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Abstract–This paper presents a rigorous step towards design-for-assurance by introducing a new class of
logically reconfigurable design resilient to design reverse engineering. Based on the non-volatile spin transfer
torque (STT) magnetic technology, we introduce a basic set of non-volatile reconfigurable Look-Up-Table (LUT)
logic components (NV-STT-based LUTs). STT-based LUT with significantly different set of characteristics
compared to CMOS provides new opportunities to enhance design security yet makes it challenging to remain
highly competitive with custom CMOS or even SRAM-based LUT in terms of power, performance and area.
To address these challenges, we propose several algorithms to select and replace custom CMOS gates with
reconfigurable STT-based LUTs during design implementation such that the functionality of STT-based
components and therefore the entire design cannot be determined in any manageable time, rendering any
design reverse engineering attack ineffective. Our study conducted on a large number of standard circuit
benchmarks concludes significant resiliency of hybrid STT-CMOS circuits against various types of attacks.
Furthermore, the selection algorithms on average have a small impact on the performance of the circuit. We
also tested these techniques against satisfiability attacks developed recently and show that these techniques
also render more advanced reverse-engineering techniques computationally infeasible.
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1 INTRODUCTION
It is predicted that by 2020 there will be an estimated 50 billion [Evans 2011] connected devices in
the world. Internet of things (IoT) devices are being developed for a wide range of applications from
home automation and personal fitness, to smart cities and defence. The economic opportunities
offered by massive deployment of IoT devices are vast, but unfortunately IoT security threats
grow exponentially along with the count and reach of these devices [Abera et al. 2016; Koley and
Ghosal 2015; Patel et al. 2017; Sayadi et al. 2018a,b; Wurm et al. 2016; Xu et al. 2014; Yang et al.
2015], and therefore threaten the economic opportunities. The severity and impact of a threat
increases proportionally to the scale and reach of affected IoT devices. Themajority of IoT devices are
expected to be small and spatially distributed Systems on Chip (SoC), with power and computational
constraints. Adapting complex software solutions for IoT security are not practical mainly due to the
cost, power and computational constraints of the IoT devices. More importantly software solutions
do not provide defense against manufacturing and post manufacturing physical security threats. The
security therefore should be delegated to the underlying hardware, building a bottom-up solution
for securing IoT devices rather than treating it as an afterthought. When it comes to IoT devices,
hardware implementation of security objectives should incur low overhead in terms of design,
area, as well as power consumption, corresponding to resource constrained nature of these devices.
Integrated Circuits (ICs) are at the core of IoT devices; their security and trustworthiness ground
the security of the entire IoT system. However, the security and trustworthiness of ICs deployed in
IoT devices are exacerbated by the modern globalized, horizontal semiconductor business model
and in particular for mass volume IoT device designs and fabrication. This model involves many
steps performed at multiple locations by different providers and integrates various intellectual
properties (IPs) from several vendors, which has become prevalent due to confluence of increasingly
complex supply chains, time-to-market delivery, and cost pressures. This trend poses significant
challenges to hardware security assurance in various forms and in particular affecting IoT devices.
At the design stage, there is a chance of IP piracy and tampering with IP to change its intended
functionality. Outsourcing design manufacturing provides significant opportunities for untrusted
foundries for tampering, overproducing, and cloning, to name a few. Even after releasing design to
the market, the design can be subject to non-invasive reserve engineering, such as side-channel
attacks, to obtain secret information during design operation or invasive reserve engineering to
obtain detailed design implementation. ICs may experience counterfeiting attacks even after being
resigned in the forms of recycling and remarking as well as forging their documentation and selling
defective ones.

To protect a circuit against the reverse engineering attack, new design techniques such as tamper
detection [DARPA 2014; Shahrjerdi et al. 2014], obfuscation [Chakraborty and Bhunia 2009; Otero
et al. 2015; Rajendran et al. 2012a] 3D IC technology [Dofe et al. 2016; Imeson et al. 2013], re-
configurable logic [Baumgarten et al. 2010; Liu and Wang 2014a, 2015] split manufacturing [Hill
et al. 2013; Xiao et al. 2015] and camouflaging [Rajendran et al. 2012b; R.P. Cocchi and Wang
2012] have been proposed. The split manufacturing makes it possible to manufacture a front-end-
of-line piece of a semiconductor die in a first manufacturing line, and a back-end-of-line piece
of a semiconductor die in a second manufacturing line. This technique hides interconnection
between gates, so the first manufacturing would not be able to reconstruct the entire circuit. The
camouflaging technique hides the logic functionality of gates as a set of camouflaged gates have
an identical layout image and it is not possible to determine their functionality just by processing
their images.

To reverse engineer circuits that integrate unknown gates such as camouflaged circuits, the RE
attack based on satisfiability (SAT) has been also investigated [El Massad et al. 2015; Kamali et al.
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2018; Liu et al. 2016; Roshanisefat et al. 2018]. It has been shown that the SAT-based attack can
effectively determine the unknown gates in a few minutes if the number of possible identities for
an unknown gate is small (for the camouflaging technique the number is three).

All of these recently proposed techniques either incure significant design overhead or shown to
be ineffective against recent machine learning or SAT based reverse engineering attacks [El Massad
et al. 2015; Liu et al. 2016]. For instance obfuscation [Chakraborty and Bhunia 2009; Otero et al.
2015; Rajendran et al. 2012a] , 3D technology [Dofe et al. 2016; Imeson et al. 2013], and split
manufacturing require significant change in the standard IC design flow. These solution while are
effective for general purpose IC design, for IoT IC market which cost is a prime concern, they are
not effective solutions. An effective solution in this domain should be low cost, requiring minimal
changes to the standard IC design flow, and not breakable against recent SAT based attacks.

In response to all of these challenges we recently introduced Hybrid STT-CMOS vanishable logics
[Winograd et al. 2016] which combines custom and programmable gates to hide the functionality
of certain number of critical gates. In this case, only a design house and trusted vendors know the
functionality of programmable gates. The content of STT-based programmable gates is not accessible
to an external probe engine as the programming bit are distributed within the combinational logic
of the design.

To realize design assurance, Hybrid STT-CMOS vanishable logics leverage the concept of circuit
design using reconfigurable logic based on hardware reconfiguration and transformation which
recently proposed in [Alex and et al. 2010] [Liu andWang 2014b] and employ highly promising Spin
Transfer Torque (STT) magnetic technology to build robust and reverse-engineering resilient Look-
Up-Table (LUT) logic components with the goal of enhancing design security and using the STT
technology to design on-die, run-time reconfigurable units such as ALU units and logic gates. Spin
Transfer Torque (STT) is a new device technology that offers several advantages over conventional
CMOS technology, including approximately 4 times higher integration density, non-volatility,
near-zero leakage power, high retention time and high endurance, and most of all easy integration
with conventional CMOS. Our approach is to design efficient and reconfigurable logic gates using
STT LookUp-Tables (LUTs), and then employ them at the gate level to enhance design security. Our
previous research has convincingly demonstrated that it is possible to design reconfigurable STT
functional units that are competitive to or better than custom CMOS designs, at least for complex
functional units (e.g. multipliers) [Ashammagari et al. 2014a,b; Mahmoodi et al. 2014]. As shown
in our earlier conference paper [Winograd et al. 2016], the STT reconfigurable design is similar
in functionality to an FPGA but with significantly higher speed running at GHz frequency, near
zero leakage power, high thermal stability, highly integrative with CMOS and overall competitive
with custom CMOS design in terms of performance and energy-efficiency. In addition, compared to
SRAM-based LUT, STT-based LUT is non-volatile, that is, there is no need to another flash memory
(which could be a source of vulnerability) to store the configuration bits to load from on every
power up. However compared to SRAM-based LUT, STT-based LUT require significantly higher
write current. This new set of characteristics provide new opportunities to enhance design security
yet makes it challenging to remain highly competitive with custom CMOS or even SRAM-based
LUT in terms of power, performance and area. To the best of our knowledge this is the first work
that introduces the concept of reconfigurable STT-based LUT for enhancing design security and
highlight the opportunities and challenges with the new technology and design and address these
challenges to make it a deployable technology to enhance security yet remain competitive with
custom CMOS. To protect a design from design reverse engineering attacks after final product
release, depending on the required level of security, we propose several algorithms to select and
replace custom CMOS gates in circuit netlist with reconfigurable STT-based LUTs during design
implementation. While an untrusted foundry may still have access to the reconfigured design
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after its release to the market, the selection of custom CMOS gates for replacement ensures that
the untrusted foundry cannot determine the functionality of reconfigurable LUTs, and therefore
cannot reverse engineer the design in any reasonable time. The selection algorithm will ensure that
original design parametric constraints such as design performance will be impacted only minimally.
We have modified the tools used to select and analyze these techniques to better match the final
results. Our current implementation leverages standard IC design flow such as Synopsys Design
Compiler to calculate necessary information before processing with a custom Python script. We
believe Hybrid STT-CMOS is an effective solution in IoT domain, given its minimal overhead,
such as power, area and timing implication, and most importantly cost as it require no change to
standard IC design flow.

The main contributions of this paper are as follows:

• Introducing the concept of reconfigurable STT-based LUT for enhancing design security and
highlighting the opportunities and challenges with the new technology and design to make
it a deployable technology,

• Introducing a security driven design flow at gate level to prevent design reverse engineering,
• Proposing several algorithms for selection and replacement of custom CMOS gates with
STT-based LUTs, and

• Analyzing performance, area and power overhead on standard circuit benchmarks.
• Analysis of these techniques against SAT attacks as described in [El Massad et al. 2015].

The remainder of this paper is organized as follows. Section 2 presents preliminaries and surveys
related work. In Section 3, we explain STT technology. Next, we describe how to employ CMOS-STT
technology to realize design for assurance in Section 5. Experimental results are then presented in
Section 6. Finally, Section 7 concludes this paper.

2 PREVIOUS WORK
Current techniques for hardware reverse engineering have raised serious concerns in the IC design
community, particularly when facing a very high-tech adversary. Reverse engineering can be done
at different levels of design abstraction and various phases of system on chip (SoC) design supply
chain. An untrusted foundry may compromise the design security by inserting extra circuits as
hardware Trojans [Tehranipoor and et al. 2014], or extracting IPs used in a circuit and making
profits by selling them without knowledge of IP owner [Yuan and et al. 2006], or overproducing the
design and sell in the black market [Guin and et al. 2014]. Many techniques to counter these attacks
have been proposed and many are in active use. Examples of such countermeasures are mislabeling
[Rostami et al. 2013], shielding [Anderson 2008], tamper detection [DARPA 2014; Shahrjerdi et al.
2014], obfuscation [Chakraborty and Bhunia 2009; Otero et al. 2015; Rajendran et al. 2012a] 3D IC
technology [Dofe et al. 2016; Imeson et al. 2013], re-configurable logic [Baumgarten et al. 2010; Liu
and Wang 2014a, 2015] split manufacturing [Hill et al. 2013; Xiao et al. 2015] and camouflaging [Ra-
jendran et al. 2012b; R.P. Cocchi and Wang 2012] and self-modification (reconfiguration) [Lewis and
et al. 2012]. While several of these countermeasures are aimed at making an attack more difficult
through obfuscation without providing any actual protection (mislabeling, potting, obfuscation,
camouflaging), others remove or minimize side-channel leakage. The split manufacturing makes it
possible to manufacture a front-end-of-line piece of a semiconductor die in a first manufacturing
line, and a back-end-of-line piece of a semiconductor die in a second manufacturing line. This
technique hides interconnection between gates, so the first manufacturing would not be able to
reconstruct the entire circuit. The camouflaging technique hides the logic functionality of gates as
a set of camouflaged gates have an identical layout image and it is not possible to determine their
functionality just by processing their images.
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All of these recently proposed techniques either incure significant design overhead or shown to
be ineffective against recent machine learning or SAT based reverse engineering attacks [El Massad
et al. 2015; Liu et al. 2016]. For instance obfuscation [Chakraborty and Bhunia 2009; Otero et al.
2015; Rajendran et al. 2012a] , 3D technology [Dofe et al. 2016; Imeson et al. 2013], and split
manufacturing require significant change in the standard IC design flow. These solution while are
effective for general purpose IC design, for IoT IC market which cost is a prime concern, they are
not effective solutions. An effective solution in this domain should be low cost, requiring minimal
changes to the standard IC design flow, and not breakable against recent SAT based attacks.

In response to all of these challenges, we propose a solution which relies on hardware reconfig-
urability. Hardware reconfigurability has been around for several years, primarily in the form of
FPGAs. In [Liu and Wang 2014b], using embedded SRAM-based reconfigurable logic for application
specific integrated circuits (ASIC) design obfuscation is investigated. SRAM reconfigurable logic
blocks provide reconfigurability and potentially enhance security, but they are not practical for use
in embedded systems where power and performance are major constraints. Furthermore, SRAM
require an external non-volatile memory to keep reconfiguration bitstream which becomes the
source of vulnerability. Our idea in this paper of building reconfigurable logic using STT is different
from the previous work in various aspects. Firstly, we introduce the non-volatile STT-based look up
table design as a new method of realizing the hardware reconfiguration for security and integrating
non-volatile STT-based LUTs and custom CMOS gates side by side on the same die. Secondly,
we propose a security-driven hybrid STT-CMOS design flow to integrate design assurance with
other design constraints and considerations. STT reconfigurable logic has several advantages over
reconfigurable CMOS in terms of power, performance, area as well as security metrics. STT-based
LUT has substantially lower leakage power compared to CMOS-based LUT [Mahmoodi et al. 2014].
In addition, STT-based LUT has advantage over CMOS-based LUT in terms of performance and
area [Mahmoodi et al. 2014; Suzuki 2009]. Also it has a high thermal robustness. From security
perspective, STT-based LUT brings two clear advantages over CMOS design: First, due to its
non-volatility feature, it holds the reconfiguration bitstream, whereas CMOS-based LUT requires
an external non-volatile memory which becomes the source of vulnerability. Second, STT-based
LUT power consumption is almost insensitive to its input changes [Mahmoodi et al. 2014; Suzuki
2009], therefore compared to CMOS-based LUT, it is more robust against power-based side channel
attacks.

3 STT TECHNOLOGY
In our proposed gate level solution to prevent reverse engineering, the run-time reconfiguration is
realized by a LUT based design, which uses Spin Transfer Torque (STT) technology to store the
LUT data. The new reconfigurable STT-LUT design not only enables run-time reconfiguration to
vanish the logical property of the design, but offers added advantages for complex blocks in terms
of power, performance, lifetime reliability and thermal stability compared to non-reconfigurable
CMOS implementation.

STT provides i) approximately 4X higher integration density than conventional Static Random
Access Memory (SRAM) [Zhao et al. 2009], ii) high retention times (even more than 10 years
[Smullen et al. 2011]), iii) high endurance (1016 writes, or 10 years of operation as L1 cache)
[Giordano and et al. 2013], iv) near-zero leakage [Rasquinha et al. 2010] with close-to SRAM read
performance, v) excellent thermal robustness 300oC , vi) soft error resilience, and vii) above all, STT
cells are easy to integrate with the conventional CMOS fabrication process.
STT technology, for the first time, provides us the opportunity to design reconfigurable logic

gates that are on-die with CMOS logic and have low reconfiguration overhead. Existing Field
Programmable Gate Arrays (FPGAs) cannot be used to design on-chip reconfigurable logic, as they
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are often flash devices that do not integrate well with the conventional CMOS fabric or SRAM-
based reconfigurable units. Moreover, the reconfiguration time is long in existing technologies. For
example, typical partial reconfiguration time on Virtex 6 FPGA is in the order of tens of milliseconds
[Lam et al. 2012]. An alternative would be to use SRAM based reconfigurable units, but they suffer
from problems of scalability, high leakage, high sensitivity to variations, and soft errors [Makosiej
et al. 2013]. Moreover, SRAM based reconfiguration is volatile and needs to be re-programmed on
every power up and this demands a separate non-volatile storage such as a flash memory to store
configuration bits which becomes a source of vulnerabilities.

4 DESIGN LOOKUP TABLE BASED RECONFIGURABLE LOGIC IN STT
TECHNOLOGY

In this paper we use the STT-LUT design proposed by Suzuki [Suzuki 2009] and further improved
in our recent work [Almasi et al. 2016; Attaran et al. 2016; Kuttappaa et al. 2016a,b; Mahmoodi
et al. 2014]. By loading different values in the LUTs, the reconfigurable fabric is able to implement
various logic functions. Moreover, there is added security benefit because the content of the LUTs
can be hidden to IC manufacturers or eliminated upon detection of a reverse engineering attempt.
Moreover, the content of an LUT cannot be reverse engineered from its physical layout because
of its generic and programmable nature. STT-NV technology utilizes Magnetic Tunnel Junctions
(MTJ) to realize nonvolatile resistive storage. There have been several attempts to use MTJs for
building logic circuits to exploit the leakage benefit of MTJs to reduce the circuit power [Suzuki
2009]. However, due to the significant energy involved in changing the state of an MTJ, circuit
styles that rely on changing the state of MTJs in response to input changes do not show any power
and performance benefits [Ren and Markovic 2010]. An alternative to this approach has been to
realize logic in memory by using LUTs built based on MTJs [Guo et al. 2010].
Based on current implementations [Mahmoodi et al. 2014], we show that for small logic gates,

the STT-LUT style shows considerable overhead as compared to the custom CMOS implementation;
however, as the circuit complexity increases this overhead reduces. The delay overhead is also less
for high fan-in NOR gates as their static CMOS implementation would require a series connection
of PMOSes in their pull-up networks. PMOS transistors tend to be slower than NMOS transistors
and since the STT-LUT style uses less number of PMOS transistors, its benefit is more noticeable
for implementation of such logic gates. Further, efforts have been underway to reduce this overhead
over the past couple of years. More recently, we made several improvements by using alternative
implementations of the STT-LUT, as shown in Figure 2. Previous iterations of this work have
leveraged dynamic STT-LUTs, as shown in Figure 1. Our new schemes have since been developed
that leverage a static design, as shown in Figure 2. The static STT-LUTs from 2 to 6 fan-ins are
characterized in terms of delay, active power, leakage power, Power-Delay-Product (PDP), area
and sensing failure rate; and compared with the dynamic STT-LUT. Unlike dynamic STT-LUT, in
static STT-LUT, the active power consumption is dependent on the switching activities. So for
obtaining a evaluation more realistic power comparison, the power of the STT-LUT designs were
measured at 100%, 50% and 25% output switching activities. Figure 3(a) shows the active power
comparison which is dependent on switching activities and figure 3(b) shows the leakage power
which is measured in idle condition.

Another observation from our current implementations is that the LUT style shows less power
overhead for higher data activity (α ) (see Figure 4). This is due to the dynamic nature of the STT-LUT
style that increases its switching activity making it a better fit for high data activity applications.
Note that the power and delay of the STT-LUT is independent of the logic it is programmed to
implement (i.e its data content) and also independent of its input data activity. The power and delay
of the STT-LUT only depends on its fain-in (number of inputs).
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Fig. 1. STT-LUT design concept: Existing dynamic style

Fig. 2. STT-LUT design concept: Proposed static style

The leakage power of the STT-LUT style is lower than the custom CMOS except for high fan-in
NAND and NOR gates. In high fan-in static CMOS NAND (NOR) gates, there is a long chain of
series connected NMOS (PMOS) transistors that suppresses leakage via the transistor stacking
effect. However, this leakage advantage for such static CMOS gates will disappear if those gates are
implemented using cascade of lower fan-in gates for performance reasons. Therefore we can argue
that for low fan-in (4-input or less) standard logic gates, the STT-LUT style implementation offers
less leakage.

5 SECURITY AND STT TECHNOLOGY
Figure 5 presents our novel security-driven design flow to prevent reverse engineering. While it is
fully compatible with the common-practice VLSI design flow, the proposed flow aims to introduce
security in the early design stages to prevent design reverse engineering with no or minimum
impact on design parametric constraints. Along with the design constraints and the target CMOS
technology node, the design security requirements and the STT technology library information are
passed to the standard VLSI design flow.
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Fig. 3. Performance comparisons: (a) Active Power (b) Leakage Power (c) Delay (d) Area (e) PDP (f) Failure rate

The design flow is continuedwith circuit implementation and then the logic synthesis. Afterwards,
an obtained gate-level netlist from the logic synthesis is passed to our novel CMOS gate selection and
replacement stage. Depending on the design security requirements, one of our proposed algorithms
described in the following section is chosen by the designer. The selected algorithm takes the
synthesized gate-level netlist and carefully selects a number of CMOS gates and replace them with
equivalent STT-based LUT implementation. In this context, we use STT-based LUTs, reconfigurable
units and missing gates interchangeably. We refer to the obtained netlist as a hybrid netlist. After
obtaining the hybrid netlist, the design flow is continued with the physical design, and then the
design is signed-off.

By introducing design security requirements and introducing reconfigurability in the early stages
of design, our novel security-driven STT-CMOS design flow effectively resists the design reverse
engineering attacks. With a circuit consisting of missing gates, an untrusted foundry is not able
to overproduce the design as each design finally should be configured by the design house or
authorized vendors. Furthermore, selection and replacement of CMOS gates are such that it makes
it impossible to determine missing gates in any reasonable time.
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Fig. 4. The performance of STT LUTs based on number of inputs

5.1 Algorithms
We propose two methods to select the CMOS gates in a netlist to replace with STT-based LUTs
counterpart: independent selection and dependent selection.

5.1.1 Independent Selection . In this method, gates are selected such that they are not connected
to each other (directly or indirectly) through any design path. From the security perspective, using
the circuit netlist with reconfigurable units and an available configured counterpart, an attacker
can use a testing technique to justify and propagate the output of missing gates to the observation
points. With this effort, the attacker can develop a partial truth table for each missing gate and
then guess the functionality of the missing gate.

The independent selection provides some level of security; however, an attacker with adequate
resources would be able to break and determine the functionality of STT-based LUTs. Assuming
M the number of missing gates, and D the depth of circuit defined as the maximum number of
flip-flops on a path from a primary input to a primary output in a circuit, the maximum possible
number of required test clocks to determine all missing gates in the independent selection Nindep
is equal to

Nindep =

M∑
i=1

αi × Di (1)

where α is the number of required patterns to determine an independent missing gate. The value
of α is determined based on the similarity of the output of the gates. For example, the similarity of
2-input AND gate and 2-input NOR gate is 2 since for two input combinations they produce the
same output, and the similarity of 2-input AND gate and 2-input NAND gate is 0 as their output
are completely opposite. If we assume all missing gates are 2-input gates, the average similarity of
gates is 1.45, so the average required patterns to determine a 2-input missing gate (α ) is 2.45. For
3-input gates and 4-input gates, α is equal to 4.2 and 7.4, respectively.
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Algorithm 1: Implementation of dependent selection algorithm.
Input: A gate-level netlist
Output: A hybrid netlist
Select the longest I/O path containing only non-critical timing paths;
foreach timing path on the I/O path do

replace all gates with STT-based LUTs;
end
return Hybrid netlist;

5.1.2 Dependent Selection. The second method is the dependent selection where there is depen-
dency between reconfigurable units. Reconfigurable units are selected so that they are reachable
from each other; in general, some inputs of a missing gate are driven by some output of other
missing gates. This method significantly increases the efforts to determine the functionality of
missing gates.

Algorithm 1 presents the implementation of dependent selection. In dependent selection, it first
obtains the list of the longest I/O path that is between a primary input to a primary output and
contains timing paths beginning at and ending to flip-flops. Then all gates on composing timing
paths are replaced with reconfigurable units.
Assuming M the number of missing gates that the input of one missing gate is driven by the

output of another missing gate, Di the depth of missing gate i is the number of flip-flops between
the missing gate and a primary output, and Pi is the number of possible gates for the missing gate
i , the maximum number of required test clocks to determine all missing gates in the independent
selection Ndep , on average, is equal to

Ndep =

M∏
i=1

αi × Pi × Di (2)

where αi is the number of required patterns to determine an independent missing gate. As discussed
earlier, α = 2.45 and P = 2.5 for 2-input missing gates.

5.1.3 The Parametric-aware Dependent Selection. In the dependent selection, all gates on selected
timing paths are replaced with reconfigurable units. It is plausible that replacing all gates violates
timing requirement of original circuit. Therefore, we introduce the parametric-aware dependent
selection method to minimize the impact and possibly avoid violating timing requirement. The
concept, shown in Algorithm 2, the parametric-aware dependent selection method selects only
one gate on a timing path and replaces it with its reconfigurable counterparts. All source and sink
gates into the timing path are also replaced with their reconfigurable counterparts.

Compared with the dependent selection method, the parametric-aware selection method indeed
significantly increases the efforts to determine missing gates as it would make it impossible to
create partial truth tables for missing gates. As a result, a more plausible approach for the attacker
is to launch a brute force attack. ConsideringM the number of missing gates, I inputs accessible
that drive missing gates, P the number of possible gates for each missing gate, and D the depth of
circuit, the number of required clock cycles to determine the missing gates in a brute-force attack
(Nbf ) is equal to

Nbf = 2I × PM × D. (3)
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Algorithm 2: Implementation of parametric-aware dependent selection algorithm.
Input: A gate-level netlist
Output: A hybrid netlist
Select the longest I/O path containing only non-critical timing paths;
foreach timing path on the I/O path do

L1: Randomly select one gates and replace it with STT-based LUTs;
Check design timing constrains;
if violated then go to L1 ;
Push not-selected gates into UCL;

end
foreach gate in UCL do

Replace immediate gates on the timing path driving or being derived by the gate but not
belong to the current or longest I/O path;

end
return Hybrid netlist;

Logic synthesis using                        
CMOS technology

CMOS gates selection 
and replacement

STT and CMOS
technology libraries

Design 
specifications

Design security and 
parametric constraints

Synthesized gate‐
level netlist

Physical design

Sign‐off

Synthesized hybrid 
gate‐level netlist

Fig. 5. Our novel STT-CMOS design flow.

Equation 3 shows the exponential relationship between the number of required clock cycles and
the number of missing gates and the number of inputs driving missing gates.
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Selecting gates to be replaced with STT-based LUTs while meeting design security requirements
and design constraints can be very challenging considering the huge number of timing paths in large
circuits. To overcome this issue, first, we construct a graph representation of all of the components
of the synthesized gate-level CMOS netlist. Using this graph representation, we randomly select a
sample of 2% of the components within the circuit and perform a depth-first search in the graph to
find the path to a primary input and a primary output of the circuit containing at least two flip-flops.
Once all of the unique paths have been collected, we remove any paths that contain the critical
path and sort the remaining paths by depth (e.g., the number of flip-flops between the primary
input and primary output). For independent selection, we select a pre-determined number of nodes
for STT out of all nodes on the chosen paths. For dependent selection, we select a random timing
path from flip-flop to flip-flop for a random path identified above. For parametric-aware selection,
we randomly select a pre-determined number of timing paths and select a pre-determined number
of random nodes within that timing path and then continue on the parametric-aware selection
algorithm.
In addition to brute-force attack, a hybrid STT-CMOS circuit may undergo machine learning

attacks similar to [Massad and et al. 2015]. Contrary to similar works such as camouflaging
[Rajendran et al. 2012b], the possible candidates per STT-based LUT is not limited to a small
number of gates. A 2-input STT-based LUT can realize 6 meaningful 2-input gates consisting of
AND, NAND, OR, NOR, XOR, XNOR gates. 3-/4-input STT-based LUTs can also implement more
than 12 meaningful gates. To exacerbate the situation for machine learning attacks, a 4-input
STT-based LUT and a 3-input STT-based LUT can be also used to implement 3-/2-input gates and
2-input gates, respectively, with connecting unused inputs of STT-based LUTs to some signals
in the circuit to expand search space for machine learning attacks. Furthermore, we can realize
complex functions, such as (A.(B ⊕ C)) + D, using a STT-based LUT instead of implementing only
one simple gate. With incorporating these measures, the machine learning attack would render
ineffective to determine the missing gates in any reasonable time as the size of search space is
significantly large even with inserting a moderate number STT-based LUTs. While work, such
as [Massad and et al. 2015], significantly accounts on accessibility to scan architecture to reduce
attack time, it is a common practice that the scan architecture is disabled or locked before releasing
the design to raise bar against different attacks such as secret key extraction [Lee et al. 2006] [Yang
et al. 2006].

5.2 Resistance to Attacks
One of the primary techniques to protect design against reverse-engineering attacks depends on
making it more difficult to identify a given gate in the circuit. In fact, the techniques presented
in this work aim to produce just this result. In general, if one were to partially extract the netlist
and attempt to identify the remainder of the netlist using truth tables and the input/output of the
circuit, it would require 1,000 years of processing time. In 2015, El MAssad, Garg, and Tripunitara
showed that satisfiability (SAT) solvers can be configured to significantly reduce the amount of
processing time required to determine the netlist [El Massad et al. 2015]. Their work was able to
show that naively replacing gates within the netlist with black boxes (e.g., STT-based LUTs) that
were previously thought to require more than 1,000 years of processing time can be identified in
minutes using complexity-theoretic characterization of the IC de-camouflaging problem. To analyze
the results of our research, we developed an attack model that is an extension of the concepts
proposed and developed in [El Massad et al. 2015]. We use this technique against a subset of the
circuits analyzed in this research to determine how it affects using STT-based LUTs.
The reverse engineering approach proposed in [Rajendran et al. 2012b] suggests the use of

two copies of the targeted IC. The first copy is delayered and used to obtain the partial netlist

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.



Programmable Gates Using Hybrid CMOS-STT Design to Prevent IC Reverse Engineering 0:13

Fig. 6. Circuit depicting non-resolvable camouflaged gates

Table 1. Example of behavior of discriminating set of inputs - true gate combination is highlighted

(Input, Expected Output) -> (0000, 0) (0001, 0) (0100, 1)
(G1,G2) Output for a particular combination of (G1, G2)

(XOR, XOR) 1 - -
(XOR, NAND) 1 - -
(XOR, NOR) 1 - -
(NAND, XOR) 1 - -
(NAND, NAND) 0 0 0
(NAND,NOR) 0 0 1
(NOR, XOR) 1 - -
(NOR, NAND) 0 1 -
(NOR, NOR) 0 1 -

whereas the second copy acts as reference circuit or original circuit. The reference circuit is used
to obtain the expected primary output by applying relevant primary input which might be later
used for de-camouflaging. Consider the circuit in Figure 6. The two gates G1 and G2 are replaced
by non-resolvable camouflaged gates. The gates can assume one of NAND, NOR, XOR gate types,
hence there are 32 = 9 possible combinations. Brute Force requires at least 9 input patterns to
de-camouflage. On the contrary, it is possible to find the true identity of the gates by applying a
minimal set of inputs i.e. three inputs here. This inference comes from the fact that the original
circuit gives a unique combination of primary outputs. A true combination of the gate type should
be able to match this combination when the same set of inputs are applied. Hence, by applying a
particular set of inputs it is possible to eliminate the incorrect gate combinations.

Table 1 depicts how application of particular set of inputs can narrow down the search for right
combination of the gates. As we see, a single input “0000” eliminates 5 incorrect gate combinations
(indicated in red). This followed by inputs “0001” and “0100” reveal the true gate combination
(G1,G2) = (NAND,NOR). Thus, {‘0000′,′ 0001′,′ 0100′} is a set of inputs which can de-camouflage
the circuit and provide a combination which is functionally equivalent to original circuit. Such a
set is referred to as a discriminating set of inputs [El Massad et al. 2015].

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.



0:14 Winograd, T. et al

Fig. 7. Time to Reverse Engineer partial netlists when increasing the potential number of gates

Thus, the problem of predicting identity of gates can be split up into parts i.e. (1) Is a discrimi-
nating set of inputs able to differentiate among the given gate combinations and de-camouflage a
camouflaged circuit C? (2) If so, what is the correct assignment for these gates which match the
Boolean functionality of the original circuit? The work in [Shenoy 2016] provides formal proofs for
categorizing and resolving these decision problems using computational complexity tools.

For our research, we used the techniques introduced by [El Massad et al. 2015] to attack circuits
with missing gates chosen by the parametric-aware algorithm described in Secion 5.1.1. To show
how these technique affect SAT-based attacks, we used partial circuits from ISCAS ‘85 [Brglez
et al. 1985] and ISCAS ‘89 [Brglez et al. 1989]. The sequential bench circuits are assumed to have a
scan chain flip- flops. This mechanism has been simulated with the use of pseudo-primary inputs
and pseudo- primary outputs in place of the nodes with D flip-flops. Hence, instead of random
initialization the D flip-flop inputs are asserted by the Solver as any other primary input.
The gate selection for the partial netlists creation was done at random. The size of the circuits

chosen for the security analysis are varied to observe the overall impact. The chosen netlist
characteristics and the corresponding percentage and number of missing gates used for partial
netlist formation are given in Table 4. The analysis is performed on the two input logic functions
i.e. gate types ranging from 3 to 8 with the gate type 3 being equivalent to the camouflaged gates
with functionalities NAND,NOR,XOR.

The analysis was performed on a 3.2 GHz quad-core desktop with 8 GB RAM and 500 GB disk
space. MiniSAT tool configurations were set at default with resource allocations approximately
2147 TB for memory usage limit and CPU time of around 68 years.

The work was set out to test and analyze the security offered by the current protection techniques
against layout level extraction using a SAT-based reverse engineering model. This model had
presented the ability to resolve a camouflaged netlist with three gate types in minutes. The STT-
based Lookup Tables (LUT) with their programmable nature significantly increase the number of
functions that can be tried for any single missing gate making it very difficult to reverse engineer.
This work analyzed the security mechanism for two-input missing gates which could have a
maximum functionality of 16 gate types with each gate chosen randomly. The trends observed
with the metrics selected for testing the vulnerability against reverse engineering i.e. the number
of inputs required and time taken to identify the missing gates show significant increase in security
compared to the camouflaged gates.
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Table 2. Benchmark Characteristics with corresponding % of missing gates

Circuit Gates Inputs Outputs % of Missing gates
1% 5% 10%

s832 292 18 19 2 14 29
s1423 731 17 5 7 36 73

As shown in Figure 7, the claims by SAT-based reverse engineering model also becomes question-
able with LUT based missing gates as we increase the input size of missing gates thereby delivering
larger functionalities, size of the circuit being reverse engineered and the use of gate selection
algorithms described earlier in this section.

6 RESULTS
To evaluate the effectiveness of logical reconfigurability against the design reverse-engineering
attack, our proposed security-driven hybrid STT-CMOS design flow is applied to several ISCAS ‘89
[Brglez et al. 1989] benchmarks. The benchmarks are first synthesized in 90nm technology node
using Synopsys’s Design Compiler. While the STT technology library based on Suzuki [Suzuki
2009] is provided, the CMOS gate selection and replacement is performed and the circuit power
and performance parameters are evaluated up on any gate replacement. While all evaluation in
this paper is performed in the gate selection and replacement step, the flow continues with the
physical design to obtain the circuit layout. Finally, the design is signed off for fabrication.
By introducing security measures in the early stages of design flow, it is possible to effectively

meet both design security requirements and parametric constraints. Table 3 shows the impact on
performance, power, and area after introducing STT-based LUT units to the selected benchmarks.
The second, third, and forth columns of the table present the relative performance degradation
after deploying the independent, dependent, and parametric-aware selection, respectively, on the
original circuits.
To analyze the netlist and to determine the gates to be selected as STT LUTs, we developed a

Python script that analyzes the netlist and creates a graph of the VLSI circuit with each gate and
wire represented by nodes showing with inputs acting as the starting nodes of the graph and the
outputs acting as the end nodes of the graph. To follow the algorithms described in Section 5, the
Python script had to identify the longest path in the circuit as well as a number of input-to-output
paths to meet the requirements of the algorithms. Originally, using a brute-force method, this was
unsustainable and resulted in run-times of hours for even relatively small circuits with only 20,000
gates–and inherently infeasible in practice. To address this, we improved the methodology to use
Synopsys Design Compiler to identify the input-to-output paths and critical path of the circuit.
The Python script leverages the outputs of Design Compiler and determines which gates will be
replaced with STT-based LUTs.

To achieve this end, as shown in Figure 8, the following steps are performed:
(1) Retrieve the ISCAS ‘89 benchmark
(2) Generate the netlist using Synopsys Design Compiler
(3) For each wire in the netlist, generate the Design Compiler command to calculate the longest

path through the wire
(4) Run Design Compiler for each generated script
(5) Collect the input-output-paths and sort them
(6) Using the timing paths calculated, generate a graph of the netlist
(7) Based on the graph, randomly select LUTs not in the critical path
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(8) Calculate the critical path, power and area using the graph
As a precursor to this script, a database is created by creating a one-gate netlist for each gate in

the algorithm’s netlist. The timing information, power and area for that one-gate netlist is used to
generate approximate results using the graph.

The graph is created using a Python script that parses the netlist and traverses various nodes in
the graph to identify appropriate gates to replace with LUTs.

Fig. 8. The LUT selection process

For step 3, we generated a Python script that analyzes the netlist produced by Synopsys to
collect the individual wires and generates a sequence of Design Compiler commands to perform
the worst-case timing analysis through each wire and create a report file.

For step 5, we generated a Python script that analyzes the report files for each wire and generates
an input-to-output path and timing information for each wire’s worst-case path: this is passed to
the script in Step 6 so that the script generating the graph has information for all input-to-output
paths collected by Design Compiler, including the critical path. This also ensures that the solution
is now deterministic.

Using this information, we are also able to determine the effect that changing a given percentage
of nodes for a circuit will have on the overhead as a whole.

Table 3 shows the effect of replacing all gates in a given circuit with STT-based LUTs. As shown,
the performance overhead associated with replacing gates with LUTs in a circuit has a maximum–
albeit extremely expensive at 100%–cost. This gives us a maximum limit to which the security
metrics shown in Figure 9 will apply–as replacing all of the gates in a given circuit will render the
implementation immune to reverse-engineering attacks. However, the power and area overhead in
these cases will be infeasible. As s9234a shows, even a 10X area overhead is possible–particularly if
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Table 3. Effect of all-LUT implementation on each circuit

Circuit Performance Power Area
Overhead Overhead Overhead

s641 215% 371% 241%
s820 186% 578% 534%
s832 191% 572% 520%
s953 199% 447% 314%
s1196 168% 521% 243%
s1238 167% 526% 250%
s1488 166% 629% 359%
s5378a 88% 298% 597%
s9234a 94% 291% 1085%
s13207 92% 235% 240%
s15850a 102% 284% 178%
s38584 116% 328% 391%

Fig. 9. Required clocks to determine the missing gates

the gates being replaced by STT-based LUTs are multi-output gates (e.g., adders) as these must be
implemented with two LUTs, doubling the power and area overhead for that gate.

While the circuit sizes rages from about 300 to 20,000 gates, the results indicate that among the
three selection algorithms, the dependent selection has considerable impact on design performance
in terms of the delay of the longest path. This is attributed to replacing all gates of timing paths on
selected I/O paths with STT-based LUT equivalent. The performance degradation is less or none
using independent and parametric-aware selections as all STT-based LUTs are not placed on a
single I/O path. Furthermore, with increasing the size of the circuit, both algorithms are provided a
larger pool of gates and timing paths; therefore, STT-based LUTs are fairly distributed and a very
few STT-based LUTs are located on a single timing path. The results in Table 4 signify that the
relative performance degradation is almost zero for several benchmark circuits. The results imply
that for large industrial circuits the impact of STT-based LUT units on circuit performance using
the independent and parametric-aware dependent selections will be negligible.
In Table 4, we also present the relative power overhead and the number of replaced gates after

applying the three selection techniques. For the independent selection, we always randomly select
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Table 4. The effects of STT-based LUTs

Performance degredation % Power overhead % Area overhead % Number of STTs
Circuit Indep Dep Para Indep Dep Para Indep Dep Para Indep Dep para size
c432 47.6 52.7 51.7 7.3 4.1 16.1 20.3 41.7 0.0 5.0 6.0 24.0 104.0
s641 0.0 0.0 0.0 9.4 5.6 22.9 12.6 12.9 0.0 5.0 4.0 18.0 287.0
s820 36.0 78.3 0.0 2.9 0.3 6.0 11.2 18.9 0.0 5.0 5.0 10.0 289.0
s832 0.0 0.0 0.0 2.6 1.7 6.9 11.7 6.5 0.0 5.0 2.0 18.0 379.0
s953 0.0 0.0 0.0 3.1 1.9 9.0 8.3 6.0 0.0 5.0 3.0 32.0 395.0
s1196 3.2 0.0 0.0 1.3 0.3 4.6 6.7 1.4 0.0 5.0 1.0 21.0 508.0
s1238 17.1 0.0 0.0 2.2 1.0 0.9 7.3 5.9 0.0 5.0 5.0 10.0 529.0
c1355 22.5 89.4 36.3 -2.1 -1.6 1.1 7.4 18.7 0.0 5.0 11.0 45.0 218.0
s1488 0.0 0.0 0.0 0.8 0.2 8.1 8.4 3.4 0.0 5.0 2.0 46.0 657.0
c3540 61.5 70.4 51.2 -1.0 -1.3 1.1 4.0 9.0 0.0 5.0 11.0 22.0 444.0
c5315 7.9 80.4 28.3 -1.0 -1.4 -2.8 3.4 8.1 0.0 5.0 9.0 29.0 503.0
s5378a 0.0 0.0 0.0 0.6 0.0 -0.4 1.5 0.6 0.0 5.0 1.0 15.0 2779.0
s9234a 0.0 0.0 0.0 -0.3 0.2 -1.0 2.2 4.8 0.0 5.0 7.0 17.0 5597.0
s13207 8.4 121.4 6.4 -0.3 0.5 -0.6 0.6 2.3 0.0 5.0 13.0 39.0 7951.0
s15850a 17.5 0.0 0.0 -0.3 0.0 -0.01 0.6 0.2 0.0 5.0 2.0 23.0 9772.0
s38584 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.0 5.0 5.0 26.0 19253.0
Average 13.8 30.8 10.8 1.5 0.7 4.5 6.6 8.8 0.0 5.0 5.4 24.6 3104.0

5 gates for replacement. With increasing the size of the circuits, more number of gates are generally
chosen for replacement in the dependent and parametric selection. On the other hand, the power
overhead considerably reduces when the size of the circuit increases. For example, s641 benchmark
only consists of 287 gates and 5, 4, and 18 gates are replaced with STT-based LUTs in independent,
dependent, and parametric selections, respectively. Due to the small size of the circuit, the power
overhead is relatively high, i.e. 9.4%, 5.6%, and 22.98% for independent, dependent, and parametric
selections, respectively. On the opposite, s38584 benchmark consists of 19,253 gates, and 5, 5, and
26 gates are replaced with STT-based LUTs in independent, dependent, and parametric selections,
respectively. While there is a considerable increase in the number of replaced gates, these incur
only a small power overhead, 0.03%, 0.02%, and 0.1% for independent, dependent, and parametric
selections.
The last column of Table 4 indicates the number of gates in the circuits excluding the number

of flip-flops. Columns 8 to 10 of Table 4 presents the percentage of incurred area overhead. The
results clearly indicate that the area overhead significantly reduces with increasing the size of
the circuit. Collectively analyzing results in Table 4 reveals that with increasing the size of the
circuit, it is possible to insert more number of STT-based LUTs with no or very negligible impact
on performance, power, and area. Figure 9 shows the number of possible required test clocks to
determine the missing gates using the machine learning attacks. The results signify that even for
small circuits the number of required test clocks for the parametric-aware selection is significantly
high so that it would take more than 1000 years assuming one billion pattern application per second
to correctly resolve a hybrid STT-CMOS circuit using modern testing equipment. Figure 9 only
shows the estimated time to brute-force the solution for sequential benchmarks, as the formula
uses the number of flip-flops in a given path as an input.
With the new Synopsys-based analysis, the CPU time for each gate selection is less than the

amount of time it takes to run Synopsys for the circuit. Based on this, it can be concluded that
selecting gates for replacement in large industrial circuits can be performed in a small fraction of
time.

7 CONCLUSIONS
To prevent design reverse engineering, we introduced a novel security-driven hybrid STT-CMOS
design flow that is very low cost and add almost minimal/no change to the standard VLSI IC
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design flow, making it a suitable solution for IoT market where cost is a prime concern. The
flow does completely match the current in-practice industry standard design flow, using industry
standard tools like Synopsys Design Compiler to aid in the selection of gates to replace with LUTS,
and makes it possible to introduce security measure in the early stage of circuit design. With
introducing three novel selection and replacement algorithms, i.e. independent, dependent, and
parametric-aware dependent selections, a selected number of CMOS gates from a synthesized gate-
level netlist are replaced with reconfigurable non-volatile STT-based LUTs counterparts based on
the required security demands and design parametric constraints. Results on standard benchmarks
showed significant resiliency of hybrid STT-CMOS circuits against the reverse engineering attack.
Further, we showed that applying these techniques to relatively small combinational circuits renders
satisfiability attacks, as described in recent work, computationally infeasible. Meanwhile, the impact
of STT-based LUTs on design parametric constraints including area, power, and performance has
shown to be negligible for large circuits. Furthermore, it has shown that the proposed methods are
computationally inexpensive where selecting CMOS gates for replacement takes less than a minute
even for large circuits.

REFERENCES
Tigist Abera, N Asokan, Lucas Davi, Farinaz Koushanfar, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016.

Things, trouble, trust: on building trust in IoT systems. In Proceedings of the 53rd Annual Design Automation Conference.
ACM, 121.

B. Alex and et al. 2010. Preventing IC privacy using reconfigurable logic barriers. (IEEE Design & Test of Computers). 66–75.
Darya Almasi, Houman Homayoun, Hassan Salmani, and Hamid Mahmoodi. 2016. Comparative analysis of hybrid Magnetic

Tunnel Junction and CMOS logic circuits. In System-on-Chip Conference (SOCC), 2016 29th IEEE International. IEEE,
259–264.

R. Anderson. 2008. Security Engineering: A Guide to Building Dependable Distributed Systems, Physical Tamper Resistance.
(2008).

Adarsh Reddy Ashammagari, Hamid Mahmoodi, and Houman Homayoun. 2014a. Exploiting STT-NV technology for
reconfigurable, high performance, low power, and low temperature functional unit design. In Proceedings of the conference
on Design, Automation & Test in Europe. European Design and Automation Association, 335.

Adarsh Reddy Ashammagari, Hamid Mahmoodi, Tinoosh Mohsenin, and Houman Homayoun. 2014b. Reconfigurable
STT-NV LUT-based functional units to improve performance in general-purpose processors. In Proceedings of the 24th
edition of the great lakes symposium on VLSI. ACM, 249–254.

A Attaran, H Salmani, H Homayoun, and H Mahmoodi. 2016. Dynamic single and Dual Rail spin transfer torque look up
tables with enhanced robustness under CMOS and MTJ process variations. In IEEE 34th International Conference on
Computer Design (ICCD). IEEE, 348–351.

Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno. 2010. Preventing IC piracy using reconfigurable logic barriers.
IEEE Design & Test of Computers 27, 1 (2010).

Franc Brglez, David Bryan, and Krzysztof Kozminski. 1985. Neutral netlist of ten conmbinational benchmark circuits and a
target translator in FORTRAN. In Special session on ATPG and fault simulatio, Proc. IEEE Int. Symp. Circuits and Systems.

Franc Brglez, David Bryan, and Krzysztof Kozminski. 1989. Combinational profiles of sequential benchmark circuits. In
Circuits and Systems (IEEE International Symposium).

Rajat Subhra Chakraborty and Swarup Bhunia. 2009. HARPOON: an obfuscation-based SoC design methodology for
hardware protection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28, 10 (2009),
1493–1502.

DARPA. 2014. Supply chain hardware integrity for electronics defense (SHIELD). Microsystems Technology Office/MTO
Broad Agency Announcement Defense Advanced Research Projects Agency (DARPA).

Jaya Dofe, Qiaoyan Yu, Hailang Wang, and Emre Salman. 2016. Hardware security threats and potential countermeasures in
emerging 3D ICs. In Great Lakes Symposium on VLSI, 2016 International. IEEE, 69–74.

Mohamed El Massad, Siddarth Garg, and Mahesh Tripunitara. 2015. Integrated Circuit (IC) Decamouflaging: Reverse
Engineering Camouflaged ICs within Minutes (NDSS Symposium).

Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. 2015. Integrated Circuit (IC) Decamouflaging: Reverse
Engineering Camouflaged ICs within Minutes.

D. Evans. 2011. he Internet of Things How the Next Evolution of the Internet Is Changing Everything. In CISCO White
Paper.

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.



0:20 Winograd, T. et al

S. Giordano and et al. 2013. Thermal effects in magnetoelectric memories with stress-mediated switching. J of Applied
Physics 46, 32 (2013).

U. Guin and et al. 2014. Counterfeit Integrated Circuits: Detection, Avoidance, and the Challenges Ahead. Journal of
Electronic Testing.

Xiaochen Guo, Engin Ipek, and Tolga Soyata. 2010. Resistive computation: avoiding the power wall with low-leakage,
STT-MRAM based computing. ISCA (2010).

Benjamin Hill, Robert Karmazin, Carlos Tadeo Ortega Otero, Jonathan Tse, and Rajit Manohar. 2013. A split-foundry
asynchronous FPGA. In Custom Integrated Circuits Conference (CICC), 2013 IEEE. IEEE, 1–4.

Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V Tripunitara. 2013. Securing Computer Hardware Using 3D
Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation.

Hadi Mardani Kamali, Kimia Zamiri Azar, Kris Gaj, Houman Homayoun, and Avesta Sasan. 2018. LUT-Lock: A Novel
LUT-based Logic Obfuscation for FPGA-Bitstream and ASIC-Hardware Protection. arXiv preprint arXiv:1804.11275
(2018).

S. Koley and P. Ghosal. 2015. Addressing Hardware Security Challenges in Internet of Things: Recent Trends and Possible
Solutions. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic
and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated
Workshops (UIC-ATC-ScalCom).

Ragh Kuttappaa, Houman Homayoun, Hassani Salmani, and Hamid Mahmoodi. 2016a. Comparative analysis of robustness
of spin transfer torque based look up tables under process variations. In Microelectronics Reliability Volume 62. Elsevier,
156–166.

Ragh Kuttappaa, Houman Homayoun, Hassani Salmani, and Hamid Mahmoodi. 2016b. Reliability analysis of spin transfer
torque based look up tables under process variations and NBTI aging. In Microelectronics Reliability Volume 62. Elsevier,
156–166.

Siew-Kei Lam, Christopher T Clarke, and Thambipillai Srikanthan. 2012. Exploiting FPGA-aware merging of custom
instructions for runtime reconfiguration. IEEE ReCoSoC 2012 (2012), 1–8.

Jeremy Lee, M Tebranipoor, and Jim Plusquellic. 2006. A Low-Cost Solution for Protecting IPs Against Scan-Based Side-
Channel Attacks (VTS ’06). 94–99.

J. M. Lewis and et al. 2012. Self-modifying FPGA for anti-tamper applications. (April 17 2012). US Patent 8,159,259.
Bao Liu and Brandon Wang. 2014a. Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks.

In Proceedings of the conference on Design, Automation & Test in Europe. European Design and Automation Association,
243.

Bao Liu and Brandon Wang. 2014b. Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks.
In Proceedings of the conference on Design, Automation & Test in Europe. European Design and Automation Association,
243.

Bao Liu and Brandon Wang. 2015. Reconfiguration-based VLSI design for security. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 5, 1 (2015), 98–108.

Duo Liu, Cunxi Yu, Xiangyu Zhang, and Daniel Holcomb. 2016. Oracle-guided incremental SAT solving to reverse engineer
camouflaged logic circuits. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe. EDA Consortium,
433–438.

Hamid Mahmoodi, Sridevi Srinivasan Lakshmipuram, Manish Arora, Yashar Asgarieh, Houman Homayoun, Bill Lin, and
Dean M Tullsen. 2014. Resistive computation: A critique. IEEE Computer Architecture Letters 13, 2 (2014), 89–92.

Adam Makosiej, Olivier Thomas, Amara Amara, et al. 2013. CMOS SRAM scaling limits under optimum stability constraints.
IEEE ISCAS 2013 (2013), 1460–1463.

M. E. Massad and et al. 2015. Integrated Circuit (IC) Decamouflaging: Reverse Engineering Camouflaged ICs within Minutes.
Carlos Tadeo Ortega Otero, Jonathan Tse, Robert Karmazin, Benjamin Hill, and Rajit Manohar. 2015. Automatic obfuscated

cell layout for trusted split-foundry design. In Hardware Oriented Security and Trust (HOST), 2015 IEEE International
Symposium on. IEEE, 56–61.

Nisarg Patel, Avesta Sasan, and Houman Homayoun. 2017. Analyzing hardware based malware detectors. In Proceedings of
the 54th Annual Design Automation Conference 2017. ACM, 25.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. 2012a. Security analysis of logic obfuscation. In
Proceedings of the 49th Annual Design Automation Conference. ACM, 83–89.

Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri. 2012b. Security analysis of logic obfuscation. In
Proceedings of the 49th Annual Design Automation Conference. ACM, 83–89.

Mitchelle Rasquinha, Dhruv Choudhary, Subho Chatterjee, Saibal Mukhopadhyay, and Sudhakar Yalamanchili. 2010. An
energy efficient cache design using Spin Torque Transfer (STT) RAM. ACM/IEEE ISLPED 2010 (2010), 389–394.

F. Ren and D. Markovic. 2010. True energy-performance analysis of the MTJ-based logic-in-memory architecture (1-bit full
adder). IEEE T-ED 57, 5 (2010).

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.



Programmable Gates Using Hybrid CMOS-STT Design to Prevent IC Reverse Engineering 0:21

Shervin Roshanisefat, HK Thirumala, Kris Gaj, Houman Homayoun, and Avesta Sasan. 2018. Benchmarking the Capabilities
and Limitations of SAT Solvers in Defeating Obfuscation Schemes. arXiv preprint arXiv:1805.00054 (2018).

Masoud Rostami, Farinaz Koushanfar, Jeyavijayan Rajendran, and Ramesh Karri. 2013. Hardware security: Threat models
and metrics. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press, 819–823.

J.P. Baukus R.P. Cocchi, L.W. Chow and B.J. Wang. 2012. Method and apparatus for camouflaging a standard cell based
integrated circuit with micro circuits and post processing. US Patent, App. 13/370,118.

Hossein Sayadi, Sai Manoj P D, Amir Houmansadr, Setareh Rafatirad, and Houman Homayoun. 2018a. Comprehensive As-
sessment of Run-Time Hardware-SupportedMalware Detection Using General and Ensemble Learning. ACM International
Conference on Computing Frontiers, CF (2018).

Hossein Sayadi, Nisarg Patel, Sai Manoj P D, Avesta Sasan, Setareh Rafatirad, and Houman Homayoun. 2018b. Ensemble
Learning for Effective Run-Time Hardware-Based Malware Detection: A Comprehensive Analysis and Classification.
ACM/IEEE Design Automation Conference, DAC (2018).

Davood Shahrjerdi, Jeyavijayan Rajendran, Siddharth Garg, Farinaz Koushanfar, and Ramesh Karri. 2014. Shielding and
securing integrated circuits with sensors. In Computer-Aided Design (ICCAD), 2014 IEEE/ACM International Conference on.
IEEE, 170–174.

Gaurav Shenoy. 2016. Implementation and Evaluation of SAT-based Attacks on Hybrid STT-CMOS Circuits for Reverse
Engineering. In Master of Science Thesis, George Mason University, Fairfax Virginia.

Clinton W Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gurumurthi, and Mircea R Stan. 2011. Relaxing
non-volatility for fast and energy-efficient STT-RAM caches. In High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on. IEEE, 50–61.

D. Suzuki. 2009. Fabrication of a nonvolatile lookup-table circuit chip using agneto/semiconductor-hybrid structure for an
immediate-power-up field programmable gate array. Symposium on VLSI (2009).

M. Tehranipoor and et al. 2014. Hardware Trojans and Counterfeit Detection.
Theodore Winograd, Hassan Salmani, Hamid Mahmoodi, Kris Gaj, and Houman Homayoun. 2016. Hybrid stt-cmos designs

for reverse-engineering prevention. In Proceedings of the 53rd Annual Design Automation Conference. ACM, 88.
Jacob Wurm, Khoa Hoang, Orlando Arias, Ahmad-Reza Sadeghi, and Yier Jin. 2016. Security analysis on consumer and

industrial iot devices. In Design Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific. IEEE, 519–524.
Kan Xiao, Domenic Forte, and Mark Mohammed Tehranipoor. 2015. Efficient and secure split manufacturing via obfuscated

built-in self-authentication. In Hardware Oriented Security and Trust (HOST), 2015 IEEE International Symposium on. IEEE,
14–19.

Teng Xu, James B Wendt, and Miodrag Potkonjak. 2014. Security of IoT systems: Design challenges and opportunities. In
Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, 417–423.

Bo Yang, Kaijie Wu, and Ramesh Karri. 2006. Secure scan: A design-for-test architecture for crypto chips. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 25, 10 (2006), 2287–2293.

Kun Yang, Domenic Forte, andMarkMTehranipoor. 2015. Protecting endpoint devices in IoT supply chain. InComputer-Aided
Design (ICCAD), 2015 IEEE/ACM International Conference on. IEEE, 351–356.

L. Yuan and et al. 2006. VLSI Design IP Protection: Solutions, New Challenges, and Opportunities. 469–476.
Weisheng Zhao, Eric Belhaire, Claude Chappert, and Pascale Mazoyer. 2009. Spin transfer torque (STT)-MRAM–based

runtime reconfiguration FPGA circuit. ACM Transactions on Embedded Computing Systems (TECS) 9, 2 (2009), 14.
March 2009June 2009

Received February 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.


	Abstract
	1 Introduction
	2 Previous Work
	3 STT Technology
	4 Design lookup table based reconfigurable logic in STT technology
	5 Security and STT Technology
	5.1 Algorithms
	5.2 Resistance to Attacks

	6 Results
	7 Conclusions
	References

