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The processing of data-intensive workloads is a challenging and time-consuming task that often requires

massive infrastructure to ensure fast data analysis. The cloud platform is the most popular and powerful

scale-out infrastructure to perform big data analytics and eliminate the need to maintain expensive and high-

end computing resources at the user side. The performance and the cost of such infrastructure depend on the

overall server configuration, such as processor, memory, network, and storage configurations. In addition to

the cost of owning or maintaining the hardware, the heterogeneity in the server configuration further expands

the selection space, leading to non-convergence. The challenge is further exacerbated by the dependency

of the application’s performance on the underlying hardware. Despite an increasing interest in resource

provisioning, few works have been done to develop accurate and practical models to proactively predict the

performance of data-intensive applications corresponding to the server configuration and provision a cost-

optimal configuration online.

In this work, through a comprehensive real-system empirical analysis of performance, we address these

challenges by introducing ProMLB: a proactive machine-learning-based methodology for resource provision-

ing. We first characterize diverse types of data-intensive workloads across different types of server architec-

tures. The characterization aids in accurately capture applications’ behavior and train a model for prediction

of their performance.

Then, ProMLB builds a set of cross-platform performance models for each application. Based on the devel-

oped predictive model, ProMLB uses an optimization technique to distinguish close-to-optimal configuration

to minimize the product of execution time and cost. Compared to the oracle scheduler, ProMLB achieves

91% accuracy in terms of application-resource matching. On average, ProMLB improves the performance

and resource utilization by 42.6% and 41.1%, respectively, compared to baseline scheduler. Moreover, ProMLB

improves the performance per cost by 2.5× on average.
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1 INTRODUCTION

The continuous increase in the volume of data due to the rise of social media [20], Internet-of-
Things, and multimedia has produced an overwhelming flow of data referred to as big data [34,
57]. To efficiently process such massive data, scale-out architectures have gained interest as a
promising solution that is designed to provide a massively scalable computer architecture. Recent
improvements in the networking, storage, energy efficiency, and infrastructure management have
made cloud a preferable approach to respond to the challenges associated with big data [43].

Cloud computing is a significant paradigm shift in service for enterprise applications and has
become a powerful platform to perform large-scale computing [11]. The advantages of cloud com-
puting include the virtualized environment, parallel processing, security, and scalable data storage.
Some of the first adopters of big data in cloud computing are the users who deployed MapReduce,
SQL-like languages, deep learning, and in-memory analytics clusters in computing environments
provided by vendors, such as IBM SoftLayer (has been renamed to IBM Cloud), Microsoft Azure,
and Amazon AWS. The structure of execution environments of such big data analytics is a cluster
of virtual machines (VM) [30].

Virtualization is a process of resource sharing and isolation of underlying hardware to increase
computer resource utilization, efficiency, and scalability. Considering the fact that the cloud service
providers offer a wide range of cloud configuration choices such as VM instances with a variety
of CPUs, memory, disk, and network configurations and also customized VMs for analytics appli-
cations, determining the best cloud configuration for a given application by brute-force search is
expensive and exhaustive. Choosing the right cloud configuration is essential, as a non-optimal
configuration results in more cost for the same performance target as different analytic jobs have
diverse behaviors and resource requirements. A more challenging problem regarding big data an-
alytics is that the behavior and resource requirements of these applications vary during different
phases of execution [12]. As the application behavior varies with time, a reactive resource alloca-
tion methodology achieves a sub-optimal performance gains due to computational complexity and
involved latencies. Therefore, a dynamic proactive approach is needed to determine and allocate
optimal resources at different phases for a running application.

In response to these challenges, we propose ProMLB-a methodology that proactively predicts
the future behavior of running applications by dynamically generating a cross-platform perfor-
mance model for all the available hardware resources and provisions a near-optimal configuration
that maximizes performance per cost, while introducing a low search overhead. The overhead of
generating the performance model and finding the optimal configuration is negligible as ProMLB
is implemented on a separate server as centralized cluster management, and it does not interfere
with on-going application executions.
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To the best of our knowledge, previous works did not fully address all the following challenges
together: proactive behavior prediction of data-intensive applications, selecting a highly accurate
machine learning (ML) technique for performance modeling based on real empirical characteri-
zation, consideration of VM live migration time overhead, optimizing the performance w.r.t the
cloud cost, and considering various optimization techniques to achieve fairness among jobs at the
same time.

In this work, we propose a practical framework called ProMLB that can address all the afore-
mentioned challenges simultaneously. To this goal, we first analyze various applications’ archi-
tectural characteristics. Based on this information, a database is built and used for training the
prediction models (using time series neural network, K nearest neighbors (KNN) regression, and
hidden Markov model (HMM)), generating performance models (using multilayer perceptron, and
Support Vector Machine (SVM)), and applying different optimization techniques (Knapsack algo-
rithm and Cobb Douglas utility function) in terms of performance/cost efficiency and fairness. To
be as close as to the real-world cloud providers, we utilize IBM’s SoftLayer pricing list to derive a
cost model for server platforms in a scale-out environment. The developed cost model takes into
account the processor, memory, and disk configurations.

The novelty of this work is outlined in a threefold manner:

• An Ensemble learning-based proactive phase prediction with high accuracy based on the
behavior of the application and underlying execution hardware is devised.

• A non-linear performance model to efficiently estimate the actual behavior of the applica-
tions running on different hardware platforms considering the architectural parameters, as
well as real-time constraints such as migration time, is deployed.

• A cost-performance tradeoff is achieved by employing the Bounded Knapsack algorithm. To
solve the problem of proactive resource allocation in data centers with minimal processing
overheads, a hierarchical approach based decision-maker is employed in the last stage.

The evaluation results show that the phase predictor of ProMLB achieves 92% to predict the
future phase change of workloads correctly. On average, ProMLB improves the performance/cost
(performance per unit cost) and performance by 2.5× and 42% on an average (up to 70%), respec-
tively. It needs to be noted that this improvement in speedup is only achieved by efficient resource
allocation and without any software or framework tuning overheads. Based on the evaluation re-
sults, ProMLB increases CPU utilization efficiency (averaged across all cores), DRAM bandwidth,
and memory capacity utilization efficiency by 36%, 53%, and 39%, respectively.

The remainder of this article is organized as follows: Section 2 reviews the related works and
presents our motivation for this study. Section 3 introduces the ProMLB framework and the tech-
nical details of various components of ProMLB. Section 4 presents our experimental setup and the
implementation of ProMLB. Section 5 presents the performance analysis of ProMLB and compares
it with existing works in terms of resource utilization, efficiency, improvement in performance, and
performance per unit of cost. Finally, we derive the conclusions in Section 6.

2 MOTIVATION AND BACKGROUND

2.1 Motivation

The number of performance and cost optimization tuning knobs available for data-intensive ap-
plications is large compared to traditional CPU applications [CPU2006]. Hence, we consider an
application as a generic black-box to simplify the model of the application’s behavior for correlat-
ing its architectural signature with available hardware resources.
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Fig. 1. Micro-Architectural break-down of workloads for different phases.

Based on Top-Down methodology [53], applications’ behavior can be classified into three cat-
egories such as I/O bound, core bound, and memory bound. Top-Down methodology chooses the
micro-op (µop) queue of an out-of-order server as a dividing point between a core’s front-end and
back-end and uses it to classify µop pipeline slots in four broad categories: Retiring, Front-end
bound, Bad speculation, and Back-end bound. Of these, Retiring is classified as “useful work” and
the rest prevent the workload from utilizing the full core width. We apply this approach to our
big data workloads. An application may transition multiple times between these phases during its
execution time. Figure 1 illustrates the microarchitectural differences between those three phases.
The main difference between memory bound and I/O bound is in C0 residency. This can be ex-
plained as follows: If the application is I/O bound, then the core is waiting for I/O; hence the core
changes its state to save power. Therefore, C0 residency drops.

Moreover, micro-architectural information of applications varies corresponding to their behav-
ior, and it can be used as a signature for the applications. In this way, each application has multiple
architectural signatures corresponding to its behavior. The architectural signature can be trans-
lated into the type of resources required for executing the application. Memory bound applications
require more DRAM bandwidth and capacity. Core bound (compute intensive) applications require
a high-performance processor with a high number of cores and core frequency. I/O bound applica-
tions require fast storage and network. There are hundreds of configurations available in a server
farm that each of them can deliver different performance for a given application. The challenging
problem to address is that an application may have various phases of execution. For each phase, it
requires different resources to meet the performance requirements while maximizing the utiliza-
tion of resources for the cost benefits.

Figure 2 demonstrate the phase change of PageRank application during a part of its execution.
We can observe that there are several changes in the application’s behavior. If we ask the program-
mer to provide the beginning or end of parallel regions or long-running API calls, then applications
and frameworks must be redesigned. We designed ProMLB to address the optimal resource allo-
cation problem without requiring any change in the application or the frameworks, and ProMLB
is compatible with current frameworks.

2.2 Related Work

The prevalence of cloud computing has motivated several new studies for cluster management
[7, 13–15, 32, 50, 54, 55]. A cluster management framework provides various services, including
resource efficiency, security, fault tolerance, and monitoring capabilities. The proposed framework
in this article, ProMLB, is a novel resource management engine that differs from previous works
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Fig. 2. Example of application’s behavior and phase change.

Table 1. Comparison of States of the Art

System Target Complexity Accuracy Proactive Dynamic Domain Cost aware

ProMLB Performance/cost, Fairness High High Yes Yes Big Data Yes

BoPF (SIGMETRICS’19) Fairness Medium High No No Big Data No

DAC (ASPLOS’18) Performance High High No No In-memory No

PARIS (SoCC’17) Performance Medium Medium No Yes Broad Yes

CherryPick (NSDI’17) Performance Low Low No No Big Data No

MeNa (IISWC’17) Performance/cost Low Low No No Broad Yes

HCloud (ASPLOS’16) Cost Medium Medium No Yes Scale-out Yes

Ernest (NSDI’16) Performance Medium High No No Big Data No

Heracles (ISCA’15) Performance Low Medium No Yes Latency-critical No

Quasar (ASPLOS’14) Performance Medium Medium No Yes Scale-out No

REF (ASPLOS’14) Fairness low Low No Yes Broad No

Paragorn (ASPLOS’13) Performance Medium Low No Yes Scale-out No

in many aspects. Table 1 summarizes the recent works and differentiates ProMLB from state-of-
the-art studies.

Several recent studies [7, 13–15, 26, 50, 52] were proposed to address QoS-aware, performance
aware, and cost-aware scheduling and resource allocation. One of the closest work to ProMLB is
Quasar [14]. Quasar is an online scheduler that leverages historical performance data from sched-
uled applications to classify incoming applications and assign the application proper resources
in a datacenter. It further relies on online adjustments of resource allocations to correct mistakes
in the modeling phase in which it randomly samples a few applications, and injects microbench-
marks in the corresponding servers and performs live reclassification. If it detects significant de-
viations from the previous interference profile of a workload, then it considers whether migration
or rescheduling is beneficial. In addition, Quasar does not consider the cost of running servers.
Whereas, ProMLB continuously monitors all servers and proactively predicts their phase change
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ahead of time while considering the cost of the servers. As a result, ProMLB offers a more effi-
cient resource allocation, and since the deployed predictors are lightweight, no high processing
overheads are added to the system.

Reference [13] proposed a heterogeneous and interference-aware scheduling system in datacen-
ters called Paragon. It is based on analytical methods that are built using previous information the
system already has about applications to exhaustively schedule applications to maximize resource
utilization in datacenters. Paragon deploys filtering techniques to identify some similarities be-
tween the current workload and the previously scheduled applications, and classify the unknown
application based on the level of heterogeneity and interference in multiple shared resources in
datacenter. Reference [7] proposed Cherrypick, a system that attempts to find a nearly optimal
cloud configurations with high accuracy and low overhead in which it adaptively builds perfor-
mance models customized for specific applications and cloud servers configurations to identify a
near-optimal configuration.

Resource Elasticity Fairness (REF) [55] and BoPF [28] are resource provision methods to sched-
ule a fair set of resources for each user at a computer architecture to cloud level by presenting fair
resource allocation mechanisms that customized preferences to determine each user’s fair share
of the hardware. The researches in Reference [27] proposed Pliant, a lightweight cloud-based ap-
proach that employs the incremental and interference-aware approximation during periods of high
contention to reduce interference in shared resource and ultimately tolerate some loss in output
quality to boost the utilization of shared resources and servers at runtime. Bolt [16] is another re-
search on cloud-based resource provisioning that proposed a scheduler system that leverages data
mining techniques to detect the the type and characteristics of running applications on a cloud
platform using the interference an adversary observes on the shared resources.

Kousiouris et al. [26] proposed to use a two-layer service in the cloud to translate high-level
application parameters (workload and QoS based on Service Level Agreement) to resource level
attributes. Their work did not consider any performance model to select the optimum configura-
tion. Also, they have not considered the cost-efficiency.

Some systems adaptively allocate resources based on feedback. Rightscale [6] creates additional
VM instances when a load of an application crosses a threshold for EC2. YARN [8] decides resource
needs based on requests from the application. Other systems have explicit models to inform the
control system. For example, the work in Reference [10] targeted achieving accurate control of the
web application, by training the performance models on the production system making the model
adapted to runtime changes in workload and performance characteristics of executed program.
This work proposed to train the performance model using an exploration policy to collect sufficient
data from different performance regions of the running application on the system pushing the
system close to its capacity.

Wrangler [51] identifies overloaded nodes in map-reduce clusters and delays scheduling jobs on
them. Interference is creating a challenge for accurate performance estimation. Recent works [31,
44] explore placing applications on particular resources to reduce interference, by co-scheduling
applications with disjoint resource requirements [31]. However, users requesting VM types in
cloud services like Amazon EC2 cannot usually control what applications are co-scheduled. None
of these studies have focused on the influence of system parameters such as memory or storage
on the performance and cost in the cloud.

There are other works that studied the performance of big data applications on modern
processors [35, 37] and performed a set of comprehensive experiments to analysis the impact of
memory subsystem on the performance of data intensive applications [33, 36]. Jackson et al. [24]
and Barker et al. [9] analyzed high-performance computing (HPC) applications, latency-sensitive
applications, scientific applications, and micro-benchmark applications on the cloud. Kanev [25]
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Fig. 3. ProMLB overview.

analyzed cloud-scale workloads to provide infrastructure-level insights. In particular, the authors
in this work presented a detailed microarchitectural characterization of different real-world
applications in datacenter jobs, collected from Google machines over a three year period. They
found that cloud-scale workloads are significantly diverse, highlighting the necessity for com-
puter architectures that can tolerate application variability without performance loss, while some
patterns have shown the opportunities for hardware and software co-optimization. Last, Guevara
et al. [18] studied the application of heterogeneous architectures for cloud-based workload
optimization by exploring how deployment of heterogeneous platforms bring energy-efficiency
for cloud applications.

Unlike ProMLB, none of the existing approaches aim at estimating the Performance/Cost of
arbitrary data-intensive workloads on various server types at run-time and for each phase of the
program to proactively provision the most efficient configuration in a heterogeneous scale-out
environment.

3 PROMLB

3.1 Overview

Figure 3 shows the overview of ProMLB framework. To continuously monitor each server’s state,
a monitoring agent runs on each host. These agents periodically send the host’s state, such as ar-
chitectural information and resource utilization, to the ProMLB server. ProMLB server maintains
a database of per-host state and updates it on each interval. ProMLB predicts the future state of
application based on the current and previous states. Based on the predicted state and correspond-
ing architectural signature of application, ProMLB generates the application’s performance model
for all available platforms in the cloud. Afterward, ProMLB solves an optimization problem to find
the best platform and configuration that maximize the performance/cost for a specific application
at a given budget. Then, ProMLB uses Cobb–Douglas utility function to achieve fair allocation.

ProMLB is designed to maximize the performance per cost of running a data-intensive appli-
cation on a distributed platform. To achieve this goal, our approach is to use bounded knapsack
algorithm. In the Knapsack algorithm, by giving a set of items each with a weight and a value,
we must determine the number of each item to include in a collection so that the total weight is
less than or equal to a given limit and the total value is as large as possible. In our problem, we
consider each resource as an item and their value is the performance gain that they can add to the
system. In our problem, the cost of each resource is equal to the weight of an item in the origi-
nal problem. The given limit is equal to the total budget of the user to provision resources for its
application. We have another restriction that from each item, we must select at least a minimum
amount. Because an application cannot start execution unless it gets a core, memory, storage, and
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Fig. 4. Block diagram of ProMLB.

network resources. To solve the optimization problem, we need a performance and cost model to
determine the performance gain and the cost of adding each resource to the system.

The important point is that as we must assign all resources at the same time, we need a per-
formance model that correlates the performance of adding a resource to all other resources. For
example, if we want to add one core to the system, then the performance gain of that extra core
is dependent to the current resources, and it is not independent from them. Therefore, we need
performance models to accurately calculate the performance gain. However, the cost of adding
each resource is independent from other resources. Therefore, the cost models are much simpler
than the performance models. ProMLB server consists of four components to deliver all the above
functionalities: Phase predictor, performance model generator, optimizer, and decision-maker.

Figure 4 shows the block diagram of ProMLB and explains how aforementioned components
work together, e.g., how the optimizer and the manager take the knowledge of the predicted results
and models in their configuration and allocation decisions.

3.2 Monitoring Agent

The monitoring agent has been implemented in a privileged VM in Xen hypervisor called Dom-0.
Alternatively, datacenter operators may decide to host it on the application’s VM. The monitoring
agent periodically reports the state of the host to ProMLB server. The duration of the period,
which is referred to as Window, depends on the application’s characteristics. The monitoring agent
reports the current state, architectural signature, and the duration of window to the ProMLB server.

3.2.1 Architectural Signature. The monitoring agent extracts architectural information of appli-
cation during each window and reports it to the server. This architectural information is collected
through the Intel Performance Counter Monitor tool (PCM) [3] to understand the memory and
processor behavior. The information that we use to study the behavior of applications are: avail-
able virtual, physical, and shared memory, the cache, buffer space, memory bandwidth utilization,
ratio of free to total disk space, storage bandwidth utilization, network Bytes sent and received, L2
and Last Level Cache (LLC) hits ratio, instruction per cycle, core C0 state residency, and CPU idle,
system, user time. We consider this information as an architectural signature of an application.
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In this work, the resource usage pattern is called application’s behavior. We showed that the
behavior of an application changes if it becomes memory-bound, core-bound, I/O-bound, or idle.
Each of those distinct behavior is called a “phase.” As an example, when we say an application is
in its memory bound phase, it means its memory usage pattern shows the application is memory-
intensive. Hence, if the application’s behavior changes, it means that its phase is changed, too.
Therefore, a period of time that application shows a distinct behavior is a phase. We define “win-
dow” as follows: a fixed duration of time that monitoring agents periodically sends its state re-
port to the ProMLB server (master node). During each window, an application may have multiple
phases. We label the window with a phase that consumes most of the time of that window. For
example, if two thirds of a window are memory-bound, we call that window memory-bound. Ba-
sically, what our predictors will predict would be the major phase in the next window.

3.3 Phase Predictor

We equipped ProMLB with a phase predictor to be proactive to act before a significant change
happens in the behavior of the application and degrades the application’s performance. Phase
predictor will predict the future behavior of the application based on the current and previous be-
havior. For this purpose, we employ three techniques, such as time series neural network, HMM,
and KNN. Each of these techniques has its tradeoffs. We observed during simulations that accuracy
is limited for unseen applications. Therefore, we employ Ensemble learning to boost accuracy. We
use the ensemble method, which uses a combination of multiple learning algorithms to obtain bet-
ter predictive performance than could be obtained from any of the constituent learning techniques
alone. The accurate prediction is important as we can allocate enough resources to the application
before the performance degrades.

3.3.1 Time Series Neural Network. Time series neural network (TSNN) [56] is an eager learning
technique. The training of TSNN is done offline by our database. The time series neural network
module is based on a nonlinear autoregressive network with exogenous inputs network. The fol-
lowing equation is utilized to predict future behavior:

Y (t ) = F (Y (t − 1),Y (t − 2), . . . ,Y (t − n)).

In this work, we used a 10-layer fully connected NN with the following architecture [35, 105,
80, 80, 75, 60, 65, 45, 15, 1] for the prediction. The number of neurons in each hidden layer and the
number of layers are decided through Grid Search [47] to reach the highest possible accuracy.

3.3.2 Hidden Markov Model. The HMM is another eager technique employed for effective pre-
diction. The HMM is used extensively for performance modeling and performance-prediction anal-
ysis, where the HMM can predict the future state of a target system based on its current state. In
reality, as the relationship between the observed time and the observed state is not one to one, a
group of probability distributions for two stochastic processes are involved, called the HMM. In
an HMM, the states are not observable, but when we visit a state, an observation is recorded that
is a probabilistic function of the state.

3.3.3 K Nearest Neighbors Regression. KNN [48] is a lazy learning technique that does not re-
quire training. Suppose the dataset has m samples that each sample xi is described by n input
variables and an output variable yi such as xi = {xi1, . . . ,xin |yi }. The goal is to learn a mapping
function F : x –> y known as a regression function that captures and models the relationship be-
tween input variables x and an output variable y. The KNN regression estimates the function by
taking a local average of the dataset. Locality is defined in terms of the k samples nearest to the
estimation sample. As the performance of KNN algorithm strongly depends on the parameter k ,
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finding the best values of k is essential. A large k value decreases the effect of noise and minimizes
the prediction losses. However, a small k value allows simple implementation and efficient queries.

3.3.4 Ensemble Method. Ensemble learning [46] is a branch of ML that is used to improve the
accuracy and performance of general ML predictors. We use ensemble learning to enable the use of
both eager learning techniques (TSNN and HMM) and lazy learning techniques (KNN), which does
not require training. Using the Lazy learning technique enables ProMLB to be more flexible and
have better accuracy for unknown applications. ML has been used in many areas [22, 41, 42] and
developers select an appropriate technique based on their field’s requirements [21, 40, 45]. In this
work, we use Bagging or Bootstrap Aggregation [46], which is an ensemble learning model that is
used for predictions. It is a statistical prediction technique where a future state of the application
is estimated from voting of prediction results of three models. Each model is exploited to make
a prediction, and the results are voted to give a more robust and generalized prediction. If the
prediction of all three ML techniques is different from each other, then the voter will select the
current state as the final result.

3.4 Performance and Cost Model Generator

In this part, we formulate the performance and cost analysis for different applications in a scale-
out environment. The first part of this section is devoted to performance modeling. The second
part is to formulate the dependency of the price that a subscriber must pay for utilizing differ-
ent server configurations. This cost model is based on the bare metal servers’ cost offered by the
IBM SoftLayer cloud located in Washington, DC. We then present the developed models to for-
mulate the performance improvement of each application with respect to the baseline hardware
configuration. These models will be exploited by the optimizer in the next step to select the most
performance- and cost-efficient server configuration for a given application.

3.4.1 Performance Modeling. One of the novel contributions of this article is to generate a per-
formance model for each phase of applications dynamically. This leads to a more accurate model
and helps the optimizer to select the best configuration. Figure 5 is an example to illustrate that
each application has a different performance model depending on its phase and the server platform.
Offline analysis of our applications shows that the performance of data-intensive applications is a
convex function of servers’ parameters such as core count and core’s frequency. Based on the anal-
ysis of our characterization, a generic performance model can be developed. However, this generic
model has to be adopted for each application. As a panacea to automatically tune the generic model
depending on the architectural signature of the application, we employ Artificial Neural Network
(ANN) here [19]. ANNs are a class of ML technique that maps a set of input parameters to a set of
target values.

We formulate each server’s performance as the product of per-processor performance and the
number of processors in each server. Regarding servers’ configuration, the parameters that can
be configured are core count, core frequency, DRAM bandwidth and capacity, storage bandwidth.
Therefore, there are nine different performance models from the combination of those parameters.
As the performance does not scale linearly with the parameters, such as the number of cores, a
nonlinear modeling is required. The following equation demonstrates the generic model:

Per f = α1x
2 + β1y

2 + α2x + β2y + ωxy + γ ,

where x ,y ∈ {core, f req,DRAMBW ,DRAMcap, StoraдeBW } and x � y.
To capture this non-linearity effectively, we chose a SVM [49] to fit the performance models.

SVM analysis is a popular ML tool for regression. Based on our database, we fit these models
using SVM to find the coefficients. Once the coefficients are calculated, we use them for training
the ANNs to map the architectural signature of applications to those coefficients.
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Fig. 5. Performance model generated for Graph analytics workload from Flink framework.

Nine three-layer fully connected ANNs were trained by our training database to adopt the
generic performance model for each application based on the architectural signature. We started
with a simple three fully connected layer neural network. We found out this model achieves our
desired accuracy. Therefore, we did not use a more complex model, such as a convolutional neu-
ral network, or binary neural network [39]. Each ANN has 17 inputs, 230 hidden neurons, and
six outputs. We used Grid Search to find the best number of hidden neurons. Inputs of neural
networks are the architectural signature. Each output neuron stands for a coefficient. ANNs gen-
erate the performance models in parallel. In the next section, these models will be used to find
the best platform and configuration. Figure 5 shows a subset of generated performance models for
three different phases of graph analytic application in the Flink framework. In each sub-figure, X
represents the number of cores and Y stands for the other parameter.

The advantage of this approach is that we can accurately model the performance of applications
at each phase of their execution for various type of servers and improve the server selection. An
appropriate resource provisioning will decrease the execution time of subscriber’s job, increases
the resource utilization of scale-out infrastructure and eventually brings economic benefits for
both subscriber and provider. This is important, because performance improvement in datacenters
translates into millions of dollars revenue per year for cloud provider and also it decreases the cost
for subscriber and make cloud services more attractive for the end users.
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Table 2. Values of Processor Cost’s Formula

Parameter δ θ ζ κ R2

Value −353.5 208.1 31.4 54.9 0.82

3.4.2 Cost Modeling. We first analyze the parameters that influence the pricing of a server.
Our goal is to establish a relationship between the performance of studied applications and the
cost of a server running those applications. The server price is determined as a function of server
configuration as follows:

Cserver = Cprocessor +Cmemory +Cdisk +Cnetwork .

The per-server costs include configurable DRAM, configurable processor, disk, and network
costs. In this work, we do not consider configuring the network for performance optimization.
Therefore, to establish a relationship between performances of applications as well as the price,
we are simply treating the network cost as constant. We extracted the price data for 30 available
server configurations in IBM SoftLayer bare metal servers. We used the regression technique to
derive a cost equation for storage, memory, and processor.

All the below cost equations are the predicted charge that subscribers must pay in dollar for
renting a bare metal server (on a monthly basis) on the IBM SoftLayer (data are collected in January
2019), which includes the power, cooling, and maintenance related costs of the server. The equation
for price per server based on the server’s processing configuration is as follows:

Cprocessor = δ + θNsocket + ζCore + κFrequency,

where Frequency < 4 GHz,Cache = 2.5 MB/Core , and Core < 26 per socket.
The values presented in Table 2 are coefficients of parameters and eventually can be translated

to the cost in dollar. We used MATLAB’s regress library to fit our models with the price data that
we collected from IBM SoftLayer in January 2019. R-squared is a goodness-of-fit measure for linear
regression models. This statistic indicates the amount of the variance in the dependent variable that
the independent variables explain collectively. R-squared measures the strength of the relationship
between our model and the dependent variable on a convenient [0,1] scale. 0 represents a model
that does not explain any of the variation and 1 represents a model that explains all of the variation
in the response variable around its mean.

For the cost of memory, we derived two different equations. The first considers the effect of
memory frequency and the number of channels on the cost of each memory module. These pa-
rameters determine the available DRAM bandwidth for the processor. The maximum capacity of
each available memory module is 32 GB. This is the maximum available DRAM module in the
market (at the time of this research). In this work, we consider one module per DIMM,

Cmodule = [(9 ×Capacity) × (Mem.Frequency − 0.31)] − 5 × Nchannel ,

where the memory frequency is in GHz and memory capacity is in GB.
Beyond 32 GB, the memory cost is estimated using the following equation:

Cmemory = (1.81 ×Capacity) + 364.

For the cost of storage, three types of storage are available such as SSD PCIe, SSD SATA, and
HDD. To change the capacity or the bandwidth of storage, ProMLB can aggregate multiple disks
together. In this way, the cost of storage is as follows:

Cstor aдe = (NSSD−PCI e ×CostSSD−PCI E ) + (NSSD−SAT A ×CostSSD−SAT A) + (NH DD ×CostH DD ).
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3.5 Optimizer

For a given application and workload, our goal is to find the optimal or a near-optimal server con-
figuration that simultaneously satisfies the performance requirements with minimal operational
cost. For this purpose, we use the Bounded Knapsack algorithm to solve the aforementioned opti-
mization problem.

3.5.1 Bounded Knapsack Solution. This solution was introduced in MeNa [32] to select the best
memory configuration to maximize the performance/cost. In this work, we use the Bounded Knap-
sack solution to select the optimal server configuration (not only memory). To apply that method-
ology, first, we have to identify the cost to increase performance by changing each server param-
eters. Hence, we need to define a quantity called performance-cost sensitivity. For example, the
performance-cost sensitivity to the bandwidth of memory is defined as follows:

Sens (Mem.BW .) = ((∂Per f )/(∂Mem.BW ))/((∂Cost )/(∂Mem.BW )).

Afterward, we calculate this quantity with respect to all server parameters, such as the number
of cores, memory capacity, and all other configurable parameters using our performance and cost
models that we have presented in the previous section. After the calculation of sensitivity quantity,
we sort all sensitivity values and based on the most significant values, we put them into a FIFO.
This FIFO helps to set a priority for each parameter when allocating resources. Then by using
dynamic programming, we solve the bounded knapsack problem:

Maximize Σn
i=1Per fi ×Confi

Subject to Σn
i=1Costi ×Confi ≤ Budдet andmini ≤ Confi ≤ maxi ,

where Confi represents the number or the value of parameter i , mini and maxi are the minimum
and the maximum available resource for parameter i . Also,Costi present the cost corresponding to
Confi . Similarly, Per fi present the performance improvement corresponding to Confi . The result
of this optimization is the recommended configuration to the manager. The budget is a constraint
that the user must provide. The result of solving the optimization problem is a set of configuration
such as the number of sockets, number of nodes, the number of cores, core frequency, memory
capacity, memory bandwidth, storage capacity, and storage bandwidth. The optimizer recommends
this configuration to the manager. It is the responsibility of the manager to decide the action that
is needed to take for scaling the current platform to make it as close as to the recommended
configuration for the targeted VM.

3.6 Manager

After finding the optimal configuration, the manager takes actions to allocate or adjust the re-
sources assigned to the applications. Actions that can be executed by the manger are as follow:

The first action can be Dynamic voltage and frequency scaling, which is the adjustment of volt-
age and speed settings to increase or decrease CPU frequency. If it is required, then the manager
can increase or decrease the number of CPU cores assigned to the application (hot-(un)plugging of
resources such as memory and cores). Moreover, the manager can change VM configuration and
add allocated storage or remove them. It is also feasible to increase or decrease memory capacity.
The last action will be to migrate VM to a different node. Live migration is performed by an un-
derlying mechanism (Xen Hypervisor). The manager migrates a VM when the migration latency
is predicted less than half of the window’s time and also when there are not enough resources on
the current server.

3.6.1 Predicting Migration Time. The manager must take into account the Xen live migration
time to decide whether to migrate the VM or not. Therefore, we adopt the performance model of
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Fig. 6. Migration time.

Xen live migration proposed in Reference [38] to predict the time that takes to migrate a VM from
node A to node B and resume the job.

Performance modeling of live migration involves three main factors: the size of VM memory
(VMem ), the memory dirtying rate (D), and network transmission rate (J ). Live VM migration
achieves negligible application downtime by iteratively pre-copying the pages dirtied at the previ-
ous round of transmission. Xen provides the ability to track memory accesses of guest VMs using
a mechanism referred to shadow page tables. The shadow page tables are maintained by the hy-
pervisor and translated from guest page tables on demand. In this way, the hypervisor is able to
trap all memory updates within a VM and maintains a bitmap to mark the dirty pages. As VM
live migration also works in shadow paging model, we can measure a VM’s memory dirtying rate
incidentally before the pre-migration phase. The data transmission rate for each round is deter-
mined by adding a constant increment to the previous round’s memory dirtying rate (D) where
the constant variable and its default value is empirically set at 100 Mb/s. Let λ denote the ratio of
D to J . Then we have the migration latency:

Tmiд =

n∑

i=0

Ti =
Vmem

J
.
1 − λn+1

1 − λ . (1)

Figure 6 shows the variation of migration time for different data-intensive frameworks. In this
study, we set the window size equal to three times (3×) of migration time, because it gives better
prediction accuracy (Figure 8 shows the impact of window size on accuracy).

3.6.2 Fair Allocation. Another aspect to consider is fair allocation. When running multiple VM
on a node, the manager uses REF [55] to allocate the resources among VMs, as co-scheduling
multiple VMs on a single server could result in interference. REF is a fair allocation mechanism that
satisfies three game-theoretic properties (sharing incentives (SI), envy-freeness (EF), and Pareto
efficiency (PE)) using Cobb–Douglass utility function. In this work, we begin with the space of
possible allocations. We then add constraints to identify allocations with the desired properties as
follow:

Suppose multiple VMs share a server with R types of hardware resources. Let xi = {xi1, . . . , xiR }
denote ith VM’s hardware allocation. Further, letui (xi ) denote ith VM’s utility. Following equation
defines utility within the Cobb–Douglas preference domain:

ui (xi ) = ai0 �R
r=1 xir

air .

The parameters ai = {ai1, . . . ,aiR } quantify the elasticity with which a VM demands a resource.
Let Cr denote the total capacity of resource r in the system. We can find a fair multi-resource
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allocations given Cobb–Douglas preferences with the following feasibility problem for N virtual
machines and R resources:

Find x subject to:

1) ui (xi ) ≥ ui (x j ) i, j∈[1,N ]

2) air

ais

xis

xir
=

ajr

ajs

x js

x jr
i, j∈ [1,N ]; r , s∈[1,R]

3) ui (x i ) ≥ ui (C/N ) i∈[1,N ]
4)
∑N

i=1 xir ≤ Cr r ∈[1,R],

where C/N = {C1/N , . . . ,CR/N }. In this formulation, the four constraints enforce EF, PE, SI, and
capacity. The outcome of applying Cobb–Douglass utility function is a fair resource allocation
among multiple VMs running on a server.

3.6.3 Resource Isolation. To decrease the side-effects of resource contention and interference,
we enforce resource partitioning and isolation techniques. We employ core isolation (thread pin-
ning to physical cores), to constrain interference context switching. We employ the Cache Allo-
cation Technology available in Intel chips [5] to isolate LLC. The size of cache partitions can be
changed at runtime by reprogramming MSR registers. We also use the outbound network band-
width partitioning capabilities of Linux’s traffic control. We employ the qdisc [4] to enforce band-
width limits. To perform DRAM bandwidth partitioning, the manager monitors the DRAM band-
width usage of each application using Intel PCM to co-locate jobs on the same machine where it
can accommodate their aggregate peak memory bandwidth usage.

4 IMPLEMENTATION

In this section, we present our experimental system configurations and the setup. We first intro-
duce the frameworks and the workloads we consider for evaluating the ProMLB. We then describe
our hardware platform that runs the ProMLB server.

4.1 Workloads

In our study, we used Hadoop MapReduce version 2.7.1, Spark version 2.1.0 in conjunction with
Scala 2.11, Flink version 1.3.3, and MPICH2 version 3.2 installed on Linux Ubuntu 16.04 LTS.

For a building and training of ProMLB, we target various domains of data-intensive workloads
such that of microkernels, graph analytics, ML, E-commerce, social networks, search engines, and
multimedia, totally 19 workloads. The size of input is in the range of 10 GB and 2 TB. We use
BigDataBench [2] and HiBench [23] for the choice of big data benchmarking. The selected work-
loads have different characteristics such as high-level data graph and different input/output ratios.
Some of them have unstructured data types and some others are graph based. Also, these work-
loads are popular in research and are widely used for demonstration of techniques. For validation
of ProMLB, we used CloudSuite [17] workloads: Data Analytics, web search, Graph Analytics, and
In-memory Analytics.

Figure 7 clarifies how we divided our workloads and dataset. First part is devoted for developing
the system, and the second part is devoted for the evaluation of our entire system. During the
development part, we used 19 workloads from two suites (BigDataBench and HiBench) to train our
models. To evaluate our models during this part, we partitioned our dataset to two sets (unseen
dataset for testing, and seen dataset for the training and validation). In this part, data from all
19 workloads are aggregated together and we randomly leave out 20% of the data for the unseen
data points. Then we applied fivefold cross-validation technique on the 80% remaining data. The
common schemes of cross-validation are m-fold cross-validation. In m-fold cross-validation, the
dataset is randomly divided into m subsets or folds and repeated m times. Each time, one fold is
reserved as a test dataset to validate the model and the remaining m-1 folds are used for training
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Fig. 7. Workloads and the dataset division for the training and testing phases of ProMLB.

Table 3. Detailed Information of Local Cluster

Name Server Freq. Socket Core Cache Mem Capacity Storage Server type Count

S1 Xeon E5-4669 V4 2.2 4 22 55 96 SSD PCIe HPC 2

S2 Xeon E5-4667 V4 2.2 4 18 45 64 SSD SATA HPC 2

S3 Xeon E5-4650 V4 2.2 4 14 35 32 SSD SATA HPC 2

S4 Xeon E5-2690 V4 2.6 2 14 35 512 SSD / HDD Memory opt. 4

S5 Xeon E5-2650 V4 2.2 2 12 30 256 SSD / HDD Memory opt. 4

S6 Xeon E5-2667 V4 3.2 2 8 25 32 SSD PCIe I/O opt. 4

S7 Xeon E5-2643 V4 3.4 1 6 20 32 SSD PCIe I/O opt. 4

S8 Xeon E5-2660 V2 2.2 2 10 25 16 HDD General purp. 6

S9 Xeon E5-2650 V2 2.6 2 8 20 16 HDD General purp. 6

S10 Xeon E5-1630 V4 3.7 1 4 10 8 HDD Power opt. 2

S11 Xeon E5-1680 V4 3.4 1 8 20 12 HDD Power opt. 2

S12 Xeon E3-1270 V6 3.8 1 4 8 8 HDD Power opt. 2

of the model. Then, the classification accuracy across all m trails is computed. Figure 10 is related
to this part of our experiments. As you can see, the training subfigure is related to the accuracy of
training folds (m-1 folds) and validation subfigure is related to the validation fold (the remained
fold). Then the testing subfigure is related to those 20% data that we leaved out from dataset as
unseen data points. After building the models and in the second part, to evaluate ProMLB with a
completely new unseen workloads, we selected 4 workloads from CloudSuite that we never used
them to train or build our models. Results presented in Figure 11(b) are related to this part of our
dataset.

4.2 Hardware Platform

We tested ProMLB on our 40-node cluster. Our cluster includes servers of 12 different configu-
rations shown in Table 3. We also show how many servers of each type we use. Note that these
configurations range from high-end Xeon systems to low-end ones. There is a wide range of core
counts, clock frequencies, storage type, and memory capacities and bandwidth in our cluster.
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Table 4. Average Prediction Time

of Each Predictor

Average prediction time

KNN 74 ms
HMM 351 ms
TSNN 580 ms
Ensemble 22 ms

4.3 ProMLB Prototype

We implemented the ProMLB prototype as a Java application running on Linux Ubuntu 16.04
LTS. ProMLB is merged into Apache CloudStack [1], which is an open-source cloud management
software for running a private cloud infrastructure. It has enterprise-class support for scaling out
VMs on XenServer hosts and controls the XenServer host instances using the Java bindings of the
XenServer Management API. XenServer is a Linux distribution that is based on the Xen hypervi-
sor. Neural Networks used in this work are implemented with Keras in Python. The API designed
for ProMLB includes functions to express the type of submitted workloads, and functions to check
job status, revoke it, or update the constraints. At the current stage, ProMLB can not be used
for container-based systems such as Kubernetes. We will address these issues in our future works.
ProMLB currently can manage Hadoop, Spark, Flink, and MPI based data-intensive applications. At
this stage of implementation, ProMLB does not support fault tolerance. This will be a straightfor-
ward extension if ProMLB server is used as a hot-spare mirroring to provide fault-tolerance, which
requires a continuously replication of all system states between two servers. ProMLB does not ex-
plicitly consider latency-critical applications or dependencies between application components. It
also does not enforce fine-grain priorities between application components or user requests, or
optimize for shared data placement.

5 EVALUATION

In this section, first we report the experimental results in terms of overhead and accuracy. We then
compare ProMLB scheduler with other schedulers.

5.1 Overhead

In this subsection, we report the overhead of ProMLB, including the time used to collect training
data, training the performance models, and searching for optimum configurations. The collecting
data has the highest overhead, 8.3 hours on average and up to 10.2 hours for each workload (using
1-GB input data). Model training of each predictor took 31 minutes on average and training of
ANNs took 73 minutes using two Nvidia GeForce RTX 2080 on a 16 core processor. It should be
noted that training time is a one-time cost and it is even an offline cost. It only is required when we
are building the system. When the development of system is finished and the system is under the
deployment, we do not have such overheads. Compared to the manual configuration this overhead
is still attractive as the target of ProMLB is the big data applications that repeatedly run in data
centers for months or even longer. In this usage scenario, this one-time cost is amortized with a
very large number of runs. Therefore, the additional overhead per run is very low. Table 4 presents
the average prediction time of predictors. It should be noted that the average of prediction time is
around 607 ms.

ProMLB does not need to redo the process of data collection when a new application or a server
comes. In this case, when the predictor encounters a new behavior, it saves the trace and reports it
to the manager. New traces will be added to the database to retrain and update the models offline.
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Table 5. Information of Scheduling Decisions (Average Results for Each Virtual Machine)

Applications WC Sort NW CC KM NB PR Grep Average

Number of phase change 24 38 65 41 33 20 59 172 56.5

Number of change in VM configuration 22 33 56 37 28 18 53 151 49.7

Number of VM migration 5 6 10 8 7 4 11 32 10.3

Average VM migration latency (Second) 95 81 103 92 94 87 91 76 89.8

Standard deviation of migration latency 17 16 31 10 24 16 12 9 16.8

Average down time (millisecond) 378 264 571 342 389 355 367 294 370

Total migration time to total execution time (%) 6.2% 4.0% 5.1% 5.7% 6.4% 5.6% 5.4% 4.6% 5.3%

Fig. 8. Impact of window’s size and number of windows on accuracy of predictors.

When the new model is ready, it can easily be replaced with the old one without any significant
interrupt in the execution of the manager. Searching optimal configuration is done very fast, in
seconds. This time is negligible compared to the window’s size (few minutes). Moreover, this time
will not be added to the execution time of workloads as this computation is being performed on
ProMLB server while workloads are performing their normal execution without interrupt.

To show the results of scheduling decisions made by decision maker, we report the the number
of migrations and VM resource changes for some studied applications for Spark framework in
Table 5. The results show each VM migrated 10 times on average. The average migration latency
is 89.8 s. Moreover, the ratio of total migration time to total execution time is around 5.3%, which
is acceptable. Based on the results, the downtime of each migration is around 370 ms on average.

Corresponding to the resource utilization overhead of ProMLB, we should mention that all com-
ponents of ProMLB such as predictor, performance model generator, optimizer, and manager are
running on the ProMLB server (on the master node). The only component running on the worker
nodes is monitoring agent. Therefore, when the ProMLB is managing the cluster, the overhead of
total resource utilization of cluster is 1/N in which N is the number of nodes in the cluster. Because
only one node is devoted to the ProMLB and the rest of the nodes are running the jobs. Hence, re-
gardless of the memory usage of predictors or the CPU utilization of optimizer, these components
are running on master node and they do not have any interfere with the worker nodes.

5.2 Accuracy

In this work, we used 20% of our data for testing the models as an unseen data. The rest of the data
were used for training and validation through the fivefold cross-validation.

Figure 8 demonstrates how the window size affects the accuracy of ML techniques. In this work,
each timestamp entry of time series neural network is a phase of application. The number of delay
for our time series network is 10 windows. We use 8 windows of information to train the HMM.
We then use this information to predict the next phase. After each window, the HMM model will
be retrained and, therefore, training of our HMM is online. In this study, we set k = 7 as equal to
the number observing windows for KNN.
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Fig. 9. Overall accuracy of predictors.

Each predictor is basically designed to predict what would be the major phase in the next win-
dow. For example, if it predicts the distribution of phases in the next window, then it is as follows:
40% of the window time memory bound, 25% of the time core bound, 20% of time I/O bound, and
the rest is idle, and then the predictor concludes that the next window is memory bound, which
means the application is memory intensive for the most of the time in the next window of execu-
tion. The accuracy of phase prediction is calculated as follows: Number of windows that predictor
correctly predicted the phase / total number of windows. For example, if the prediction for 8 win-
dows from a total of 10 windows is correct, then the accuracy is 80%. The results presented in
Figure 9 are based in this type of calculation for accuracy.

Figure 9 summarizes a validation of the accuracy of the phase predictor engine in ProMLB. The
result shows that the accuracy of ensemble method is much higher compared to each ML tech-
nique. Ensemble method achieves 92% accuracy to correctly predict the next phase of workloads.
It is interesting to observe that the behavior of Hadoop, Spark, and Flink frameworks are more
predictable, compared to MPI based applications. it should be noted that that without enforcing
any isolation technique, the accuracy will drop to 78%. Therefore, it is important to avoid of inter-
ference between co-located VMs for better resource allocation.

Moreover, we also wanted to show that how much the major time prediction is accurate for each
window. For example, suppose that the predictor predicts that the major phase in next window
would be memory bound for 60% of the time. After executing the application in that window time,
if the application were memory bound for 65% of the time instead of 60%, then we would have
a 5% error in determining the amount of time that application was memory bound, but still, we
were correct about the type of its phase. The results presented in Figure 10 show the actual value
and the predicted value in a scatter view by our predictors. The R value clearly shows that the
models are fairly accurate across the entire configuration space: All data points are located around
the corresponding bisectore, indicating that the predictions and estimations are close to the real
measurements. Overall, we find that there are not many outliers in our models, indicating that
they can be used for optimizing the performance.

5.3 Performance and Cost Efficiency

To have a comprehensive comparison between ProMLB and other resource provisioners, we con-
sider the following systems:

(1) Oracle: This is an ideal system that has a full prior knowledge of application behavior and
therefore it allocates the optimal resources at runtime.

(2) Default: This is the default system without any manipulation from outside.
(3) Matrix Completion: Matrix completion (MC) method or collaborative filtering [29] proposed

in Quasar [14].
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Fig. 10. Scatter plots of prediction values versus real measurements for 25,920 data points.

Fig. 11. Evaluation of different metrics using various schedulers: (a) Normalized speedup, (b) Normalized

Perf/Cost, (c) CPU utilization across all servers, (d) DRAM bandwidth utilization across all servers, (e) DRAM

capacity utilization across all servers, and (f) Storage bandwidth utilization across all servers.

(4) Cherry-Pick scheduler: One of the closest to ours is CherryPick, which uses a regression model
for performance estimation and Bayesian optimization to find the right configuration.

(5) Ernest scheduler: Ernest [50] predicts the runtime of distributed analytics jobs as a function
of cluster size and provisions a cost optimal configuration. However, Ernest cannot infer the per-
formance of new workloads on a VM type without first running the workload on that VM type
and also is not a dynamic approach.
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5.3.1 Performance. Figure 11(a) shows the speed up of ProMLB over the baseline for Cloud-
Suite workloads. On average, ProMLB improves the performance by 42% and up to 70%. This
speed up was only achieved by efficient resource allocation, without any change in the appli-
cations or frameworks. ProMLB is performing 14% better than the state-of-the-art approaches,
because it is proactive and dynamic as well. We observe that MC outperforms Ernest and Cher-
ryPick techniques as MC is able to dynamically change the configuration. Figure 11(b) shows the
performance/cost improvement of studied workloads. On average, ProMLB can improve the per-
formance/cost by 2.5× compared to default scheduler. The interesting observation is that Ernest
performs better than MC and CHerryPick in terms of Performance/Cost. The reason is that Ernes
is a cost aware approach but ProMLB is still performing 15.6% better than Ernest.

5.3.2 Utilization. Based on results presented in Figure 11(c), ProMLB increases CPU utiliza-
tion (average across all cores) to 67% versus 49% with baseline, which is a 36% improvement.
Figure 11(d)–11(f) shows the utilization of DRAM bandwidth, memory capacity, and storage band-
width during the execution of workloads. Based on the evaluation results, ProMLB increases
DRAM bandwidth and memory capacity utilization by 53% and 39%, respectively, on average. Our
results indicate that the storage bandwidth utilization was dropped by 35% on average. ProMLB in-
creases the available storage bandwidth to the applications by aggregating multiple disks together.
By increasing the storage bandwidth and keep remaining the number of disk accesses, the disk uti-
lization decreases, and this degradation does not have a negative impact on the performance.

6 CONCLUSION

In this work, we propose a proactive online resource provisioning methodology called ProMLB to
address the challenge of resource allocation for data-intensive workloads in scale-out platforms. A
wide range of server configuration choices are available in the cloud, and it creates a large search
space to navigate for selecting an optimal configuration. Moreover, the applications’ performance
depends on the chosen configuration, and it makes the optimization problem even harder. In this
work, to reduce the complexity, the application’s behavior is first characterized into a core, I/O,
or memory bound. Then, the ensemble learning based prediction is employed to predict the next
phase of the application.

Further, the performance models for predicted application behavior across different platforms
is derived. As the cost for chosen configuration plays a key role in resource allocation, ProMLB
uses an optimization technique to distinguish a close-to-optimal configuration to maximize perfor-
mance per cost. Compared to the oracle scheduler, ProMLB achieves 91% accuracy to allocate the
right resource to workloads. ProMLB improves the performance and resource utilization by 42.6%
and 41.1%, respectively, compared to baseline scheduler, on average. Moreover, ProMLB improves
the performance per cost by 2.5× on average.
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