separate IP block will be included in the design to hold all configuration key (i.e., an
e-fuse, MTJ, or ReRAM macro). In this mode, configuration bits will not be scanned into the LUTs
directly but into the macro that will hold the configuration key in a non-volatile state. In this
manner, the configuration key being driven by the non-volatile IP are simply top-level inputs to
the LUT module. While in the second mode, the LUTs themselves contain the non-volatile bit-
cells (including read/write circuitry). In this mode, LUTs have a dedicated scan chain to shift in
configuration bits to write to the NV bit-cells.

If the addition of obfuscation modules violates the constraint of the design (i.e., slack violation),
then the iterative flow can be leveraged. The iterative flow reports the type of violation. For the
timing violation, the LC_NoGen finds new sets of gates such that they are not on the critical path
of the design, and timing violations can be removed. For area and power, the iterative design flow
requires altering the number and the size of the LUT before creating a new design revision. The
gate selection, replacement, and re-synthesis processes are iteratively performed until the PPA
constraints, and the security constraints are satisfied. This flow primarily benefits from design-

space-exploration (DSE) and adds additional overhead in performing the DSE but guarantees
optimal design configuration. In the circuit benchmarks obfuscated in this work, at most 4 levels
of iteration were sufficient to meet security and design constraints. By excluding the gates on the
critical paths, the LC_NoGen finds the gates for obfuscation automatically while eliminating the
timing overheads.

To verify logical equivalency between the original target benchmark and the obfuscated version,
we use the Synopsys Formality, which is a formal verification tool. Moreover, to avoid missing
functional bugs introduced by altering the gate-level netlist, the test benches are also designed
such that the logical function provided by the target gates is exercised. In the case of the LUT-
mapped design, an initialization task is required to load the configuration key. Once loaded, the
original testbench can be run. This initialization-dependent testbench is run after re-synthesis as
part of the constraint checking phase depicted in Figure 13.
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Fig. 14. Properly configured AES encryption benchmark, with successful validation on the left. Error count

is 0, when the correct keys are loaded. With the improperly configured AES encryption benchmark, we can

see the error count to be a non-zero number on the right.

As discussed earlier, implementing large LUT sizes adds an enormous amount of PPA overheads.
However, using the proposed LUT-based obfuscation, we can use smaller LUT sizes than the LUT
sizes required in traditional obfuscation methods. The reason being, the resiliency per area offered
by the proposed LUT is far superior to that of the traditional LUT designs.

Once the timing, area, and power constraints are met, the traditional ASIC design flow can be
utilized before sending the design to the foundry. A dummy LUT configuration key with the test
data vector could be provided for the third-party vendor to test the IP. Once the fabricated IP is
returned in the trusted regime, one can load the correct configuration key using the scan chain.

As a case study, Figure 14 shows the waveform of a successful test of an AES encryption bench-
mark after obfuscation has been completed. The gates in the design are replaced with 2 LUT of
size 8, preceded by LUT of size 2 at each input. This accounts for a total of

2 × (28 primary keys + 8 × 22 input keys ) = 576 keys

This resulting output is an obfuscated netlist with the keys as top-level inputs. This particular
benchmark’s testbench applies hundreds of directed test vectors (encryption key and input text
combinations) and then compares the resulting cipher-text to the expected cipher-text (also in-
cluded in the test vector). In this design, an incorrectly configured obfuscation key made all test
vectors fail, as shown in Figure 14. Upon a test vector failure, the error count is incremented.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

To explore the design space and determine the impact of LUT size, the number of LUTs, and the
replacement strategy, we used a cluster computing environment with 53 Dell computing nodes,
each with dual Intel Xeon CPUs. The total number of cores ranging from 16 to 24, with RAM
varying from 64 to 512 GB.

For the experimental evaluation, we use benchmarks from ISCAS-85,2 ISCAS-89,3 and Common
Evaluation Platform (CEP).4 The benchmarks are listed as part of Table 2. The CEP is a system on
a chip design that represents typical microelectronics used by the Department of Defense (DoD)
and includes instrumentation and government-specific benchmarks. These benchmarks are syn-
thesized and flattened using the Synopsys DC Compiler.

2http://www.pld.ttu.ee/~maksim/benchmarks/iscas85/verilog/.
3http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/verilog/.
4https://www.ll.mit.edu/r-d/projects/common-evaluation-platform.
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Table 2. Benchmarks used for Experimentation with their Gate Counts

Source ISCAS CEP

Benchmark C2670 C7552 B12 FIR IIR AES DES
Gate Count 894 1,290 2,017 11,875 12,067 20,795 98,341

The goal of the adversary is to retrieve the key to unobfuscated the IP using SAT-attack. We use
SMT-attack [4], which is not only the super-set of SAT-attack but also the newly developed state-
of-the-art attack. The newly developed SMT attack uses a primary SAT-solver with extra theory
solvers. Combining two solvers allows the SMT-solver to a model more complex problem, thus
resulting in a strong attack. The SMT attack tries to find the correct key (LUT-configuration bits
in the context of LUT-based obfuscation) that can restore the circuit’s correct functionality. We

consider the runtime of the SAT attacks as an empirical yet essential metric for security

evaluation of the obfuscated circuit. Each SAT-runtime presented in work is the averaged run
of 10 different SAT-solver execution. The obfuscation technique aims to render maximum secu-
rity at the lower PPA overheads, and we show that the proposed LUT can deliver the security at
minimal PPA footprints, increasing the viability of the reconfigurable-based obfuscation.

We empirically track and explore the execution time of the SMT solver by sweeping the size of
large LUT in novel LUT from 4 to 7 to demonstrate the impact of novel LUT for security design.
Also for SMT attack, a run-time limit of 30 days (2,592 × 103 s) is set to demonstrate time-out states.
The time-out state of 30 days is chosen to demonstrate how we can break the trade-off between
the security and the imposed PPA compared with traditional LUT. This is the first work that has
extended SAT-execution to 30 days for empirically proving the security offered by novel LUT.

For this experiment, the identified gates are replaced with STT-LUT technology to produce
an obfuscated netlist as described in Section 4. For the overhead estimation, we again used
Synopsys DC with the TSMC 65 nm technology library. The reported overhead in this work is
reported with reference to the unobfuscated design and includes the overhead incurred due to
the scan-chain mechanism used to load the values in MTJs. With the automation provided using
the ASIC Iterative Security-driven Design Flow, the delay overhead is eliminated in almost all the
cases for novel LUT-based obfuscation, and thus only area and power overhead are discussed
in fine granularity. In the iterative flow, the LC_NoGen algorithm gets the timing report from
the PrimeTime and removes the nodes from the graph, which is used for finding the gates for
obfuscation. The SAT attack/SMT attack does not support the Verilog files for the SAT simulation.
Therefore, the in-house developed python script was developed that converts the obfuscated
Verilog files to the SAT-supported bench files.

5.2 Security Analysis Against SAT-based Attack

Figure 15(a) illustrates the design space exploration performed on “C7552” benchmark by lever-
aging novel LUT-based obfuscation. By varying the size and the number of LUTs used for novel
LUT-based obfuscation, the de-obfuscation time against the SMT-solver is plotted. The SMT-solver
time-out states can be rendered using traditional LUT-based obfuscation by obfuscating 14 gates
with LUT size 8. LUT size 8 is considered per the experimental results obtained in Figure 9; recall
that the combination of obfuscating 14 gates with LUT size 8 renders the lowest PPA with time-out
state for SAT solver among all the configurations tested in Figure 9. However, with the proposed
LUT. replacing just over 2 gates with LUT7 + 7:LUT2

5 or replacing 6 gates with LUT6 + 6:LUT2

5LUTm + n:LUT2 represents novel LUT where n LUTs of size 2 is preceded by LUTm , where LUTm represents LUT of

size m.
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Fig. 15. Comparison of the proposed primitive where the size of the LUT is varied from 4 to 7 with the

traditional LUT-based obfuscation. Panel (a) shows the de-obfuscation time of various obfuscated samples

using SMT-solver and panel (b) shows the PPA incurred by the proposed primitive [14].

renders the obfuscation resiliency to create time-out scenario. This increased resiliency with the
smaller size and number of the LUT breaks the trade-off between PPA and security. This finding
justifies the fact that the resiliency of the novel LUT provided by LUT sizes 6 and 7 is on par with
that of the traditional LUT with size 8. This added security is due to the virtue of the SAT-hard
instance created by the LUT preceded by the LUT configuration. The results further show that we
can yield significant computational challenges for SAT-based attacks, which grow exponentially
with the increasing size of LUT.

While leveraging the small size of the LUT, such as LUT size 4 and 5 for novel LUT, the number
of gates required to achieve SAT-resiliency (time-out states) is more. Nevertheless, the overheads
imposed by LUT of size 4 and 5 is far less than that of LUT size 8, and thus it can be concluded
that the novel LUT with size 4 and 5 provides a high ratio of security per PPA overhead footprint
than the traditional LUT of size 8. It is worth noting that all instances of obfuscation using novel
LUT render SAT-attack time-out, resulting in the on par resiliency level using traditional obfusca-
tion using LUT size 8. Figure 15(b) validates the previous statement by showing that obfuscating
14 gates with novel LUT using size 4 adds 3.58× overhead compared to 14.76× overhead added by
traditional LUT of size 8.

The reduction in area and power is applicable for all of the experiments conducted as part of this
work. The normalized area and power overhead from Figure 15(b) for novel LUT incurred lower
overheads than the LUT obfuscation using LUT8. It also warrants that using a large size of fewer
LUT, i.e., using just 2 LUT7 results in the lowest PPA and on par resiliency.

As the resiliency provided by novel LUT increases as the function of the size of the LUT, one
should replace a few gates with large LUT sizes rather than using small LUTs in large quantities.
Moreover, our results suggest that it renders in SAT-resilient obfuscation while incurring permis-
sible overheads. These results are also consistent with the experimental results obtained from
Figure 7.

To further reinforce our conclusion regarding using large LUT sizes in fewer quantities for ob-
fuscation, we performed another experiment where the key size is constrained. The number of
key bits is indicative of the overheads imposed. More key bits require more fuses to store configu-
ration bits and also require a large selection tree. Increasing keys thus results in increased power
and area overhead. By adding the constraint on the key bits, we are indirectly constraining the
area and power and the number and sizes of the LUT that can be leveraged for the obfuscation.
We use the “AES” benchmark for this experiment while keeping the key lengths constrained to
size 110, 160, 360, and 400, respectively. The key lengths let us use LUT of size 4 up to 6, and the
number of gates replaced using the LUT is shown in the Figure 16 over the bars in the graph. For
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Fig. 16. SMT-solver execution time to find the unlocking key when the benchmark is obfuscated with differ-

ent size and number of LUTs. The number and size of the LUTs to be replaced are determined by the key

size, which is constrained in this experiment and denoted by the number above each individual bar [14].

example when the key size is 360, we can have at max 2 novel LUT6 + 6:LUT2 or 6 LUT5 + 5:LUT2

or 9 LUT4 + 4:LUT2. For each configuration, we plot the SMT-solver’s de-obfuscation time, and it
can be visualized that the time required for de-obfuscation using a large size of LUT in fewer quan-
tities is greater in all 4 key lengths. Using just 4 novel LUTs of size 6, we encounter the time-out,
which is better than leveraging 12 novel LUTs of size 4 for obfuscation. This increased resiliency
is created due to the virtue of using large LUT sizes and the large MUX trees that are added to
the circuit. Leveraging the large size of the LUT obfuscates the actual function in the space, which
grows exponentially as the function of LUT size. When the key lengths are equal, the overhead
added is roughly equal. With the same overhead footprint or key size, using the large LUT size pro-
vides maximum resiliency. Thus, one should use large LUT sizes in small quantities for obfuscation
using the novel LUT. Furthermore, the experiment concludes that security grows faster than the
added overhead, or the additional security comes with lower PPA overheads when the large LUT
size in small quantities is used. The trade-off between security and design overhead is mitigated
in the proposed novel LUT.

Figure 17 shows the power and area overhead for the different benchmarks using the proposed
LUT of size 7. Size 7 is used, because LUT of size 7 resulted in the lower PPA, as seen in Figure 15(b).
We omit timing results, because all designs maintained their initial timing specifications. As LUT7

+ 7:LUT2 is the optimal PPA configuration, it incurred a small timing overhead while providing sig-
nificant security performance. While we did not encounter a timing violation due to gate selection,
in the event a timing violation did occur, we could select another gate that does not contribute to
critical path delays. The overheads imposed by the novel LUT are compared with the traditional
LUT-based obfuscation with LUT8. LUT8 is used for comparison, as it resulted in the SAT-resilient
obfuscation while incurring the lowest PPA overhead as seen in Figure 6. Compared to the LUT8

based on traditional obfuscation, the novel LUT with LUT7 comes with 8× and 2× average re-
ductions in area and power overheads without sacrificing the security. While one can argue that
overheads for circuits such as “C7552” are very high, the circuit size of “C7552” is minimal (only
1,290 gates). However, with the larger circuits like “AES,” “DES,” or “GPS,” representing real-world
IPs, the incurred overheads are justifiable, making this technique a more efficient solution.

5.3 Comparison with other Obfuscation Methodologies

In this section, we compare the proposed methodology with the present state-of-the-art works.
SFLL-HD [53] and Anti-SAT attack [47] are known to be SAT-resilient attacks, as the SAT-attack
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Fig. 17. Comparison of proposed LUT obfuscation with the traditional LUT-based obfuscation in terms of

(a) design area overhead, (b) design power overheads. The number of LUTs and the size of the LUTs are chosen

such that the obfuscated netlist results in the SMT-attack timeout with minimal PPA overheads. The iterative

security-driven flow discussed in Figure 13 can be leveraged to obtain these netlists. The added overhead for

both traditional and obfuscated netlist is provided in reference to each benchmark’s unobfuscated version.

The figures indicate that in proposed LUT-based obfuscation, the resiliency rendered by each LUT comes at

much lower costs of design overheads [14]. The number on the top of the bars denotes the overheads where

1× denotes no overhead and 1.03× means 3% overhead.

Table 3. Overhead Comparison of Various Obfuscation Techniques

Power overhead analysis Area overhead analysis SMT-Attack runtime (seconds)

Benchmarks FLL Proposed SFLL-HD AntiSAT InterLock FLL Proposed SFLL-HD AntiSAT InterLock FLL Proposed SFLL-HD AntiSAT InterLock

C2670 73% 53.27% 49.5% 62.1% 49.2% 142.2% 91.53% 91.55% 147.5% 82.5% 2468.1 ∞ ∞ ∞ ∞
C7552 52% 20.4% 24.2% 35.2% 21.2% 115.4% 91.53% 83.1% 105.1% 78.9% 4956.1 ∞ ∞ ∞ ∞
B12 31% 18.5% 20.1% 24.5% 19.9% 99.75% 60.52% 70.14% 87.1% 63.1% 8446.4 ∞ ∞ ∞ ∞
FIR 28% 17.3% 17.8% 18.6% 14% 72.95% 43.05% 40.21% 38.7% 35.9% 12224 ∞ ∞ ∞ ∞
IIR 25% 10.08% 5.4% 6.4% 9.9% 42.87% 8.44% 15.7% 11.6% 12.1% 11350 ∞ ∞ ∞ ∞
AES 11.2% 2.75% 3.8% 4.1% 2.9% 22.4% 4.94% 4.6% 2.1% 2.87% 15440 ∞ ∞ ∞ ∞
DES 9% 2.46% 2.2% 3.1% 2.1% 19.3% 3.27% 3.91% 2.8% 3.11% 17664 ∞ ∞ ∞ ∞
∞ denotes SMT-attack timeout, which is 1 month (or) 2,592,000 s.

requires an exponential amount of queries to retrieve the keys. We also compared our novel LUT
against Fault Logic Locking [28]. We obfuscate various designs such that SAT-attack results in a

time-out state while trying to retrieve the keys with minimum obfuscation overhead. We required
larger key sizes for the obfuscation primitives presented here for comparison against the proposed
primitive to result in time-out states. Recall that our time out is set to 30 days, while most work
uses a few hours or days as their runtime.

For Fault Logic Locking, the key size used was relatively large and thus resulted in a significant
overhead figure, but it still fails to resist the SAT attack. Interestingly, the time required to obfuscate
the circuit is more than the de-obfuscation time. For obfuscating the circuit using FLL, we used off
the shelf obfuscation tool provided by Reference [43].

From Table 3, we can observe that the SFLL-HD and AntiSAT result in about the same Area and
Power overhead when compared to novel LUT-based obfuscation. This is true for the small as well
as large benchmarks. However, with the increasing size of the benchmark, the overheads for all of
these methods are more practical. However, it can be noted that Anti-SAT and SFLL-HD leverage
a one-point function and thus has lower output corruptibility. This makes the SFLL-HD and

Anti-SAT vulnerable to many approximations SAT-attacks [34] and removal attacks [51].

Moreover, Fall-attack demonstrated in Reference [40] shows that the key for SFLL-HD

can be retrieved without having access to the oracle design.

Contrary to the compared algorithms, the proposed LUT-based obfuscation allows the user to
randomly replace the gates in the circuitry, thereby increasing the output corruptibility while
being resilient to SAT-attack, the approximation attack as well as removal attacks. Moreover,
we compare the state-of-the-art InterLock obfuscation, which is a unified routing and logic
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obfuscation technique [12]. The overhead for leveraging the Key programmable routing block
size 64 is comparable to the proposed LUT-based obfuscation. It requires around 320 key pro-
grammable routing blocks where each block consists of 2 LUT2 and 4 2:1 MUX. Moreover, using
the size of 64 for yielding SAT-resiliency requires 10-stages of routing, making this obfuscation
hard to deploy in a circuit. Proposed LUT-based obfuscation, however, can be deployed quickly
and provides comparable overheads when compared to the state-of-the-art obfuscation primitives.

As discussed earlier, LUT-based obfuscation remains resilient to removal attacks, as removing
the LUT from the circuit strips away the circuit’s functionality. The SAT attack tries to find the
configuration key for the LUT that can unlock the circuit, but the ample obfuscation space put
forth by LUT-based obfuscation renders the SAT attack futile. The most significant design, such
as DES, when we launched the SAT attack, which ran past the time-out state, resulted in an error
(internal error in “lglib.c”: more than 894,489,346 variables). This shows that attacks cannot unlock
the 100% correct functionality of the circuit using LUT-based obfuscation.

The proposed obfuscation was also compared against AppSAT [34]. For AppSAT, the termina-
tion criteria are determined by the error rate, which is one of the inputs to the attack. We performed
50 random queries (default setting of AppSAT) on the oracle attack after the key, which is given
to us after the 20 iterations of the AppSAT. It is misleading to calculate the error rate using such a
small amount of input patterns for the obfuscation with high output corruptibility [53]. When the
number of queries has been increased to 1,000, AppSAT resulted in a time-out state. Nonetheless,
the key given by the AppSAT, when the number of queries was varied between 50 and 1,000, did
not fully unlock the obfuscated circuit.

5.4 Security Against Other Adversaries

While we show that proposed LUT-based obfuscation is resilient against SAT-based methods such
as traditional SAT-attack, SMT-attack, and AppSAT, it also thwarts other hardware security attacks
such as removal attacks, ATPG-based attacks, and also scan-chain-based attacks.

For ATPG-based attack, HackTest [54], reveals the true identity of the gates by utilizing the test
data. The attack leverages the fact that the test pattern used for testing the IP generally has full
coverage. Since the attacker has access to the test pattern, he/she finds the gate assignment of the
LUT such that test coverage is maximized. The LUT-combination that results in reduced coverage
upon applying the test patterns can be avoided, and as such, this attack is even powerful than
SAT-attack. Compared to the SAT-attack, this method does not require the oracle and does not
require the attacker to find the distinguishing inputs. However, leveraging the reconfigurability
of the LUTs, one can generate the test patterns with maximum fault coverage for the incorrectly
configured LUTs, thus retaining the ability to test the circuit. For example, if the LUT is supposed
to function as “OR,” then for the sake of testing, LUT can be configured to be anything but “OR,”
and the test patterns can be obtained and sent to the testing facility accordingly. The attacker uses
the test patterns provided and will evaluate the LUT functionality to be anything but an “OR” gate.
When the IP is back in the trusted regime, the true functionality of the LUT can again be restored by
programming the MTJ’s, and thus attacks like HackTest can be avoided. Further, work in Reference
[29] shows that efficacy HackTest depends on the functions implemented by the reconfigurable
gate. As the LUT used in work can implement multiple functionalities, the success of the HackTest

is greatly reduced.
The proposed LUT-based obfuscation can also thwart the Scan and Shift attack. The Scan and

Shift attack [17] tries to capture the Secure Cell (SC) value using the scan chain. However, in
our proposed method, the mechanism uses a separate scan chain to load the values into the LUT
configuration bits. By modifying this scan chain to block the scan out port, the attacker fails to
retrieve the content stored in the LUT. Since this modified scan chain with a blocked scan out port
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is only used to load the keys into the design, the other scan chains in the design are still fully
functional and thus facilitate the IP’s routine testing. Moreover, the programming of key is only
done once in trusted regime, the scan chain is never used thereafter and scan-chain does not hold
the key value.

5.5 Exploration of Large Benchmark

To show the efficiency of the proposed LUT insertion strategy, a large GPS benchmark (≈170,000
gates) from the CEP benchmark is chosen. The benchmark is widely used in many industrial and
commercial gadgets and consists of hundreds of sub-IPs and Subsystems. The benchmark is ob-
fuscated with the optimal LUT7 + 7:LUT2 LUT configuration discussed in previous sections. The
obfuscation resulted in 0.4% power and 0.3% area overhead. This design achieved an SAT-attack
timeout with both an area and power overhead of less than half a percent. This result affirms the
trend established in the survey of small and medium-sized designs in the preceding sections: the
power and area overheads required to implement the optimal SAT resilient LUT configuration
amortizes as the design size increases.This experiment, along with others, shows that two LUT7
+ 7: LUT2 were able to withstand SAT attack for a month and provides superior quality when
compared to the state-of-the-art obfuscations while incurring permissible overheads.

6 CONCLUSIONS

In this work, we studied reconfigurable logic locking. We performed a comprehensive analysis
of LUT-based obfuscation using four crucial design factors, i.e., (1) LUT technology, (2) LUT size,
(3) number of LUTs, and (4) replacement strategy as they have a strong influence on the PPA over-
head and security. Among the studied parameters for the LUT-based obfuscation, the LUT (LUT
scale-up) size is the most influential and straightforward factor in achieving SAT resiliency. How-
ever, using a large size of LUTs for obfuscation results in hefty PPA overheads. Leveraging the
STT-based LUT alleviates the PPA overheads. However, the incurred overheads still render LUT-
based obfuscation an idealistic method for obfuscation. To mitigate the overhead that occurred
due to large LUT, we introduce novel LUT, which breaks the trade-off between security and the
design overheads. The novel LUT aims to create an SAT-hard design to reduce the design overhead
without compromising security. The proposed LUT can be used with random gate placement to
increase the output corruptibility without sacrificing SAT resiliency. The proposed LUT is resilient
against approximate attacks, ATPG-based attacks, removal attacks, and Scan-chain-based attacks.
We propose an iterative solution, a non-disruptive procedure to standard ASIC design flows that
render the efficient and secure obfuscated design layout. The proposed technique is evaluated
against the state-of-the-art SMT attack and removal attacks. Our experimental results show that
resiliency against various attack vectors can be achieved with the proposed novel LUT-based ob-
fuscation. Furthermore, compared to the traditional LUT-based obfuscation, nearly 2× power, and
8× area overheads can be reduced on average. These results warrant that the proposed methodol-
ogy can be seamlessly integrated into IC design flow while ensuring permissible design overhead
and security against today’s state-of-the-art attacks.
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