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System and Architecture Level Characterization of Big Data
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The rapid growth in data yields challenges to process data efficiently using current high-performance server

architectures such as big Xeon cores. Furthermore, physical design constraints, such as power and density,

have become the dominant limiting factor for scaling out servers. Low-power embedded cores in servers

such as little Atom have emerged as a promising solution to enhance energy-efficiency to address these

challenges. Therefore, the question of whether to process the big data applications on big Xeon- or Little

Atom-based servers becomes important. In this work, through methodical investigation of power and per-

formance measurements, and comprehensive application-level, system-level, and micro-architectural level

analysis, we characterize dominant big data applications on big Xeon- and little Atom-based server archi-

tectures. The characterization results across a wide range of real-world big data applications, and various

software stacks demonstrate how the choice of big- versus little-core-based server for energy-efficiency is

significantly influenced by the size of data, performance constraints, and presence of accelerator. In addition,

we analyze processor resource utilization of this important class of applications, such as memory footprints,

CPU utilization, and disk bandwidth, to understand their run-time behavior. Furthermore, we perform micro-

architecture-level analysis to highlight where improvement is needed in big- and little-core microarchitec-

tures to address their performance bottlenecks.
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1 INTRODUCTION

Big data technology is driving an era of unprecedented innovation for information retrieval. The
rapid growth of data creates challenges to process them for analytics using existing computing
solutions. The world of big data is constantly changing and producing huge amounts of data that
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provides opportunities to find insights in current data and gives answers to the questions that
were previously conceded beyond our ability to process. Big data applications require computing
resources and storage subsystems that can scale to manage massive amounts of diverse data. Indi-
viduals, businesses, governments, and society as a whole now have access to enormous collections
of data, empowering them to build their own analytics. Datacenters are therefore required to in-
troduce more nodes to their infrastructure or replace their existing hardware with more powerful
systems to respond to this growing demand. First, this trend increases the power consumption of
servers, which is the main obstacle for their scalability (Kaushik et al. 2010). Second, the infrastruc-
ture cost, which contributes to major financial burden (Barroso et al. 2013), results in prolonging
the break-even point of data center profit. While demand for data center computational resources
continues to grow as the size of data grows, the semiconductor industry has reached its physical
scaling limits and is no longer able to reduce power consumption in new chips. Physical design
constraints, such as power and density, have therefore become the dominant limiting factor for
scaling out data centers (Ferdman et al. 2012; Ghazal et al. 2013; Kontorinis et al. 2012; Gutierrez
et al. 2014). Current server designs, based on commodity high-performance and power-hungry
processors are not an efficient solution to deliver green computing in terms of performance/
watt (Malik et al. 2016; Homayoun et al. 2012; Andersen et al. 2009). This new set of challenges
is necessitating a change in the direction of server-class microarchitecture to improve their com-
putational efficiency. Therefore, the embedded processors that have been designed and developed
based on energy-efficiency constraints are finding their way in server architectures. Microservers
employ embedded low-power processors as the main processing unit. These platforms are shown
to be a promising solution to enhance the energy efficiency and to reduce the cost. We believe this
is the right time to answer the important question of whether low-power embedded like cores are
a good fit to process big data applications energy-efficiently (Malik et al. 2015a). In this article, we
will answer this question by identifying the right computing platform for Big Data Analytics pro-
cessing that can provide a balance between processing capacity and power efficiency. Emerging
big data applications, in particular, from web service domains, share many inherent characteristics
that are fundamentally different from traditional desktop, parallel, and scale-out applications (Gao
et al 2013). Big data analytics applications in these domains heavily rely on big-data-specific deep
machine-learning and data-mining algorithms. Additionally, the significant interaction of running
complex database software stack with I/O and OS, exhibits high computational intensity, memory
intensity, I/O intensity and control intensity behavior. Therefore, unlike conventional CPU appli-
cations, big data applications combine a high data rate requirement with high computational power
requirement, in particular, for real-time and near-time performance constraints. In this work, we
show that while high-performance big-core servers are optimized for traditional CPU applica-
tions, for big data they are very inefficient and are not satisfying their computational-efficiency
requirements.

In exploring the choice of server architecture for big data, in this article, we also present a
comprehensive system, application and micro-architectural level analysis of big data applications
on two very distinct server-class micro-architectures; Intel Xeon and Intel Atom. These two types
of servers represent two schools of thought on server architecture design: Xeon, a big core for
high-performance servers, and Atom, a little core that advocates the use of a low-power server to
address the dark silicon challenge (Reddi et al. 2010; Homayoun et al. 2012; Andersen et al. 2009;
Hardavellas et al. 2011; Kontorinis et al. 2014).

To compare the choice of big-core vs. little-core servers, we use power consumption and per-
formance (in terms of execution time) metrics. In addition to power and performance, we have
also performed the Energy-DelayX (EDXP) analysis to evaluate the trade-off between power and
performance (Malik et al. 2015b; Sayadi et al. 2018). The analysis illustrates how near real-time
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performance constraint for big data analytics affects the choice of big- vs. little-core server as
a more efficient architecture. As for big data applications, achieving a higher processing rate of
large amounts of data is a prime target, we have therefore evaluated the processing capability un-
der different data size (per node) by using two metrics—Data Processed per Second (DPS) and Data
Processed per Joule (DPJ). The analysis examines how the choice of big vs. little core servers in-
troduces trade-off in performance, power, energy-delay, and processing capacity for efficient and
near real-time processing of big data applications.

Additionally, as chips are hitting power limits, computing systems are moving away from
general-purpose designs and toward greater specialization. Hardware acceleration through spe-
cialization has received renewed interest in recent years, mainly due to the dark silicon challenge
(Hardavellas et al. 2011). To find out the right architecture for big data processing, it is important
to understand how deploying an accelerator, such as FPGA, would necessitate adapting the choice
of big- vs. little-core servers. The post-acceleration code characteristics are important to find the
right architecture for efficient processing of big data applications. For this purpose, we analyze the
choice of big- vs. little-core-based servers for the code that remains for the CPU when the hotspots
are offloaded to an accelerator, compared with the choice of big vs. little core before acceleration.

Overall, our characterization results across a wide range of real-world big data applications and
various software stacks demonstrate how the choice of big- vs. little-core-based servers for energy-
efficiency is significantly influenced by the size of data, performance constraints, and presence of
accelerator. Furthermore, we perform comprehensive micro-architecture level analysis to provide
insight into whether current design of big and little core servers requires improvement in the
microarchitecture parameters for efficient big data processing.

Contributions: This article makes the following key contributions:

• We analyze the measurements of performance and power of big data applications on two
state-of-the-art server platforms: Big cores Intel Xeon and Little cores Intel Atom. We com-
pare the results with traditional CPU, parallel, and scale-out applications.

• We evaluate resource utilization profiles, including total CPU utilization, iowait CPU uti-
lization, memory footprint, and disk bandwidth, to understand the runtime behavior of big
data applications and to classify them into computational-intensive, I/O-intensive, or hy-
brid on big- and little-core-based servers. This is done at coarse-grained (entire application
run-time) and fine-grained levels (one second interval). We compare the results with the
traditional, parallel, and scale-out applications.

• We demonstrate how the size of data, type of application, and performance constraints affect
the choice of big- vs. little-core-based servers for energy-efficient big data processing.

• We analyze the performance of hotspot tasks involved in an end-to-end big data analyt-
ics platform running various software stacks, including Hadoop MapReduce and Apache
Mahout. This includes read and write to HDFS, sorting, compression and decompression,
mapping, and reduction and calling several standard libraries.

• We show how offloading hotspot tasks such as map and reduce to an accelerator affects the
choice of big- vs. little-core-based servers for the remaining code on the CPU.

• We perform a comprehensive microarchitecture analysis to find the performance bottle-
necks in both big- and little-core servers when running big data applications.

The rest of the article is organized as follows. Section 2 provides background on big data. Sec-
tion 3 describes the studied big data, scale-out, traditional serial, and parallel CPU benchmarks.
Our methodology and experimental setup details are presented in Section 4. Section 5 presents the
experimental results and provides system-level analysis along with micro-architectural character-
ization. Section 6 provides the related work. Section 7 concludes the article.
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Fig. 1. Illustration of the four “V’s” of big data.

2 BACKGROUND ON BIG DATA APPLICATIONS

The “cloud” is a platform that has been used to cost effectively deploy an increasingly wide variety
of applications online and make them available to anyone at anytime and anywhere. The rise of
cloud computing and cloud data storage, therefore, has facilitated the emergence of big data appli-
cations and big data technologies. By providing scalable solutions for processing large volumes of
data, big data technologies open up new opportunities to learn insights from data to address the
questions that were previously not possible to answer. Big data applications are characterized by
four critical features, referred as the four “V’s”; Volume, Velocity, Variety, and Veracity, shown in
the Figure 1.

• Volume refers to the amount of data. Big data is inherently large in volume that must be
analyzed and managed to make decisions.

• Velocity refers to how fast the data is being received and to how fast it needs to be analyzed.
In other words, velocity addresses the challenges related to processing data in real-time.

• Variety refers to the number and diversity of sources of data and databases, such as sensor
data, social media, multimedia, text, and much more. The type of content—structured or
unstructured—is also essential for data analysis.

• Veracity refers to the level of trust, consistency, and completeness of data. Accumulation
of large amounts of data does not guarantee meaningful and accurate data.

Traditionally, cloud servers mainly rely on high-performance CPU cores such as Xeon for pro-
cessing big data. However, low-power embedded cores such as Atom are gradually entering the
server market. Therefore, it is important to characterize emerging big data applications on these
two different platforms to understand their computational need and architectural bottlenecks.

3 DOMINANT BIG DATA WORKLOADS

The studied big data workloads in this article are representative programs from 15 different
domains such as graph mining, data mining, data analysis platform, and pattern searching
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Table 1. Studied Applications

Workloads Applications Data Semantics Software Stacks

WordCount

Sort

Hadoop Grep Generated Hadoop 1.2.1

Micro-benchmarks TeraSort

TestDFSIO-Write

TestDFSIO-Read

Big Data Graphbuilder Wikipedia GraphBuilder 0.0.1, Hadoop 1.2.1

Collaborative Filtering MovieLens

Clustering UCI Machine-learning
Repository

Hadoop 1.2.1, Mahout 0.6

FP-Growth
Frequent Itemset Mining

Dataset Repository
SPMF

Eclate, RuleGrowth, GSP, SPADE SPMF 0.96

Classification Wikipedia Hadoop 1.2.1, Mahout 0.6,

scale-out Graph-Anlysis Twitter data set Memcached server/client 1.4.15,

Data-caching Twitter data set CloudSuite 2.0

Traditional
Spec2006 Reference input Spec 2006

Parsec Native input Parsec 2.1

applications, which are frequently used in real-world applications. There are several recent works
that have included these selected applications for benchmarking and characterization of Hadoop-
based big data application (Veiga et al. 2016; Hwang et al. 2016; Gao et al. 2013; Dimitrov et al.
2013). We provide these selected applications, along with their particular domain and data type
in Table 1. In addition, big data frameworks are evolving continuously and rapidly. New big data
frameworks have emerged in recent years in response to continuous changes in the big data ana-
lytics field; examples include Spark, Tez, Flink, and Petuum, just to name a few. However, Hadoop
MapReduce is still a de facto standard of big data that has been adapted widely by industry and
has a large community. While all emerging big data analytics frameworks cannot be included for
characterization and benchmarking in one research work, this article mostly focuses on the fun-
damental Hadoop MapReduce framework. Our future work will investigate the choice of big vs.
little core for emerging big data frameworks such as Tez, Flink, Petuum, and Spark.

3.1 Big Data Workload

3.1.1 Hadoop Micro-benchmark. Apache Hadoop is an open-source Java-based framework of
MapReduce implementation. It assists the processing of large datasets in a distributed computing
environment and stores data in highly fault-tolerant distributed file system, HDFS. Hadoop has
numerous micro-benchmarks, from which we have included a combination of I/O-intensive and
CPU-intensive applications as follows:

• WordCount reads text files and determines how often particular words appear in a set
of files. Mapper proceeds with a line as an input and fragments it into words. Reducer
sums the counts for each word and provides the aggregated value. WordCount (WC) is a
compute bound application as it performs string processing and generates a very small
output (Huang et al. 2010).

• Sort uses the MapReduce framework to sort the input directory in the output directory.
A mapper is an identity function and directs input records to the appropriate reducer. The
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actual sorting occurs in the internal shuffle and sort phase of MapReduce. Finally, the data
is transferred to reducer that is also an identity function. Sort (ST) micro-benchmark is I/O
bound, because it performs very little processing on a large input data and produces a large
output data (Huang et al. 2010).

• Grep benchmark extracts matching strings provided by the user against text files. It then
sorts matching strings by their frequency and stores the output in a single output file. Grep
(GP) is a compute intensive application. The output size depends on how often the matching
string appears that can range from zero to the size of the input.

• TeraSort performs a scalable MapReduce-based sort of input data. It first samples the input
data and computes the input distribution by calculating the quantiles equal to the number
of reducers. This distribution is then used as a partition function that uses a sorted list of
N-1 sampled keys that define the key range for each reducer. TeraGen command generates
a large random data for the TeraSort (TS). TeraSort is a compute bound in some phases of
execution and I/O bound in other phases (Huang et al. 2010). It is mainly used for testing
the CPU/Memory power of a node (Huang et al. 2010).

• TestDFSIO is a storage throughput test that analyzes how HDFS handles a large number of
tasks operating writes or reads concurrently. Each map task opens an HDFS file to write or
read sequentially. The aim is to measure the data size and execution time of the task. Finally,
the single reduce task aggregates the results of all the maps to calculate the throughput.
TestDFSIO is divided into two parts, TestDFSIO-Write and TestDFSIO-Read to write and
read data to/from HDFS, respectively (Huang et al. 2010).

3.1.2 GraphMining. Graph construction can be very challenging because of complex iterative
and data-dependent nature of the graph. Hadoop is well suited for this task, but requires expertise
to handle graph complexities. GraphBuilder addresses this challenge by providing a scalable graph
construction software library for Hadoop GraphBuilder constructs graphs for PageRank (PR) and
LDA algorithms implemented on PowerGraph (Willke et al. 2012).

3.1.3 Collaborative Filtering (CF) Recommendation. Apache Mahout implements a widely used
collaborative filtering framework that helps recommending items to the users based on their pref-
erences. It uses historical data on user behaviors such as clicks, ratings, views, and purchases
to provide recommendations. Collaborative Filtering Recommendation is a supervised machine-
learning algorithm that is used by many recommender systems to predict the performance of the
users based on their history. The algorithm is feed with the raw input data to make a decision and
provide preferences estimation as output. The algorithm learns from the users to better understand
their needs. In collaborative filtering, for each item or user, a neighborhood is formed with similar
related items or users. Once you make an action to item, the recommendations are drawn from
that neighborhood. It suggests the functionality of top-N recommendation items for a specific user
by looking the nearest neighbors based on resemblances. Users providing the same rating of the
items become the nearest neighbors of others (Collaborative 2017). Database is obtained from the
MovieLens website and consists of 100,000 ratings from 943 users on 1,682 movies (Frequent 2015).

3.1.4 Clustering (Clus). Clustering (Clus) a fundamental task in Data Mining, assembles data
items into groups based on their similar features. We have analyzed meanshift clustering as it is
a non-parametric clustering technique that does not require prior knowledge of the number of
clusters (Mahout 2017).

3.1.5 Association Rule Mining. Association Rule Mining is a well-known approach for explor-
ing association between various parameters in large databases. We analyzed Frequent Pattern
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(FP)-Growth, a resource intensive program that aims to determine item sets in a group and identi-
fies which items typically appear together (Mahout 2017; Li et al. 2008).

3.1.6 Sequential Pattern Mining Framework (SPMF). Sequential Pattern Mining Framework
(SPMF) is an open-source data mining library written in Java. It offers numerous data mining
algorithms for sequential pattern, rule mining and frequent item mining (SPMF 2016), for which
we have selected Equivalence Class Transformation (Eclat), RuleGrowth (Rule), Generalized Se-
quential Pattern (GSP), and Sequential Pattern Discovery using Equivalence classes (SPADE).

3.2 Scale-Out Workloads

3.2.1 Classification. Classification technique learns from the existing categorizations and
groups the unclassified items to the best corresponding category (Ferdman et al. 2012).

3.2.2 Graph-analysis. Graph-analysis is performed by implementing the TrunkRank on
GraphLab (Ferdman et al. 2012). This application studies the impact of a Twitter user for graph
analysis.

3.2.3 DataCaching. Memcached is a high-performance, general-purpose distributed memory
caching system. It uses in-memory key-value storage mechanism for small chunks of arbitrary
data API calls (Ferdman et al. 2012).

3.3 Traditional CPU Benchmarks

3.3.1 SPEC CPU2006. workloads are industry standard real-life applications designed to stress
the CPU, memory subsystem and compiler.

3.3.2 PARSEC 2.1. is an open-source parallel benchmark suite for evaluating multi-core and
multiprocessor systems.

While SPEC 2007 and PARSEC benchmarks are old, however they are still important bench-
mark suites to evaluate and optimize processor architecture. SPEC and PARSEC are widely used
benchmark suites for evaluating general purpose CPUs and multi-core architectures. Several prior
researches including (Jia et al. 2016; Veiga et al. 2016; Hwang et al. 2016) to understand the be-
havior of emerging applications (such as scale-out or big data) have also characterized traditional
CPU and parallel application for a baseline comparison.

The focus of this article is not on SPEC and PARSEC benchmark, rather it is on big data applica-
tions. However, as processor architectures are also optimized for traditional benchmarks such as
SPEC and PARSEC, it is important to find out how the performance and power trade-offs between
Xeon and Atom changes for big data applications compared to traditional CPU intensive as well
as parallel applications.

4 MEASUREMENT TOOLS AND METHODOLOGY

4.1 Hardware/Software Infrastructure

Figure 2 presents a methodology that we used in this study. We conduct our study on two state-
of-the-art servers; a three-node Intel Xeon server and a three-node Intel Atom server. Intel Xeon
E5-2420 encloses six aggressive processor cores per socket (12 cores per node) with three-level of
cache hierarchy. Intel Atom C2758 has 8 processor cores per node and a two-level cache hierarchy.
Table 2 summarizes the key architectural parameters of these two servers. It is important to note
the architectural difference between the two servers, in particular the number of cores, cache
hierarchy and even memory subsystems. The goal of this work is not to make a micro-architectural
comparison between the two cores, rather is to understand the system and micro-architectural
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Fig. 2. Methodology.

Table. 2. Architectural Parameters

Processor Intel Atom C2758 Intel Xeon E5-2420

Operating Frequency 2.4GHz 1.9GHz
Micro-architecture Silvermont Sandy Bridge
Number of Cores 8 12
Hyper-threading No No

L1i Cache 32KB 32KB
L1d Cache 24KB 32KB
L2 Cache 4 × 1,024KB 256KB
L3 Cache — 15MB

System Memory 8GB 32GB
Memory Type DDR3 1,600MHz DDR3 1,600MHz

level behavior of the two server classes when running big data applications. This will also help
us to find out which server class, whether a low-power Atom-based or a high-performance Xeon-
based, suites for big data. The operating system used is Ubuntu 14.10 with Linux kernel 4.11.
While network overhead, in general, influences the performance of the studied application for
the big data application, Liang et al. (2014) show that the network optimization can only reduce
job completion time by the 2%. The network is not a bottleneck, because little data is transmitted
through the network. Not to mention Hadoop load the input data according to the locality and
combine the intermediate data in the local tasks to packet of size KB before transmission. Like
discussed in Ousterhout et al. (2015), network overhead is irrelevant to the overall performance of
the application under test even on 1Gbps networks. We have 10Gbit Ethernet connection between
nodes, which is significantly higher than applications bandwidth requirements, thus the network
did not become the bottleneck for the studied applications.
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4.2 Input Data Size

While all experimental results in this article were performed on three-node Atom and three-node
Xeon servers, the collected statistics including micro-architectural data as well as system param-
eters are collected from a single node to mainly compare the big vs. little servers at system and
architecture level. Although Hadoop based applications exploits cluster-level infrastructure with
many nodes for processing big data applications, the focus of this article is on the system and
micro-architecture level analysis per node, to understand the choice of big- vs. little-core servers
as a more efficient architecture. For instance, 10GB input data size per node presents 30GB in-
put data size processed by application in a three-node cluster. While MapReduce was originally
introduced to process multi-terabyte data in scale-out clusters, most MapReduce workloads have
a footprint in the GB range with the median of 14GB (Appuswamy et al. 2013). Hadoop exploits
cluster-level infrastructure with many nodes for processing big data applications, however, the
experimental data should be collected at the node level to characterize the big data application on
high-performance server and low-power server architectures.

4.3 Measurement Tools

We analyze the architectural behavior using Intel VTune (Intel VTune 2015), a performance-
profiling tool that provides an interface to the processor performance counters. We have used
Watts up PRO power meter to measure the power consumption of the servers (WattsUpPro 2015).
Wattsup power meter produces the power consumption profile every one second. The power read-
ing is for the entire system, including core, cache, main memory, hard disks and on-chip commu-
nication buses. We have collected the average power consumption of the studied applications and
subtracted the system idle power as well as DRAM power to estimate the power consumption of
the CPU including the core and on-chip cache subsystem (Blem et al 2013). We also used Dstat
(2018), which is a system monitoring tool to collect various statistics of the system at run-time.

4.4 Application Classification

We present the real-time system resources profiling and averaging results to understand the run-
time behavior and resource utilizations of Hadoop applications. The recorded metrics are CPU
utilization, iowait CPU utilization, Disk I/O bandwidth, and Memory Footprint. CPU utilization
reports the load handled by the CPU. Iowait represents the percentage of time CPU is idle while
waiting for I/O operation to be completed. Disk I/O bandwidth reports the disk I/O bandwidth rate
and Memory Footprint indicates the minimum amount of memory (KB) required to run the appli-
cation. Numerous studies (Fan et al. 2014; Makrani et al. 2017) have used Dstat tool to understand
the runtime status and the resource consumption of the applications under test on the studies
servers. Therefore, we have used resource utilization features as well as the micro-architectural
parameters to classifies the application into one of the three classes, i.e., Compute-bound (C), Hy-
brid (H) and I/O-bound (I). Micro-architectural parameters include IPC, Instruction Cache Misses
per Kilo instructions (MPKI), LLC cache MPKI, and Branch Misprediction rate. The higher LLC
cache MPKI translates into the number of memory access. Thus, the application with the low CPU
utilization, iowait CPU utilization, high memory footprints, and high LLC MPKI readings classifies
the application as memory bound application.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we discuss application-level, system-level and micro-architecture-level analysis
results, when running traditional CPU benchmarks, parallel benchmarks, scale-out, and big data
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Fig. 3. Resource utilization analysis of all the studied workloads on Atom.

applications. We only report the average results for SPEC, PARSEC, and Scale-Out applications and
compare them with the big data applications.

5.1 System-Level analysis

In this section, we perform system-level analysis of big data applications on big and little core-
based servers. We explore the resource utilization of big data applications by examining the CPU
user utilization, CPU iowait utilization, Disk I/O bandwidth (read/write) rate and memory foot-
prints at coarse-grained and fine-grained levels. Based on the resource utilization features and
micro-architectural parameters, we implement the code that classifies the application into one of
the three classes, i.e., Compute-bound (C), Hybrid (H), and I/O-bound (I).

5.1.1 Workloads Resource Utilization Analysis. Figures 3(a)–3(d) shows the percentile and av-
erage utilization results for traditional CPU, parallel benchmarks, scale-out as well as big data
applications on little core. SPEC 2006 and PARSEC are two widely used benchmark suites for eval-
uating general purpose CPUs and multi-core systems. Figures 3(a) and 3(b) show that, on average,
the CPU user utilization of SPEC2006 and PARSEC Benchmarks suite is 12.46% and 12.57%, and
their CPU iowait utilization is 0.046% and 0.309%, respectively. Memory footprint illustrates the
memory usage in the range of 700MB to 1.1GB where an application with more than 1GB is con-
sidered as memory intensive as shown in Figure 3(c). Figure 3(d) shows the total disk bandwidth
(read and write) of big data applications along with the average results for traditional, parallel and
scale-out applications. Scale-out applications have the highest disk utilization. Moreover, a number
of big data applications have heavy disk utilization. However, SPEC2006 and PARSEC are not I/O
bound applications. We observe that unlike traditional CPU and parallel benchmarks, Scale-out
and big data applications exhibit hybrid behavior of a combination of high computational, mem-
ory, I/O, and control intensities. (Control intensity details are presented in Section 5.6). It is im-
portant to note that most of big data applications studied in this work rely on Hadoop MapReduce
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Fig. 4(a). Average and Percentile CPU user utilization for Big Data applications on Big and Little core.

Fig. 4(b). Average and Percentile CPU iowait utilization for Big Data applications on Big and Little core.

Fig. 4(c). Average and Percentile Memory Footprint for Big Data applications on Big and Little core.

framework. Considering that most Hadoop based applications contains more than one MapRe-
duce job, many of them are shown to have hybrid behavior; a combination of compute intensive,
memory intensive, control intensive, or I/O-intensive.

5.1.2 Resource Utilization Analysis of Big Data Applications on Big and Little Core. Figures 4(a)–
4(e) show the percentile and average resource utilization analysis of big data applications on big
and little core. Figures 4(a) and 4(b) show that across all studied big data applications the average
CPU utilization—user and iowait—is approximately 2× higher on Atom as compared to Xeon. The
main reason is the low processing capability of Atom core that can process only two instructions
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Fig. 4(d). Average and Percentile I/O Read Bandwidth for Big Data applications on Big and Little core.

Fig. 4(e). Average and Percentile I/O Write Bandwidth for Big Data applications on Big and Little core.

simultaneously while Xeon can process four instructions per cycle. The results show that the CPU
user utilization gap between Atom and Xeon is higher for Sort, DFSIO-write, Grep, and TeraSort
(26%, 20%, 22%, and 18%, respectively) as compared to other applications that have CPU user uti-
lization gap lower than 15%. This trend can be used to classify applications differently on both
servers (explained later in Section 5.1.3).

Figure 4(c) shows higher memory footprints on Xeon as compared to Atom. Considering Xeon
has a large memory compared to Atom, clearly the performance of the big data applications im-
proves on Xeon over Atom; however, the important question is whether Atom can satisfy the
memory requirements to process the big data applications. To address this question, we will dis-
cuss the detail micro-architectural analysis in Section 5.6. Figures 4(d) and 4(e) show that on aver-
age the I/O bandwidth (read/write) rate is higher on Atom compared to Xeon across all the studied
big data applications, especially in Sort, Grep, DFSIO-write, DFSIO-read applications. Moreover,
the applications with a higher CPU user utilization (Wordcount, PR, and TeraSort) has noticeably
higher I/O read/write rates on Atom compared to Xeon. This behavior can lead the applications
to be classified differently on Atom and Xeon.

5.1.3 Application Classification Analysis. Based on the average resource utilization analysis, we
have observed that big data applications illustrate different behavior on Atom and Xeon servers.
This necessitates the application to be classified on both Atom and Xeon to understand the runtime
behavior and the resource utilization. In addition, we have selected one application from each
classification category to illustrate the run-time behavior of big data application on big and little
core servers as shown in Figure 5.
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Fig. 5. Fine-grained analysis of big data applications on (a) little core and (b) big core.

Fig. 6. Runtime [1s interval]. (a) CPU and iowait utilization. (b) Memory Footprint. (c) Disk bandwidth of
Sort.

5.1.3.1 Coarse-grained Level. To determine the coarse-grained level behavior, we have evalu-
ated the average resource utilization results of the big data applications on big and little core, as
shown in Figure 4. The CPU user utilization is higher than the average user utilization in Word-
count, FP, PR, Clus, and Eclat (16.32%, 17.4%, 26.6%, 17.01%, and 13.28%, respectively), with their
low CPU iowait utilization and I/O bandwidth (read/write) rates, categorizing these applications as
compute intensive on Xeon. The CPU user utilization of these applications is higher on Atom com-
pared to Xeon; therefore, they illustrate a similar behavior on Atom. Although, a higher CPU user
utilization for TeraSort on Xeon (13.05%) and Atom (31.2%) makes it comparable to other compute
bound applications, the high iowait utilization (3.78%) and moderate I/O bandwidth (read/write)
rates especially on Atom illustrates a hybrid behavior. The basic principle of TeraSort benchmark
is similar to Sort; however, unlike Sort, TeraSort has a reduce phase to improve the performance
(detailed analysis is presented in Section 5.1.3.2).

Sort, DFSIO-Read, and DFSIO-Write have low CPU user utilization (12%, 6.4%, and 5.6%, respec-
tively) with high iowait utilization and IO bandwidth (read/write) rates on Xeon. This behavior
classifies these applications as I/O bound. Similar trend has been observed for the DFSIO-Write and
DFSIO-Read on Atom. The CPU user utilization (16.6% and 14.57% for DFSIO-Write and DFSIO-
Read, respectively) is low compared to other applications on Atom while the CPU iowait utilization
(7.59% and 7.96%, respectively) is very high. In contrast, the CPU user utilization for Sort is very
high (38.02%) as well as the CPU iowait utilization (6.38%). This behavior is consistent with Fig-
ure 4(a) percentile results that illustrate large variations in the CPU utilization, ranging from 20%
to 55%. Additionally, the disk I/O-read/write readings are noticeably high in sort benchmark as
shown in Figure 6. Consequently, sort benchmark is classified differently on Atom as hybrid, than
Xeon as I/O bound. Grep, CF, GSP, and Rule have relatively low CPU user utilization as well as
CPU iowait utilization that is near zero. In addition, their I/O bandwidth (read/write) rate is very
low. Similar trend has been observed for these applications on Xeon with the exception of Grep,
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Fig. 7. Runtime [1s interval]. (a) CPU and iowait utilization. (b) Memory Footprint. (c) Disk bandwidth of
Wordcount.

Fig. 8. Runtime [1s interval]. (a) CPU and iowait utilization. (b) Memory Footprint. (c) Disk bandwidth of
TeraSort.

which has very high I/O bandwidth (read/write) rate on Atom. To better understand their behav-
ior, we have evaluated these applications at the fine-grained level to classify their phases at the
run-time.

5.1.3.2 Fine-grained Level. To evaluate application behavior effectively, we classify applications
as compute, I/O or hybrid tasks at a fine-grained level of one second. Figures 5(a) and 5(b) show
the accumulated fraction of compute, I/O, and hybrid tasks out of entire application execution on
both Atom and Xeon. Compute bound applications’ behavior at a fine-grained level is consistent to
what we have observed at a coarse-grained level. Wordcount, FP, PR, Eclat, and Clus are dominated
by a significantly large fraction of compute bound tasks (on average 70% of the total application
is computationally intensive). We have selected Wordcount to present the run-time behavior. For
Atom, the CPU user utilization is shown to be high (33.4%) with no significant variation except
few spikes, as shown in the Figure 7(a) while the iowait is very close to zero (0.19%). Similar
trend is observed on Xeon with lower CPU user utilization and I/O write/read rate as shown in
Figure 7.

On the other hand, TeraSort contains slightly larger fraction of computationally intensive tasks
as compared to I/O hybrid tasks that can construe the entire application as compute bound appli-
cation. However, on Atom, the application behavior can be interpreted as hybrid. Figure 8 shows
the run-time behavior of TeraSort on Atom and Xeon. We observe that Atom and Xeon CPU user
utilization difference in the map phase is high, however, the difference among the two is small in
the reduce phase. Figure 8(c) shows heavy but unstable I/O-read/write rate on Atom and signifi-
cantly lower I/O-read/write rate on Xeon. TeraSort have heavy CPU utilization in the map phase
heavy I/O-write rate during the reduce phases. Considering Map phase is computational intensive
and with longer execution time than reduce phase, this application is classified as compute bound
on Xeon. However, Atom illustrates an opposite trend, which shows the studied application to be
I/O bound for almost half of the execution time. Thus, on Atom this application is classified as
hybrid.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 14. Publication date: July 2018.



System and Architecture Level Characterization of Big Data Applications 14:15

Fig. 9. Runtime [1s interval]. (a) CPU and iowait utilization. (b) Memory Footprint. (c) Disk bandwidth
of CF.

Fig. 10. Runtime [1s interval]. (a) CPU and iowait utilization. (b) Memory Footprint. (c) Disk bandwidth
of Grep.

In addition, the behavior of CF, GSP, and Rule can be clearly classified as compute bound ap-
plications at the fine-grained level. Major fractions of execution time of these applications are
computationally intensive, as shown in Figure 5. Figure 9 presents the runtime behavior of CF. CF
is divided into nine different MapReduce jobs such as recommender job, item filtering job, simi-
larity matrix job, and aggregation job (44). When running the CF on Atom, shown in Figure 9(a),
the first two MapReduce jobs have heavy CPU utilization that reduces from 35% to 15% for the
remaining MapReduce jobs. Xeon illustrates a stable CPU user utilization around 10%, as shown
in Figure 9(a). Over the entire interval, Atom on average has 1.43× higher CPU user utilization
than Xeon. However, if we observe the MapReduce task with respect to individual MapReduce
jobs, then we find that last MapReduce jobs in CF have relatively lower CPU user utilization that
is different on Atom compared to Xeon. This behavior indicates a clear advantage to run these
phases on little Atom servers, because unlike low-power embedded server Atom, Big-core Xeon
servers have high power consumption.

Although, Grep behavior is not clear at coarse-grained level, it illustrates a hybrid behavior at
fine-grained level. Grep application contains two MapReduce jobs, the grep-search and grep-sort.
The first job is more time-consuming and CPU-intensive as compared to the second job, as shown
in Figure 10.

We observe that the behavior of compute-bound applications remains almost the same on Xeon
and Atom. However, due to low processing capacity of little Atom, applications that are classified
as I/O bound on Xeon illustrate hybrid behavior on Atom. In addition, the CPU user utilization
difference between Atom and Xeon is small for reduce phase of the Hadoop applications. Thus,
reduce phase clearly favors the little Atom server, considering the effective core utilization and
lower power consumption of Atom.

5.2 Performance Analysis

In this section, we analyze the performance measurements of big data applications in term of
IPC and compare it with the traditional benchmarks. We have conducted the data size sensitiv-
ity analysis of Hadoop micro-benchmarks with the dataset of 10MB, 100MB, 1GB, and 10GB per
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Fig. 11. IPC. (a) Big Data workloads. (b) Different datasets of Hadoop micro-benchmarks.

Fig. 12. Power Reading (a) Big Data workloads (b) Different datasets of Hadoop micro-benchmarks.

node to understand the impact of the size of data per processing node on system-level as well as
microarchitecture-level parameters. Figure 11(a) presents that the average IPC of big data is 1.65×
lower than traditional CPU benchmarks on big core and 1.21× lower on little core. Therefore, no-
ticeably more performance drop (37%, on average) is observed for big data applications compared
to traditional CPU applications when running on big-core server compared to little core server. In
general, we observe lower IPC in big data applications compared with the traditional benchmarks.
Furthermore, little core-based server is experiencing 1.43× lower IPC in comparison to big-core
server as Xeon can process up to 4 instructions simultaneously while Atom is limited to 2 instruc-
tions per cycle. Figure 11(b) shows the IPC of Hadoop micro-benchmarks for different data sizes.
The results are consistent with the results in Figure 11(a) showing lower IPC on little core com-
pared to big core across all data sizes. We also observe that on little core, increasing the data size
reduces the IPC, since the cache misses increases (mainly Icache miss as will be described in Sec-
tion 5.6.1). Little core, due to its low processing capacity (issue width of 2), cannot hide cache miss
penalty as effective as big core. However, on big core while for most cases, increase in data size
per node reduces the IPC, there are few exceptions where increasing the data size from 100MB to
1,000MB per node increases the IPC. This is mainly due to higher cache locality as a result of larger
and more complex cache subsystem in big core, which results in reduction in cache miss rates.

5.3 Power Consumption and Energy-Efficiency Analysis

In this section, we report the power consumption of big data applications and discuss energy-
efficiency analysis to evaluate the trade-off between power and performance.

5.3.1 Power Characterization. Figure 12(a) shows the average power consumption of the stud-
ied applications on big and little core servers. The idle power of the servers is subtracted from the
measured (run-time) power. Big core consumes on average 35 Watts of dynamic power with the
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Fig. 13. EDP, ED2P, and ED3P Analysis. (a) Big Data Workloads. (b) Different datasets of Hadoop micro-
benchmarks.

peak of 44 Watts (in CF application). Little core consumes much lower power as expected, ranging
from 0.9 to 6 Watts with an average of 4.8 Watts. Figure 12(b) shows that the power consump-
tion increases as the size of data per node increases in most cases across both big and little core
architectures. This is more noticeable in little core. While increasing the data size in little core
reduces the IPC and therefore core power, it increases cache and off-chip traffic in DRAM and bus
subsystem (see LLC MPKI reported in Figure 18). Therefore, for low-end little core, where cache,
DRAM, and off-chip components are dominant power consumers (unlike high-performance Xeon
core), a clear rise in power consumption is observed as size of data increases.

5.3.2 Energy-Efficiency Analysis with near Real-Time Processing Constraints. Based on the re-
sults of power consumption for both platforms, we have evaluated the trade-off between power
and performance by investigating the EDP metric. Furthermore, we have explored the ED2P and
ED3P to understand the impact of near real-time performance constraints on big data applications
and how more performance constraints affects the choice of most efficient server architecture. Fig-
ure 13(a) illustrates EDP, ED2P, and ED3P ratio for little vs. big cores. The EDXP (X=1,2,3) results
show that compared to little core server, big-core server is noticeably more efficient for traditional
CPU applications in comparison with big data. Also, interestingly for scale-out benchmarks, little
core is always more efficient than big core for EDP, ED2P, and ED3P metrics. For real-world big
data applications EDP results show that the little core-based server is almost always a more effi-
cient platform for CPU intensive applications. However, for Sort and TeraSort, for large data sizes
(10GB), the big core becomes more efficient than the little core in terms of EDP. Complex mem-
ory subsystem in big core along with higher processing capacity (2× more than little core) allows
big core to be more effective in hiding the cost of high I/O communication in these applications
and can explain why big-core-based server is more efficient. However, with more near real-time
performance constraints, i.e., for ED2P and ED3P metrics, big core becomes more efficient com-
pared to little cores across most applications. Figure 13(b) presents the data sensitivity analysis of
Hadoop micro-benchmarks. The increase in the data size, progressively makes the big core more
efficient compared with little core, however the point where big core becomes more efficient than
little core varies across applications and depends on the data size and the performance constraint.

Observation. The results illustrate that little core server is more efficient in terms of EDP for
big data applications with smaller data sizes. However, as the size of data increases and with more
performance constraints big-core server becomes more efficient.

5.3.3 Input Data Size Sensitivity Analysis. In this section, we study the impact of input data
size on performance and energy-efficiency of Atom vs. Xeon. We have conducted the data size
sensitivity analysis of Hadoop micro-benchmarks and selected real-world applications (NB and
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Fig. 14. Execution time of big data applications at various input data size.

FP) with the datasets of 1GB, 10GB, and 20GB per node. For this research, we have used input data
sizes per node for each application. For instance, 20GB input data size per node presents 60GB
input data size processed by application in a three-node cluster.

As shown in the Figures 14(a) and 14(b), the execution time is proportional to the input data size.
Comparing the two architectures, we can observe that the execution time increases significantly
more on Atom as a function of data size (10.15×, 7.75×, 27.15×, 8.59×, and 7.97×) compared to
Xeon (3.45×, 7.75×, 26.07×, 7.22×, and 5.96×) for GP, WC, TS, NB, and FP, respectively, as shown
in Figures 14(a) and 14(b). This is mainly due to the performance bottleneck of Atom core that
exist in its compute capacity as well as memory subsystem, which is exposed more as the size of
data increases.

To evaluate the trade-off of power and performance between Xeon and Atom, we have investi-
gated the EDP metric (Figure 15). We have observed a clear trend of rise in EDP with the increase
in input data size across both architectures. Across almost all the studied benchmarks little Atom
core is clearly a favorite choice for energy-efficiency, with the exception of the Sort application.
The increase in the data size progressively makes the big core more efficient compared to the little
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Fig. 15. EDP analysis of big data applications with various input data size.

core across all the applications with the exception of Sort that illustrate the opposite trend. For the
smaller data size, the higher processing capability of big core hides the I/O communication cost
effectively. However, the rise in data size aggravates the I/O cost to an extent that it diminishes
the benefit of the high processing capability of the big core for I/O intensive benchmarks. In sum,
the studied applications showing clear benefit for little core, except for I/O bound applications and
also when the size of data per node increases.

5.4 Dps-Dpj Analysis

In this section, we evaluate the data processing capability of big and little core-based servers for
various data sizes in Hadoop micro-benchmarks. The results are shown in Figures 16(a) and 16(b).
For most applications, on both big- and little-core-based servers, with an increase in the data size
the DPS first rises rapidly to a peak and then declines slightly. The data size at which the peak
DPS occurs varies across applications and architectures. The two metrics, DPS and DPJ, also help
to guide MapReduce scheduling decision. The peak DPS occurs in TeraSort and sort at only 1GB
of size, while in other applications it occurs in at least an order of magnitude larger data size. The
reason is that the rise in data size exacerbates the I/O cost to an extent that it diminishes the benefit
of high processing capacity in hybrid and I/O intensive applications. The DPS difference between
big- and little-core-based servers is becoming larger for CPU intensive applications such as word-
count as the size of data increases. However, this is not the case for I/O intensive applications such
as sort and DFSIO-read as the I/O cost becomes the dominant performance bottleneck and the
processing capacity of the processor, i.e., big vs. little become a less important factor. Overall, for
small data size, below 1000MB per node, the big and little servers have almost similar processing
capacity in terms of DPS, and it is only for large data sizes that the DPS gap between the two
becomes clear.

Similar to DPS, for DPJ, in all applications, we observe a rise in data processing efficiency on big
core as the size of data increases. However, in I/O intensive applications such as TeraSort, DFSIO-
read and write, the rise in DPJ on Xeon is insignificant. For CPU intensive applications including
wordcount there is a significant rise in DPJ on Xeon as the size of data increases.

Overall, for I/O intensive applications such as Sort, TeraSort, DFSIO-write, and DFSIO-read,
Atom-based server is noticeably more efficient than Xeon-based server. However, in CPU inten-
sive micro-benchmarks such as WordCount, the DPJ gap between big and little core-based server
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Fig. 16(a). DPS analysis of different datasets of Hadoop micro-benchmarks.

Fig. 16(b). DPJ analysis of different datasets of Hadoop micro-benchmarks.

reduces with the increase in data size. It is also interesting to observe that DPJ of Xeon can exceed
Atom in a number of applications and across several different data sizes.

Observation: The results illustrate that the choice of big- vs. little-core-based servers in terms
of DPS and DPJ is closely decided by the application type and the size of data.

5.5 Performance Hotspot and Post-Acceleration CPU Code Characterization

In recent years, the interest in hardware acceleration has revived mainly due to dark silicon
challenge. As chips are hitting power limits, computing systems are moving away from general-
purpose designs and toward greater specialization. In addition to big, medium, and small cores, the
integration of domain-specific accelerators, such as GPUs and FPGAs has been emerging in data
center architectures. To find out the right server architecture for big data processing, it is impor-
tant to understand how deploying an accelerator would necessitate adapting the choice of CPU.
For the post-acceleration code characteristics, we analyze the choice of big- vs. little-core-based
server for the code that remains for the CPU after acceleration, compared with the choice of big
vs. little before acceleration. While the GPU-based platforms have achieved significant speedup
across a wide range of benchmarks, their high power demands preclude them for energy-efficient
computing (Stolz et al. 2010). FPGAs have shown to be more energy efficient (Fowers et al. 2012),
and they allow the exploitation of fine-grained parallelism in the algorithms. Moreover, advances
in the FPGA technology advances, suggest that new generation of FPGAs will outperform GPUs.
In Nurvitadhi et al. (2017) the authors compare two generations of Intel FPGAs (Arria 10, Stratix10)
against the latest highest performance Titan X Pascal GPU. For a ResNet case study, their results
show that for Ternary ResNet (Kundu et al. 2017), the Stratix 10 FPGA can deliver 60% better per-
formance over Titan X Pascal GPU, while being 2.3× better in performance/watt showing that
FPGAs may become the platform of choice for accelerating the applications. Therefore, we have
considered FPGA as a domain-specific accelerator.

A key research challenge for heterogeneous architecture that integrates CPU and accelerator
such as FPGA is workload partitioning and mapping of a given application (also referred as
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Fig. 17. Hotspot Analysis before acceleration. (a) Big data Applications. (b) Different datasets of Hadoop
micro-benchmarks.

scheduling) to CPU and FPGA for power, performance, and QoS. This is commonly referred as
hardware and software partitioning. A common method for HW/SW partitioning is to profile
the application to find the performance hotspot regions. These regions are candidates for
FPGA acceleration, as long as the overhead of communication with the CPU is not significant
(Nilakantan et al. 2013). To perform hotspot analysis on big data applications, we use Intel vTune
to select the common hotspot modules of an application running on big and little cores. First,
we identify and analyze hotspot modules based on their execution time. Figure 17(a) shows the
common hotspot modules of studied big data applications and Figure 17(b) presents Hadoop
micro-benchmark hotspots with a data size of 1GB on big and little cores, respectively. Map
and Reduce tasks represent the computation part to perform the task, such as for grep and sort.
Libz is performing the compression and decompression task (library) for the Hadoop workload.
Module dynamic contains hotspot functions such as java-finalize to perform the completion tasks
of an object. Compiled java code includes the java.lang.string class to represent character strings
along with the system.array, copy, math, abstractSringBuilder, and object classes. Libpthread
contained functions like mutex lock/unlock for the thread creation and protection and cond_wait
functions to block on a condition variable. We have also collected the IPC for each of these hotspot
functions. Due to space limitation, we do not show the details of the IPC results. The results show
that the performance gap between big and little cores for Map and Reduce task is 2×. This large
gap shows that big core has a clear advantage over little core to run these hotspot functions.
Since the hotspot functions and their corresponding libraries are taking up most of execution
time, they are candidate for acceleration. The hotspot modules are similar on a big and little core
in most of the studied cases; however, their percentage can vary. Although some applications can
illustrate hotspot modules that were dissimilar on both architecture, their impact was negligible.
Also, these results demonstrate that Map and Reduce tasks represent the hot spot computation
part of the application. Several recent work proposed offloading these hotspot functions, mainly
mapper and reducer, to an FPGA and showed significant performance improvement (Accelerating
2013; Kukunas et al. 2014; Khavari et al. 2014). To analyze post-accelerated code and the choice of
server architecture, we assume map and reduce tasks are offloaded to an accelerator (Shan et al.
2010; Honjo et al. 2013; Lin et al. 2013). Based on this observation, we have offloaded the map
and reduced tasks to the accelerator to understand the choice of server architecture to analyze
post-accelerated code that remains on the CPU. The execution time of the hotspot computation
part of the application after acceleration consists of three major parts, i.e., time_cpu, the software
part of the map phase that remains on the CPU; time_fpga, the hardware part of the map function
that is offloaded to the FPGA; and time_trans, the data transfer time between the FPGA and the
CPU core. Time_trans is calculated based on the speed of the connections link and the amount
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Fig. 18. Speed up of Atom vs. Xeon before and after acceleration. (a) Big data applications. (b) Different
datasets of Hadoop micro-benchmarks.

of data that is transferred between the accelerator and the CPU. We do not make any assumption
about the speedup gain on accelerator. Note that the speed up gain as a result of acceleration does
not change the outcome of our analysis whether big core or little core is best to run the remaining
post-accelerated code. To this end, without diving into how each application can be accelerated,
we can study the remaining functions that are left for the big or little core-based server to run,
where speedup is achieved as time_allCPU/(time_cpu+ time_fpga+ time_trans), as in Figure 18.
After calculating the new execution time, we can study the remaining modules that are left for
the big or little core-based server to run.

To determine which server (big or little core server) is best suited to process the code that re-
mains on the CPU after we offload hotspot map and reduce task to an accelerator such as FPGA,
we analyze the post-acceleration code. Figure 16 shows the impact of post-accelerated code by in-
vestigating the speed up—migrating from Atom to Xeon before and after acceleration. We report
the little- vs. big-core speed-up in terms of

Speedup =
(E x ec t imeAt om /E x ec t imeX eon )r emaininд cod e af t er acc el er at ion

(E x ec t imeAt om /E x ec t imeX eon )ent ir e appl ic at ion
. (1)

(Exectime Atom / Exectime Xeon) remaining code after acceleration

represents the speed up obtained by migrating the post-accelerated code from Atom
to Xeon.

(Exectime Atom / Exectime Xeon) entire applications

represents the speed up obtained by migrating the code from Atom to Xeon before
acceleration.

Using Equation (1), we can evaluate the impact of Atom over Xeon speedup gain after acceler-
ation compared to speed up before acceleration. Most of the micro-benchmarks in Figure 16 have
speed up less than 1, which indicates that speedup of Atom over Xeon after acceleration reduces
compared to speed up before acceleration. We have also observed that in most micro-benchmarks,
with the increase in data size the speedup after acceleration reduces compared to the speedup be-
fore acceleration. However, there are several exceptions to this trend, including GSP, RuleGrowth,
Ecalt, WordCount, and Spade where post acceleration code achieves higher speed up on Xeon over
Atom compared with pre-acceleration code. Overall, Xeon provides a lower execution time; how-
ever, if speedup after acceleration is very small, then considering the power consumption of Xeon,
Atom-based will be a more efficient server to execute the post-accelerated code.

Observation: We study how offloading hotspot map and reduce tasks to an accelerator such
as FPGA affects the choice of big- vs. little-core-based server for processing. The results show
that the choice of big vs. little before and after accelerations is different. While most benchmarks
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Fig. 19. L1 Instruction MPKI of (a) big data workloads and (b) different datasets of Hadoop micro-
benchmarks.

clearly favor little core post acceleration, in some applications post accelerated code show higher
speed-up on big core over little core-base server compared to pre-acceleration. Arora et al. (2012)
showed that after offloading graphic application to GPU, the remaining code that is left for CPU
for processing has different characteristics, as the highly parallel part has offloaded and the con-
trol intensive part is left; therefore, their work indicated that for graphic application, we need
a high performance, with complex branch predictor for post GPU code. So, initially our predic-
tion was that for post-accelerated big data workload we will observe similar behavior; big core
with sophisticated branch predictor is needed: however, our assessment proved this to be differ-
ent, as for big data applications, for some big core is favored and for others little core is favored.
We mostly found that Hadoop-based applications prefer little-core post-acceleration, while others
mostly prefer big-core servers.

5.6 Microarchitecture-Level Analysis

To provide insights into whether current server design based on big and little core architectures
requires improvement in their microarchitecture parameters for efficient big data processing, we
perform a comprehensive microarchitecture characterization and compare the results with tradi-
tional CPU, PARSEC, and scale-out applications. Comprehensive microarchitecture analysis helps
determine the performance bottlenecks in both big and little core servers when running big data
applications. Our work not only discusses the impact of big data applications on high-performance
server Xeon, it also compares it with the low-power embedded server to illustrate that compared
to traditional applications, which are not energy-efficient for processing on little core, for big data
applications it is energy-efficient for processing on little core. The details of the studied parameters
are explained in this section.

5.6.1 Instruction Cache Misses. Frequent cache misses decrease the fetch rate and introduce
stalls in the frontend of the pipeline. Fetch rate reduction constraints the number of instructions
that frontend delivers to the backend for ILP extraction and therefore increases the chance of the
whole pipeline to be stalled. Figure 19(a) presents the L1 Instruction cache misses per kilo instruc-
tions (MPKI) on big and little core servers. The average I-cache MPKI of big data applications is
at least 2.6× higher than the traditional benchmarks and 1.86× higher than the scale-out appli-
cations on Atom, while on Xeon it is 3.8× higher than traditional benchmarks and 4.76× higher
than scale-out applications. In comparison to Xeon, Atom shows 2× higher I-cache MPKI in big
data applications. Figure 19(b) shows data sensitivity analysis of Hadoop micro-benchmarks. Data
sensitivity analysis results show an increase in I-cache MPKI on both Xeon and Atom as the size
of data increases.
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Fig. 20. LLC Data MPKI of (a) big data workloads and (b) different datasets of Hadoop micro-benchmarks.

Observation: The general observation is that the instruction footprints of the big data appli-
cations do not fit in the L1 instruction cache on both Xeon and Atom. Similar observation was
made in a recent work (Wang et al. 2013) for Xeon. Fast cache access requirement restrains the
architectural designer to increase the instruction cache size. However, Xeon and Atom comparison
shows that a three-level compared to a two-level instruction cache hierarchy just slightly mitigate
instruction cache MPKI. Increase in data size results in increasing the number of dynamic instruc-
tions (as the number of iterations in loops in the code increases) leading to higher L1 instruction
cache misses. Current prefetchers rely on the repetitiveness and sequential behavior of the in-
structions to predict the same sequence in the future. Considering big data workloads have deep
software stacks, a large number of system calls, the increase in data also increases the dynamic and
static linking that results into higher instruction cache misses. Also Increase in data size mostly
increases the number of logical mappers (logical mapper = data size / HDFS block size), therefore
requiring new set of mappers to be fetch into the cache followed by reduces, therefore increases
the cache misses every time new mapper need to be fetch into the cache. This behavior implies that
higher I-cache performance is required for big data workloads. Moreover, low-end microarchitec-
ture such as little Atom for big data processing needs to include an instruction prefetchers that
can predict complex instruction flow patterns with the advance replacement policy to eliminate
the wasted cycles caused by front-end stalls.

5.6.2 LLC Cache Misses. Intel Xeon has a three-level cache hierarchy and Intel Atom has a
two-level hierarchy to reduce the gap between processor and memory speed. In this study, we
analyzed the LLC of both processors: L3 cache of Xeon and L2 cache of Atom. Figure 20(a) shows
the LLC MPKI on Atom and Xeon for big data applications along with average LLC MPKI of SPEC,
PARSEC, and Scale-Out applications. The average LLC data cache MPKI of Big data is at least 2.5×
higher than the traditional benchmarks and 3.8× higher than Scale-Out applications on Xeon. In
contrast, Atom shows an opposite behavior; on Atom, SPEC applications experiences 3.25× higher
data MPKI than big data applications. Moreover, the average LLC data cache MPKI of big data on
Atom is 1.8× higher than Xeon. Figure 20(b) shows the data sensitivity analysis of Hadoop micro-
benchmarks on Xeon and Atom. Data MPKI in Atom increases with the increase in data size,
however Xeon shows no clear trend.

Observation: We conclude that big data applications have relatively high data locality corrob-
orating the observation in Wang et al. (2013) and Ferdman et al. (2012). Furthermore, the results
show that while a large three-level cache hierarchy on Xeon has advantage over a two-level cache
on Atom, a small 4x1MB LLC cache on Atom is sufficient for many big data applications to provide
relatively low MPKI rate. In addition, we observed that while in most cases increasing data size
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Fig. 21. Branch Misprediction of (a) big data workloads (b) different datasets of Hadoop micro-benchmarks.

Fig. 22. ITLB MPKI. (a) Big data workloads. (b) Different datasets of Hadoop micro-benchmarks.

increases LLC MPKI, there are exceptions that require careful consideration when choosing the
size of data to be allocated to each node to reduce LLC MPKI.

5.6.3 Branch Misprediction. Figures 21(a) and 21(b) presents the branch misprediction results.
The average misprediction in big data on Atom is 9.3%, while for SPEC, PARSEC, and Scale-Out
this is 5.8%, 8.01%, and 8.66%, respectively. In addition, on Xeon, average misprediction of big
data is 5.9%, while SPEC, PARSEC, and Scale-Out is 2.7%, 2%, and 2.3%, respectively. This shows
that branch misprediction rate in big data is at least 1.2× higher on Atom and 2.13× higher on
Xeon compared to traditional benchmarks. In comparison, Atom experiences 1.5× higher branch
misprediction than Xeon. Figure 21(b) results show that the branch misprediction rate does not
change noticeably with changing the data size.

Observation: Traditional CPU and parallel benchmarks have instruction working sets with
tight loops (as in matrix algebra), therefore making them easy for the branch predictor to predict
correctly and reduce their misprediction rate. In big data workloads, however, loops are seldom,
and instead we have fetch record (LD), Match Key (CMP), and non-loop branches (Branch to han-
dler or BC) operations. This results in higher branch misprediction rate and affects the application
performance by creating stalls in the pipeline.

5.6.4 TLB Misses. TLB (Translation look-aside buffer) misses are costly in terms of both per-
formance as well as power, taking up hundreds of cycles to respond. We report the Instruction TLB
(ITLB) and Data TLB (DTLB) MPKI in Figures 22 and 23. Our results show that on Xeon big data
applications have the highest ITLB MPKI with the average of 0.23, while for SPEC, PARSEC, and
Scale-Out this is orders of magnitude lower with an average of 7.44E-07, 0.0019, and 0.081, respec-
tively. The average DTLB MPKI of big data is just slightly higher than traditional benchmarks on
Xeon; however, on Atom SPEC has noticeably higher DTLB MPKI reading than others. On Xeon,
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Fig. 23. DTLB MPKI. (a) Big data workloads. (b) Different datasets of Hadoop micro-benchmarks.

big data applications have the highest ITLB and DTLB MPKI compared to traditional benchmarks.
In contrast, SPEC is experiencing the highest ITLB and DTLB MPKI on Atom. Moreover, Atom has
large ITLB MPKI as compared to Xeon, but lower DTLB MPKI in comparison to Xeon. Figures 22(b)
and 23(b) show the data sensitivity analysis of micro-benchmarks with respect to ITLB MPKI and
DTLB MPKI. Increasing data size clearly increases the DTLB MPKI across both Atom and Xeon in
most benchmarks; however, it does not have a noticeable impact on ITLB MPKI.

Observation: Overall, on Xeon, big data applications have an order of magnitude lower ITLB
miss rate compared to Atom. However on Xeon they have an order of magnitude higher ITLB
miss rate compared to the traditional CPU benchmark. While the results show TLB miss overhead
management is important in both Atom and Xeon for big data applications, the large gap between
big data applications and traditional CPU benchmark on Xeon is calling for a big-data specific TLB
management solution. Similar results were obtained in a closely related work (Wang et al. 2014)
on Xeon. Also, the results show that the size of data affects DTLB miss rates in both architectures.

6 DISCUSSION

In this section, based on the results and discussions throughout the article, the key findings are
presented as follows:

6.1 Application Analysis

• Compute-bound applications remains almost the same on Xeon and Atom.
• Due to low processing capacity of little Atom, applications that are classified as I/O bound

on Xeon illustrate hybrid behavior on Atom.
• CPU user utilization difference between Atom and Xeon is small for reduce phase of the

Hadoop applications. Thus, reduce phase clearly favors the little Atom server, considering
the effective core utilization and lower power consumption of Atom.

6.2 System Analysis

• Traditional CPU applications are optimized for big Xeon core. As IPC results show sig-
nificantly larger performance drop of 37%, on average for big data applications compared
to traditional CPU applications when running on big-core server compared to little core
server.

• Big-core server is more energy-efficient compared to little core server for traditional
applications.

• Little-core-based server is more efficient in terms of energy efficiency for big data processing
with the exception of the I/O application.

• The increase in the size of data and performance constraints makes big-core server an effi-
cient choice. For the smaller data size, the higher processing capability of big core hides the
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I/O communication cost effectively. However, the rise in data size aggravates the I/O cost
to an extent that it diminishes the benefit of the high processing capability of the big core
for I/O intensive benchmarks.

6.3 Post-acceleration CPU Code Analysis

• Unlike our initial prediction of processing the post-accelerated big data workload on big
core, choice of big vs. little before and after accelerations is different for applications. We
mostly found that Hadoop-based big data applications prefer little-core post-acceleration,
while other applications like SPMF mostly prefer big-core servers.

6.4 Microarchitecture Analysis

• Big data application has higher instruction cache MPKI than the traditional applications.
Instruction footprints of the big data applications do not fit in the L1 instruction cache on
both Xeon and Atom.

• Big data applications have high branch misprediction rate compared to traditional applica-
tions. Traditional CPU and parallel benchmarks have instruction working sets with tight
loops, therefore making them easy for the branch predictor to predict correctly and reduce
their misprediction rate.

• Deep software stack of big data applications, along with the excessive non-loop branches,
affects L1 cache hit rate and branch predictor accuracy in both big and little core servers.
Thus, big data applications require efficient instruction prefetchers to predict complex pat-
terns and more accurate branch predictor to handle the unknown control flow.

• The size of data has a non-trivial impact on several micro-architecture parameters on both
Atom and Xeon servers.

• A small two-level data cache is sufficient for big data processing on little core; however, the
instruction cache hierarchy pipeline design needs improvement.

• On Xeon, big data applications have an order of magnitude lower ITLB miss rate compared
to Atom. Little core needs architectural improvement in instruction TLB miss overhead
management.

7 RELATED WORK

Recently, there have been a number of efforts to benchmark and characterize big data and cloud-
scale applications, mainly on state-of-the-art high-performance server platforms. In general, there
are two major approaches for benchmarking big data: A system benchmarking and a component
benchmarking. A system benchmark is an end-to-end benchmarking, which includes the entire
database and application software stack, including data preparation, data aggregation and data
analytics. A component benchmark encloses only a portion of the entire end-to-end system (Arora
et al. 2012). The most prominent big data benchmarks are HiBench, CloudSuite, BigDataBench,
CloudCmp, LinkBench, TPC, BigBench, and CloudRank-D. HiBench (Huang et al. 2010) is a bench-
mark suite for Hadoop MapReduce developed by Intel. The CloudSuite (Ferdman et al. 2012, 4)
benchmark was developed for Scale-Out cloud workloads focusing on web services and off-line
analytics. CloudSuite benchmark demonstrates that current existing computer systems are not
satisfying the scale-out workloads requirements. BigDataBench (Wang et al. 2014; Gao et al. 2013)
was developed very recently and includes online service and offline analytics for web service appli-
cations to characterize big data applications. This work is a closely related to ours; however, they
mainly performed characterization on high-end Xeon servers. Our work is different as it attempts
to compare the two server architectures for big data processing in terms of energy-efficiency, per-
formance, and data processing capacity. CloudCmp (Li et al. 2010) uses a systematic approach to
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benchmark various components of the cloud to compare cloud providers. LinkBench is a real-world
database benchmark for social network applications (Armstrong et al. 2013).

The Transaction Procession Performance Council (TPC) has released several benchmark suites
in recent years, including TPC-C, TPC-E, and TPC-DS for online transaction processing. BigBench
(Ghazal et al. 2013) is a new big data benchmark that adopts TPC-DS as its basis and expands it
for offline analytics on Xeon high-performance server. CloudRank-D (Luo et al. 2012) benchmark
is developed for cloud computing that focuses on the capacity planning and system evaluation by
modeling the cloud computing usage configurations. In addition, authors in Jia et al. (2017) have in-
vestigated the top-Down analysis method to characterize their micro-architectural characteristics
of the big data analytics workloads using top-down analysis on the Intel Xeon E5-2680 v3 server.
Jia et al. (2014) summarize the impact of software stacks of big data application on Intel Xeon
E5645. Although this work is related to ours, they mainly performed characterization on high-end
Xeon servers. Our work is different as it attempts to compare the two server architectures for big
data processing in terms of energy-efficiency, performance, and data processing capacity as well
as micro-architecture analysis.

Several prior researches have characterized traditional CPU and parallel applications such as
SPEC2006, PARSEC, and NAS on high-performance server-class processors (Prakash et al. 2008).
However, big data applications illustrated fundamentally different characteristics from the tradi-
tional CPU and parallel applications. It is therefore vital to compare the characteristics of big data
application with these traditional benchmark suites. We have included the SPEC CINT2006, SPEC
CFP2006, and PARSEC 2.1 benchmarks for comparison with big data workloads.

This work is different from all above benchmarking and characterization work as it performs
a comprehensive system-level (power, performance, EDXP, DPS, DPJ, and post-acceleration code
characterization) and micro-architecture level (cache miss, TLB miss, branch misprediction) anal-
ysis of various big data applications and micro-benchmarks on two substantially different server
platforms; one with high-performance big core and the other with low-power little core, to under-
stand which of these two server architectures is the choice for energy-efficient big data processing.

There have been also several research studies on application-specific (Yu et al. 2007; Yu et al.
2004) and domain-specific accelerators (Arnold et al. 2001; Li et al. 2009; Arora et al. 2010). Using
tightly integrated FPGA (Luo et al. 2013) with CPU, and GPU with CPU (Baru et al. 2012), to
accelerate big data processing, have been proposed in recent work. FPGAs have also recently been
used to accelerate intelligent personal assistant (IPA) workloads in datacenters. Johann et al. (2015)
have used a specific intelligent personal assistant application, Sirius, where FPGA is explored for
the implementation of core functions of Sirius in data centers and reducing the query latency.
While deploying programmable accelerator is a new and hot research topic, there has been little
attention paid to how CPU designs should be adapted to this change. In our article, we did not
indulge on how to implement and accelerate the offload part of the application on FPGA; we have
evaluated how offloading the hotspot map tasks to FPGA affects the choice of big- vs. little-core-
based servers to process the code that remains on the CPU. To the best of our knowledge, the only
work on this topic is by Arora et al. (2012), which studied the role of the CPU for a CPU+GPU
architecture. They concluded that, in a CPU+GPU architecture, the CPU is running a code that
is significantly different from a CPU-only code. They found that the post-GPU code has a lower
ILP, higher branch miss prediction rate, and larger number of load and stores, and it benefits less
from multiple cores, as there is less TLP after GPU offloading. In this article, we demonstrated how
deploying an accelerator for big data affects the choice of big vs. little core for efficient processing.

In addition, there are several recent researches that investigated the data access pattern, system
resource utilization and HDFS bandwidth of big data applications. Hibench (Huang et al. 2010)
demonstrates the resource utilization and HDFS bandwidth of various Hadoop applications.
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Phi-Sched (Krish et al. 2014) studies the behavior of Hadoop applications and proposes a
hardware-aware workflow scheduler for Hadoop by analyzing the CPU, memory, and storage
and network usage of Hadoop applications. Our work is different from the above works as it
not only includes Hadoop representative applications, but it also studies non-Hadoop-based big
data applications. Additionally, we characterize these benchmarks from system-level perspective
to highlight the choice of server architecture for energy-efficient processing of big data. It also
performs a comprehensive micro-architectural level analysis, which helps provide insights where
big data applications require improvements in the current server architecture design.

8 CONCLUSION

In this article, we presented a comprehensive application, system, and microarchitecture-level
analysis of big data applications on two distinct server platforms: the conventional server design,
which uses a high-performance big Xeon core, and the new trajectory in server design, which uses
a low-power little Atom core to address the dark silicon challenge.

We evaluated the resource utilization of big data applications to understand their runtime be-
havior. The recourse utilization analysis results show that a big data application can be classified
differently in terms of being compute-intensive, I/O-intensive, or hybrid on big Xeon core and lit-
tle Atom core. They also show significantly larger performance drop of 37%, on average, for big
data applications compared to traditional CPU applications when running on big-core server com-
pared to little core server, indicating while big Xeon core has been optimized for traditional CPU
applications, it is not optimized for big data applications. While big-core server is more energy-
efficient compared to little-core server for traditional applications, for big data, it is less efficient.
Little-core-based server is more efficient in terms of EDP for big data processing with small data
sizes compared to big-core-based server. However, as the size of data increases and with perfor-
mance constraints, big-core server becomes an efficient choice. The analysis of data processing
capability and efficiency of big data applications illustrates that the choice of big-core-based vs.
little-core-based server in terms of data processing per second and data processing per joule is
closely decided by the application type, size of data, and computational and I/O intensity of the
application.

In addition, we performed the post-acceleration CPU code analysis to find the most efficient
server architecture to process the remaining code after acceleration. The results show that there
is a clear difference between the choices of big- vs. little-core-based servers before and after ac-
celeration. While most benchmarks clearly favor little core post-acceleration, several benchmarks
show higher speed-up on big-core over little-core post-acceleration compared to pre-acceleration.

To provide insights on whether current server design based on big and little core architectures
requires improvement in their microarchitecture parameters for efficient big data processing, we
performed a comprehensive microarchitecture characterization and compared the results with
traditional Spec, PARSEC, and scale-out applications. Our analysis indicates that the size of data
has a non-trivial impact on several micro-architecture parameters on both Atom and Xeon servers
corroborating recent observations on Xeon. Moreover, results show that while a small 4x1MB
two-level data cache is sufficient for big data processing on little core, the instruction cache
hierarchy pipeline design needs improvement. Also, little core needs architectural improvement
in instruction TLB miss overhead management as well as branch predictor. Furthermore, the
analysis shows that the deep software stack of big data applications, along with the excessive
non-loop branches, affects L1 cache hit rate and branch predictor accuracy in both big- and
little-core servers. Moreover, big data applications require efficient instruction prefetchers to
predict complex patterns and more accurate branch predictor to handle the unknown control flow.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 14. Publication date: July 2018.



14:30 M. Malik et al.

ACKNOWLEDGMENT

We are grateful for the stimulating discussions and comments by Dr. Avesta Sasan.

REFERENCES

Accelerating Hadoop* applications using Intel QuickAssist tech. 2013.

D. G. Andersen et al. 2009. FAWN: A fast array of wimpy nodes. In the Proceedings of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles (SOSP’09).

R. Appuswamy et al. 2013. Scale-up vs. scale-out for Hadoop: Time to rethink? In Proceedings of the 4th annual Symposium

on Cloud Computing. ACM, 20.

T. G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. 2013. LinkBench: A database benchmark

based on the Facebook social graph. In Proceedings of the 2013 ACM SIGMOD International Conference on Management

of Data. ACM, 1185–1196.

Nidhi Arora, Kiran Chandramohan, Nagaraju Pothineni, and Anshul Kumar. 2010. Instruction selection in asip synthesis

using functional matching. In 23rd International Conference on VLSI Design, 2010 (VLSID’10). IEEE, 146–151.

Arora Manish et al. 2012. Redefining the role of the CPU in the era of CPU-GPU integration. IEEE Micro. 32, 6 (2012), 4–16.

M. Arnold et al. 2001. Designing domain-specific processors. In Proceedings of the 9th International Conference on Codesign

and System Synthesis (CODES’01). ACM.

L. A. Barroso et al. 2013. The datacenter as a computer: An introduction to the design of warehouse-scale machines. Synth.

Lect. Comput. Architect. 8, 3 (2013), 1–154.

Chaitanya Baru, Milind Bhandarkar, Raghunath Nambiar, Meikel Poess, and Tilmann Rabl. 2012. Setting the direction for

big data benchmark standards. In Technology Conference on Performance Evaluation and Benchmarking. Springer, Berlin,

Heidelberg, 197–208.

E. Blem et al. 2013. Power struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and x86 architectures. In

Proceedings of the Conference on High-Performance Computer Architecture (HPCA’13).

Collaborative Filtering. Retrieved 2017 from http://archive.cloudera.com/cdh5/cdh/5/mahout/mahout-core/org/apache/

mahout/cf/taste/hadoop/item/package-tree.html.

M. Dimitrov et al. 2013. Memory system characterization of big data workloads. Proceedings of the IEEE International Con-

ference on Big Data.

Dstat. Retrieved 2018 from http://lintut.com/dstat-linux-monitoring-tools/.

M. Ferdman et al. 2012. Clearing the clouds: A study of emerging scale-out workloads on modern hardware. In Proceedings

of the ACM SIGPLAN Conference.

Frequent Itemset Mining Dataset Repository. Retrieved 2017 from http://fimi.ua.ac.be/data/.

W. Gao et al. 2013. Bigdatabench: A big data benchmark suite from web search engines. In Proceedings of the Conference

on Architectures and Systems for Big Data (ASBD’13) in Conjunction with the International Symposium on Computer

Architecture (ISCA’13).

A. Ghazal et al. 2013. Bigbench: Towards an industry standard benchmark for big data analytics. In Proceedings of the ACM

SIGMOD Conference.

A. Gutierrez et al. 2014. Integrated 3D-stacked server designs for increasing physical density of key-value stores. In Pro-

ceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’14).

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2011. Toward dark silicon in servers. IEEE

Micro 31, 4 (2011), 6–15.

H. Homayoun et al. 2012. Dynamically heterogeneous cores through 3D resource pooling. In Proceedings of the Conference

on High-Performance Computer Architecture (HPCA’12).

S. Huang et al. 2010. The hibench benchmark suite: Characterization of the mapreduce-based data analysis. In Proceedings

of the 26th International Conference on Data Engineering Workshops (ICDEW’10).

K. Hwang et al. 2016. Cloud performance modeling with benchmark evaluation of elastic scaling strategies. IEEE Trans.

Parall. Distrib. Syst. 27, 1 (2016), 130–143.

Intel VTune Amplifier XE Performance Profiler. 2015. Retrieved from http://software.intel.com/en-us/articles/intel-

vtune-amplifier-xe/.

Z. Jia et al. 2014. Characterizing and subsetting big data workloads. In Proceedings of the IEEE International Symposium on

Workload Characterization (IISWC’14).

Z. Jia et al. 2017. Understanding big data analytics workloads on modern processors. IEEE Trans. Parall. Distrib. Syst. 28, 6

(2017), 1797–1810.

H. Johann et al. 2015. Sirius: An open end-to-end voice and vision personal assistant and its implications for future ware-

house scale computers. ACM SIGPLAN Notices 50, 4, 223–238. ACM, 2015.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 14. Publication date: July 2018.

http://archive.cloudera.com/cdh5/cdh/5/mahout/mahout-core/org/apache/mahout/cf/taste/hadoop/item/package-tree.html
http://lintut.com/dstat-linux-monitoring-tools/
http://fimi.ua.ac.be/data/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/


System and Architecture Level Characterization of Big Data Applications 14:31

R. T. Kaushik et al. 2010. Greenhdfs: Towards an energy-conserving, storage-efficient, hybrid Hadoop compute cluster.

Proceedings of the USENIX Annual Technical Conference.

T. Khavari et al. 2014. Energy-efficient mapping of biomedical applications on domain-specific accelerator under process

variation. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’14).

V. Kontorinis et al. 2012. Managing distributed UPS energy for effective power capping in data centers. In Proceedings of

the 39th International Symposium on Computer Architecture (ISCA’12).

V. Kontorinis et al. 2014. Enabling dynamic heterogeneity through core-on-core stacking. In Proceedings of the the 51st

Annual Design Automation Conference (DAC’14).

K. R. Krish, Ali Anwar, and Ali R. Butt. 2014. [phi] Sched: A heterogeneity aware Hadoop workflow scheduler. In Proceedings

of the International Symposium on Modeling Analysis and Simulation of Telecommunication Systems (MASCOTS’14).

James T. Kukunas, V. Gopal, J. Guilford, S. Gulley, A. van de Ven, and W. Feghali. 2014. High performance ZLIB compression

on Intel® architecture processors. White paper.

A. Li et al. 2010. CloudCmp: Comparing public cloud providers. Proceedings of the 10th ACM SIGCOMM Conference on

Internet Measurement.

Li Haoyuan et al. 2008. PFP: Parallel FP-growth for query recommendation. Proceedings of the ACM Conference on RecOm-

mender Systems.

T. Li et al. 2009. Fast enumeration of maximal valid subgraphs for custom instruction identification. Proceedings of the

Conference on Automation Science and Engineering (CASES’09).

F. Liang et al. 2014. Performance characterization of Hadoop and data MPI based on Amdahl’s second law. In Proceedings

of the 9th IEEE International Conference on Networking, Architecture, and Storage (NAS’14). 207–215.

K. Lim et al. 2008. Understanding and designing new server architectures for emerging warehouse-computing environ-

ments. ACM SIGARCH Comput. Architect. News 36, 3, 315–326.

Z. Lin and P. Chow. 2013. Zcluster: A zynq-based Hadoop cluster. In Proceedings of the International Conference on Field

Programmable Technology (FPT’13). 450–453.

Luo Chunjie et al. 2012. Cloudrank-d: Benchmarking and ranking cloud computing systems for data processing applica-

tions. Front. Comput. Sci. 6, 4 (2012), 347–362.

Mahout: Scalable machine-learning and data-mining library. Retrieved 2017 from http://mahout.apache.org/.

M. Malik and H. Homayoun. 2015. Big data on low power cores: Are low power embedded processors a good fit for the big

data workloads? In Proceedings of the 33rd IEEE International Conference on Computer Design (ICCD’15). 379–382.

M. Malik et al. 2015a. System and architecture level characterization of big data applications on big and little core server

architectures. In Proceedings of the IEEE International Conference on Big Data. 85–94.

M. Malik et al. 2015b. Characterizing Hadoop applications on microservers for performance and energy efficiency optimiza-

tions. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’16).

153–154.

S. Nilakantan et al. 2013. Platform-independent analysis of function-level communication in workloads. In Proceedings of

the IEEE International Symposium on Workload Characterization (IISWC’13).

K. Ousterhout et al. 2015. Making sense of performance in data analytics frameworks. In Proceedings of the Symposium on

Networked Systems Design and Implementation (NSDI’15). 293–307.

V. J. Reddi et al. 2010. Web search using mobile cores: Quantifying and mitigating the price of efficiency. In Proceedings of

the ACM SIGPLAN Conference.

H. Sayadi, D. Pathak, I. Savidis, and H. Homayoun. 2018. Power conversion efficiency-aware mapping of multithreaded

applications on heterogeneous architectures: A comprehensive parameter tuning. In Proceedings of the 23rd Asia and

South Pacific Design Automation Conference (ASP-DAC’18). IEEE, 70–75.

Y. Shan et al. 2010. FPMR: Mapreduce framework on FPGA. In Proceedings of the Annual ACM/SIGDA International Sympo-

sium on Field Programmable Gate Arrays (FPGA’10).

SPMF. Retrieved 2016 from http://www.philippe-fournier-viger.com/spmf/index.php.

T. Honjo and K. Oikawa. 2013. Hardware acceleration of Hadoop mapreduce. In Proceedings of the IEEE International Con-

ference on Big Data. 118–124.

T. K. Prakash et al. 2008. Performance characterization of SPEC CPU2006 Benchmarks on Intel Core 2 Duo Processor. In

Proceedings of the International Seminar on Aerospace Science and Technology (ISAST’08).

J. Veiga et al. 2016. Performance evaluation of big data frameworks for large-scale data analytics. In Proceedings of the IEEE

International Conference on Big Data.

L. Wang et al. 2014. Bigdatabench: A big data benchmark suite from internet services. In Proceedings of the 20th International

Symposium on High Performance Computer Architecture (HPCA’14). IEEE.

WattsUpPro power meter. 2015. Retrieved from https://www.wattsupmeters.com/secure/index.

T. L. Willke et al. 2012. Graphbuilder—A scalable graph construction library for Apache Hadoop. In Big Learning Workshop

on Neural Information Processing Systems (NIPS’12).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 14. Publication date: July 2018.

http://mahout.apache.org/
http://www.philippe-fournier-viger.com/spmf/index.php
https://www.wattsupmeters.com/secure/index


14:32 M. Malik et al.

Xi Luo, Walid Najjar, and Vagelis Hristidis. 2013. Efficient near-duplicate document detection using FPGAs. In 2013 IEEE

International Conference on Big Data. IEEE, 54–61.

P. Yu et al. 2007. Disjoint pattern enumeration for custom instructions identification. In Proceedings of the Conference on

Field Programmable Logic (FPL’07). 273–278.

P. Yu et al. 2004. Scalable custom instructions identification for instruction-set extensible processors. In Proceedings of the

Conference on Automation Science and Engineering (CASES’04).

Received November 2017; revised March 2018; accepted May 2018

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 3, Article 14. Publication date: July 2018.


