
Ensemble Learning for Effective Run-Time Hardware-Based
Malware Detection: A Comprehensive Analysis and Classification

Hossein Sayadi, Nisarg Patel, Sai Manoj P D, Avesta Sasan, Setareh Rafatirad, Houman Homayoun
George Mason University, Fairfax, VA, USA 22030

{hsayadi, npatel33, spudukot, asasan, srafatir, hhomayou}@gmu.edu

ABSTRACT
Malware detection at the hardware level has emerged recently as a
promising solution to improve the security of computing systems.
Hardware-based malware detectors take advantage of Machine
Learning (ML) classifiers to detect paern of malicious applications at
run-time. ese ML classifiers are trained using low-level features such
as processor Hardware Performance Counters (HPCs) data which are
captured at run-time to appropriately represent the application
behaviour. Recent studies show the potential of standard ML-based
classifiers for detecting malware using analysis of large number of
microarchitectural events, more than the very limited number of HPC
registers available in today’s microprocessors which varies from 2 to
8. is results in executing the application more than once to collect
the required data, which in turn makes the solution less practical for
effective run-time malware detection. Our results show a clear trade-
off between the performance of standard ML classifiers and the number
and diversity of HPCs available in modern microprocessors. is paper
proposes a machine learning-based solution to break this trade-off to
realize effective run-time detection of malware. We propose ensemble
learning techniques to improve the performance of the hardware-
based malware detectors despite using a very small number of
microarchitectural events that are captured at run-time by existing
HPCs, eliminating the need to run an application several times. For this
purpose, eight robust machine learning models and two well-known
ensemble learning classifiers applied on all studied ML models (sixteen
in total) are implemented for malware detection and precisely
compared and characterized in terms of detection accuracy,
robustness, performance (accuracy×robustness), and hardware
overheads. e experimental results show that the proposed ensemble
learning-based malware detection with just 2 HPCs using ensemble
technique outperforms standard classifiers with 8 HPCs by up to 17%.
In addition, it can match the robustness and performance of standard
ML-based detectors with 16 HPCs while using only 4 HPCs allowing
effective run-time detection of malware.

KEYWORDS
Malware Detection, Hardware Performance Counters, Ensemble
Learning

1. INTRODUCTION
Malware is a piece of code designed to perform various malicious
activities, such as destroying the data, stealing information, running
destructive or intrusive programs on devices to perform Denial-of-

Service (DoS) aack, and gaining root access without the consent of
user. According to a 2017 McAfee threats report [12], 57.6 million new
malware samples have been recorded in the third quarter of 2017, an
all-time highest number with an increase of 10% from the second
quarter. Furthermore, the overall counts of new malware samples grew
by 27% in 2017 to 781 million samples. e recent proliferation of
computing devices in mobile and Internet-of-ings domains further
exacerbates the malware aacks and calls for effective malware
detection techniques.

Malware detection can be simplified as a binary classification
problem regardless of what detection method is being used. It is
basically envisioned as distinguishing whether the running application
has malicious intent or not. Traditional malware detection approaches
such as signature-based detection and semantics-based anomaly
detections are considered as soware-based solutions and incur
significant computational overheads [10]. Recent studies have
demonstrated that malware behavior can be differentiated from benign
applications by classifying anomalies in the low-level feature spaces
such as microarchitectural events collected by Hardware Performance
Counter (HPC) registers [3,4,5,11,13,15,16,24]. HPCs are CPU hardware
registers that count hardware events such as instructions executed,
cache-misses suffered, or branches mispredicted. Performance
counters data have been extensively used to predict the power,
performance, and energy efficiency of computing systems [14,20,22],
and recently drew aentions to be used for detecting the malicious
paern of running applications to improve the security of systems.
us, malware detection using HPCs microarchitectural events has
emerged as a promising alternative to traditional malware detection
methods [3,4,11,13,24]. As learning the underlying paerns of these
microarchitectural events can aid in detecting malware, machine
learning (ML) techniques are widely deployed for malware detection.
e HPC microarchitectural features are used to train ML-based
classifiers. In addition, such ML-based malware detection methods can
be implemented in microprocessor hardware with significantly low
overhead as compared to the soware-based methods, as detection
inside the hardware is very fast (few clock cycles) [4].

Recently, there has been a number of work on hardware-based
malware detection using HPCs information [3,4,11,13,14,24]. However,
these works performed a limited study on malware classification
accounting for the availability of a large number (e.g. 16 or 32) and
diverse type of HPCs. While, modern processors in the high-
performance domain have a small number of HPCs (2 to 8), due to
several reasons including the design complexity and cost of concurrent
monitoring of microarchitectural events [17,21,23]. Due to deep
pipelines, complex prefetchers, branch predictors, modern cache
design etc., HPCs implementation becomes a great challenge in terms
of counting multiple events and maintaining counter accuracy at the
same time under speculative execution [17]. Beer accuracy requires
beer and more complex hardware design hence increasing the
number of counters with limited accuracy doesn't appear to be a good
trade-off. Even modern Intel Xeon architectures houses only 4-6
performance counters, compare to 2 in Pentium 4 and server class Intel

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
DAC '18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06…$15.00
https://doi.org/10.1145/3195970.3196047

Atom processor, for the very same reason. For embedded mobile and
IoT domains, the number of HPCs that can be accessed simultaneously
is even smaller.

erefore, collecting a variety of microarchitectural events, more
than the number of available HPCs, to achieve high accuracy using the
general ML models presented in prior work, requires running the
application multiple times, since the hardware can only count a small
subset of events concurrently. is approach is not practical for run-
time detection of malware. In addition, previous studies, mostly focus
on specific learning classifiers and limited types of malware [3,11,13].
A quantitative comparison of these studies indicates that there is no
unique classifier that delivers the best results across various metrics
including performance (accuracy and robustness) and area overhead as
well as detection delay and various classes of malware.

As the performance of malware detection depends on the type of
ML classifier applied and the number and type of HPC events used, in
this work, we first illustrate the impact of ML classifier type on
malware detection accuracy and performance and the effect of number
of HPC events for malware detection. To achieve a high accuracy
across all studied general ML classifiers, of more than 80%, at least 16
hardware performance counters are required, which as discussed is not
available in modern processors, even in the high-performance domain,
making run-time detection of malware impractical using these
methods. erefore, a key challenge in making the hardware-based
malware detection a practical run-time solution is how to use a limited
number of HPCs available in a microprocessor (for instance 2 or 4) and
match the accuracy and performance of malware detection with the
ones that can be achieved by a larger number of HPC events (for
instance 16 or 32). In this work, we address this challenge by proposing
ensemble learning techniques to improve the accuracy and
performance of the hardware-based malware detectors and break the
trade-off between accuracy/performance with respect to the number of
HPCs. We explore the effectiveness of ensemble learning models in 1)
reducing the number of required performance counters for
implementing effective ML classifiers for run-time malware detection
and 2) improving the performance of weak but low-cost classifiers in
malware detection with a small number of HPCs.

e remainder of this paper is organized as follows. e
background of ensemble learning is briefly described in section 2. e
proposed hardware-based malware detection framework and
experimental setup details are discussed in Section 3. Section 4
presents the experimental results and provides a comprehensive
analysis of different malware detectors across various metrics. en,
we present the state-of-the-art works on HMD in section 5. Finally,
Section 6 presents the conclusion of this study.

2. ENSEMBLE LEARNING
Ensemble learning is a branch of machine learning which is used to
improve the accuracy and performance of general ML classifiers by

generating a set of base learners and combining their outputs for final
decision. It fully exploits complementary information of different
classifiers to improve the decision accuracy and performance. e
ensemble learning, and joint decision procedure are widely used to
devise learning methods to achieve more accurate predictions and
stronger generalization performance. In this work, we deploy and
analyze the effectiveness of two ensemble learning methods for
efficient malware detection even with less number of HPCs. ese
ensemble methods are briefly described in below:

Boosting is one of the most commonly used ensemble learning
methods for enhancing the performance of ML algorithms. Adaptive
Boosting, or in short AdaBoost [18], is the first proposed
implementation of this type of ensemble learners. Figure 1-a illustrates
the AdaBoost methodology. As shown, each base classifier is trained
on a weighted form of the training dataset in which the weights depend
on the performance of the previous base ML classifier. Once all the
base classifiers are trained, they will be combined to produce the final
classifier. Each training instance in the dataset is weighted and the
weights are updated based on the overall accuracy of the model and
whether an instance was classified correctly or not. Subsequent models
are trained and added until a minimum accuracy is achieved or no
further improvement is possible. In this work, we applied AdaBoost as
a boosting learning technique on all studied general ML classifiers to
analyze its impact on the accuracy and performance improvement of
hardware-based malware detection.

Bagging, or Bootstrap Aggregation [19] is an ensemble learning model
that is used for classification and regression problems. It is a statistical
prediction technique where a statistical value like a mean is estimated
from multiple random samples of training data which are drawn with
replacement and used to train different ML models. Each model is then
exploited to make a prediction and the results are averaged to give a
more robust and generalized prediction. Figure 1-b illustrates the
overview of bagging model. Bagging is a technique that is best used
with models with low bias and high variance, in which the predictions
of base learners are highly dependent on the data from which they
were trained. erefore, it is most suited for our purpose, given the
wide variation in ML classifier performance as we will show later in
this work. e most used algorithm for bagging that fits the
requirement of high variance are decision trees [19].

Figure 2: e overview of proposed hardware-based malware detection approach

Training Applications
(Malware/Benign)

Feature
Extraction

Capturing
HPCs via
Perf Tool

Feature
Reduction

ML Binary
Classifiers

General vs. Ensemble Learners

Predictive
Models

Malware vs. Benign
Classification

Correlation Analysis &
Attribute Evaluation

Feature Scoring

1

2

HW Performance
Counters

1. General

2. AdaBoost

3. Bagging

BayesNet J48

JRip MLP

OneR REPTree

SGD SMO

Malware

Benign

Benign

Malware

Figure 1: Ensemble learning block diagrams a) AdaBoost, b) Bagging

(a) (b)

3. MALWARE DETECTION FRAMEWORK
In this section, we present the details of our proposed run-time
hardware-based malware detection approach.

3.1 Experimental Setup and Data Collection
is section provides the details of the experimental setup and data
collection procedure. We run all applications on an Intel Xeon X5550
machine running Ubuntu 14.04 with Linux 4.4 Kernel and collect
various HPCs data. is processor is based on Intel’s Nehalem design,
providing four performance counter registers. In order to extract the
HPC information, we use Perf tool available under Linux. Perf provides
rich generalized abstractions over hardware specific capabilities. It
exploits perf_event_open function call in the background which can
measure multiple events simultaneously. We have executed more than
100 benign and malware applications for HPC data collection. Benign
applications include MiBench benchmark suite [6], Linux system
programs, browsers, text editors, and word processor. For malware
applications, Linux malware is collected from virustotal.com [1].
Malware applications include Linux ELFs, python scripts, perl scripts,
and bash scripts, which are created to perform malicious activities.
Aer collecting microarchitectural events using Perf, we use WEKA
tool [7] for evaluating the accuracy and performance of various
machine learning classifiers.

Figure 2 depicts the overview of the proposed hardware-based
malware detection approach and training the ML classifiers for
predicting the malicious behavior of applications. It is primarily
composed of various stages including feature extraction, feature
reduction, and ML classifiers (general and ensemble) implementation
for malware detection which will be discussed in more details in
sections 3.2 and 3.3. HPC information is collected by executing all
applications in Linux Containers (LXC) which is an isolated
environment [8]. LXC is an operating system level virtualization
method that shares the same kernel with the host operating system. In
this work, LXC is chosen over other commonly available virtual
platforms such as VMWare or VirtualBox since it provides access to
actual performance counters data instead of emulating HPCs. We
extracted 44 CPU events available under Perf tool. Since Intel Xeon has
only 4 counter registers available [9], we can only measure 4 events at
a time. As a result, multiple runs are required to fully capture all events.
We divide 44 events into 11 batches of 4 events and run each
application 11 times at sampling time of 10ms to gather all
microarchitectural events. Running malware inside the container can
contaminate the environment which may affect subsequent data
collection. To ensure that there is no contamination in collected data
due to the previous run, the container is destroyed aer each run.

3.2 Feature Selection
As mentioned earlier, detecting malware using machine learning
models requires representing programs at low microarchitectural level.
is process produces very high dimensional dataset. Running ML
algorithms with large HPCs would be complex and slow. Besides,
incorporating irrelevant features would result in lower accuracy for
the classifier [24]. erefore, instead of accounting for all captured

features, irrelevant data is identified and removed using a feature
reduction algorithm and a subset of HPCs is selected that includes the
most important features for classification. e features are supplied to
each learning algorithm and the learning algorithm aempts to find a
correlation between the feature values and the application behavior to
predict the malware or benign type.

As discussed, the key aspect of building an accurate detector is
finding the right features to characterize the input data. We started
from 44 performance counters. As shown in Figure 2, aer feature
extraction, the feature reduction process reduces the number of low-
level features. We first use Correlation Aribute Evaluation on our
training set under WEKA to monitor the most vital microarchitectural
parameters to capture application characteristics. Next, the features
are scored based on their importance and relevance to the target
variable through the feature scoring process. By applying the feature
reduction method, the sixteen most related hardware performance
counters are determined and numbered in order of importance for
malware detection. ese HPCs are listed in Table 1. ey are included
in our prediction model as input parameters. e selected features
include HPCs representing pipeline front-end, pipeline back-end,
cache subsystem, and main memory behaviors influential in the
performance of standard applications.

3.3 Training & Testing the Malware Detectors
In this section, we describe the details of training and testing the ML
classifiers for malware detection. Training involves profiling the
incoming application with Perf tool under Linux and extracting low-
level feature values for each training program, reducing the extracted
features to the most vital performance counters, and developing a
learning model from the training data. It is important to note that the
input variables in our classifiers are the HPCs extracted every 10ms
interval from the running applications, and the output variable is the
class (malware vs. benign) of an application. For each ML classifier, we
construct the general and ensemble models (AdaBoost and Bagging) to
detect the malware. In order to validate each of the utilized ML
classifiers, a standard 70%-30% dataset split for training and testing is
followed. To ensure a non-biased spliing, 70% benign- 70% malware
application for training (known applications) and 30% benign-30%
malware applications for testing (unknown applications) are used.

4. EXPERIMENTAL RESULTS
In this section, we present the evaluation results for different machine
learning classifiers. We thoroughly compare these learning techniques

Figure 3: Accuracy results for various ML classifiers with varying number of HPCs

Table 1: Hardware performance counters in order of importance

Hardware Performance Counters
1- branch_instructions 2- branch_loads 3- iTLB_load_misses
4- dTLB_load_misses 5- dTLB_store_misses 6- L1_dcache_stores

7- cache_misses 8- node_loads 9- dTLB_stores
10- iTLB_loads 11-L1_icache_load_misses 12- branch_load_misses
13- branch_misses 14- LLC_store_misses 15- node_stores

16-L1_dcache_load-misses

Ac
cu

ra
cy

 (%
)

MLP

in terms of the prediction accuracy, robustness, performance, and the
hardware implementation costs.

4.1 Detection Accuracy
To evaluate the detection accuracy of our malware classifiers, we
calculate the percentage value of samples that are correctly classified.
Figure 3 shows a comprehensive accuracy comparison of various ML
classifiers (general and ensemble) used for malware detection. We have
implemented 8 general ML classifiers and two ensemble learning
techniques and calculated their accuracy in classifying malware and
benign applications. e accuracy of malware detection with different
number of hardware performance counters (16, 8, 4 and 2) are reported.
Before feature reduction (16 HPCs), most ML classifiers perform well,
mostly providing above 80% accuracy. Feature reduction has noticeable
impact on the accuracy of several classifiers. However, OneR classifiers
perform well even aer feature reduction. e reason that OneR
classifier is not affected by feature reduction and shows almost
constant accuracy results is that it only selects one performance
counter (branch_instructions) to predict the malware behavior.

As can be seen in Figure 3, in some classifiers like BayesNet, JRip,
OneR, REPTree, and SMO by reducing the number of hardware
performance counters to 2 or 4 and applying ensemble learning
techniques, a higher or similar accuracy level to 8/16 HPC models is
achieved. is interesting observation confirms the effectiveness of
using ensemble learning to boost the accuracy of classifiers. For
instance, as shown, REPTree achieves close to 88% accuracy with 16
HPCs. However, we observe that reducing the number of vital
performance counters to 2 and applying AdaBoost ensemble technique
result in achieving almost the same 88% accuracy, as with 16 HPCs.

4.2 Classification Robustness
To evaluate the accuracy and robustness of ML classifiers in detecting
malware, Receiver Operating Characteristics (ROC) graphs are used.
e ROC curve is produced by ploing the fraction of true positives
versus the fraction of false positives for a binary classifier as the
threshold changes. e best possible classifier would thus yield a point
in the upper le corner or coordinate (0,1) of the ROC space,
representing 0% false positives and 100% true positives.

We use the Area Under the Curve (AUC) measure for ROC curve
in the evaluation process to examine the robustness of each ML
classifier. e area under the ROC curve corresponds to the probability
of correctly identifying which application is “malware” and which is
“benign”. In other words, the AUC measure is more related to the
robustness of the classifier. In this work, robustness term is referred to
how well the classifier distinguishes between binary malware and
benign classes, for all possible threshold values. e AUC value of the
best possible classifier is equal to 1, which means that we can find a
discrimination threshold under which the classifier obtains 0% false
positives and 100% true positives. Table 2 presents the list of the area
under the ROC graphs values for each ML general and ensemble
classifier with varying number of HPCs. It primarily presents the
values for the ROC curves resulted from all comparisons between the

general and ensemble-based detectors. A higher AUC value means that
the ROC graph is closer to the optimal threshold and the classifier is
performing beer in terms of classification of malware and benign
applications. Area under the curve analysis provides valuable insights
to select possibly optimal ML classifiers suitable for malware detection
and to discard the suboptimal detectors.

Figure 4 depicts the ROC curves for two different ensemble
learning models and different number of performance counters. Due to
space limitation, here we present the ROC graphs for selected ML
classifiers and show the impact of ensemble learning techniques on
AUC robustness. In Figure 4-a, the ROC graphs for 4 ML classifiers
improved by Bagging ensemble learner are shown which were
developed with 4 performance counters. As can be seen in this figure
as well as Table 2, the BayesNet and JRip classifiers have maximum
AUC of 0.937 and 0.932, respectively, delivering best robustness with
only 4 performance counters. Figure 4-b represents the AdaBoost
technique effectiveness on two different detectors when reducing the
number of HPCs from 8 to 2. As shown, for each classifier boosting
model significantly improve the AUC of ROC curve making the ML
classifier more effective in terms of classification robustness.

4.3 Performance of Malware Detection
In order to evaluate and compare the performance of malware
detectors, we consider the product of accuracy and area under the ROC
graph (ACC*AUC) as a performance metric. is metric combines the
impact of accuracy and robustness in malware classification and
concurrently accounts for both measures. We accounted for
performance as a final comparison metric across various ML classifiers
since it is a more comprehensive measure by considering both impacts
of the detection accuracy and AUC values. Figure 5 illustrates the
ACC*AUC results of various ML classifiers under a varying number of
hardware performance counters.

As can be seen in the results, most of the classifiers such as JRip,
J48, Multi-Layer Perceptron (MLP), and SMO deliver higher
performance when they are supplied with 16 and 8 performance
counters and by decreasing the number of performance counters, the
performance of general ML classifiers decreases showing the potential
for applying ensemble learning techniques to boost the accuracy and
performance with fewer performance counters. For instance, in SMO
classifier by reducing the number of performance counters to 4 and 2
and applying AdaBoost ensemble technique, we achieve 16% and 17%
performance improvement, respectively. In REPtree classifier, 2HPC-

Table 2: AUC values for various general and ensemble detectors

Classifier 16HPC 8HPC 4HPC
4HPC-
Boosted

4HPC-
Bagging

2HPC
2HPC-
Boosted

2HPC-
Bagging

BayesNet 0.92 0.92 0.92 0.92 0.94 0.92 0.87 0.93
J48 0.88 0.88 0.81 0.94 0.85 0.81 0.92 0.82
Jrip 0.86 0.86 0.81 0.88 0.93 0.81 0.93 0.88
MLP 0.9 0.9 0.89 0.92 0.86 0.9 0.93 0.87
OneR 0.81 0.81 0.81 0.9 0.87 0.81 0.9 0.87
REPTree 0.85 0.85 0.81 0.85 0.88 0.81 0.92 0.91
SGD 0.74 0.74 0.72 0.89 0.74 0.71 0.71 0.71
SMO 0.65 0.65 0.65 0.88 0.85 0.68 0.89 0.83

Figure 4: ROC graphs for a) 4HPC-Bagging, b) 8HPC vs. 2HPC-Boosted

8HPC-JRip

2HPC-Boosted-JRip

8HPC-OneR

2HPC-Boosted-OneR

Boosted detector is achieving 11% improvement in ACC*AUC measure
as compared to the general ML classifier with 8 performance counters.
JRip classifier achieves 10% performance improvement by applying
boosting method and 7% improvement with Bagging technique with
the use of only 4 performance counters compared to using 8 HPCs.

e results clearly confirm the effectiveness of using ensemble
techniques for performance improvement of ML classifiers with a
lower number of HPCs for malware detection. e key point here is
that rather than extracting 16 or 8 hardware performance counter
which definitely impose significant implementation cost overhead to
the systems in terms of resource utilization and power consumption, it
is more effective to alternatively collect lower number of HPCs (four
or two), depending on the classifier type, and boost the performance of
the ML classifier with one of the ensemble learning approaches to
improve the accuracy as well as the robustness of malware detectors.

4.4 Hardware Implementation
e soware implementation of ML classifiers for malware detection
is slow in the range of tens of milliseconds which is an order of
magnitude higher than the latency needed to capture the malware at
run-time [4]. erefore, in this paper, we develop a hardware
implementation of the general and ensemble learning detectors. We
use Vivado HLS compiler to develop the HDL implementation of the
classifiers and deploy on Xilinx Virtex 7 FPGA. FPGA is a target in our
study, as few modern microprocessors have on-chip FPGAs available
for programmable logic implementation. Such arrangement makes it
feasible to implement reprogrammable low-level malware detection
logic (ML model) which can detect malware by reading the CPU
hardware performance counters through shared memory bus. When it
comes to choosing the ML classifiers for hardware implementation, the
accuracy of an algorithm is not the only parameter in decision-making.
Design area and response time (latency) overhead of ML classifiers also
plays a key role in selecting the cost-efficient hardware solution.
While complex algorithms such as Neural Networks can deliver high
accuracy, they will also add significant overhead in terms of hardware
implementation cost. Also given their complexity, they can be slow in
detecting malware.

In order to compare hardware implementation costs, in Table 3, we
report the results for general classifiers using 8 HPCs and boosting

ensemble method (AdaBoost) applied on each classifier using 4 and 2
most important HPCs. Latency unit is represented in terms of the
number of clock cycles (cycles @10 ns) required to classify input
vector. In order to compare the area overhead of the implemented
hardware-based ML classifiers, we consider the OpenSPARC (FPGA)
implementation as reference and calculate the area overhead relative
the core size. e area is the total number of utilized LUTs, FFs, and
DSP units inside Virtex 7 FPGA. As can be seen from Table 3, the Multi-
Layer Perceptron algorithm, as expected, results in a significant area
and latency overhead, as compared to other learning methods.

e ensemble learning introduces area overhead for some
classifiers. However, the introduced overhead is less than 3% compared
to the general ML classifiers using 8 HPCs for malware detection. In
addition, in some other classifiers we observe that by using ensemble
learning with a lower number of performance counters, the area
overhead is significantly reduced, compared to the general classifiers
using 8 HPCs. For instance, as reported in the previous section, the
Boosted-MLP with 2 HPCs gains 5% performance improvement, while
as shown in Table 3, it interestingly shows close to 19% area reduction
in 2 HPC case and only 0.6% increase in 4 HPCs which is negligible, as
compared to the general detectors with 8 HPCs. Ensemble learning
algorithms generate models according to the data sets given and
configuration of the algorithm. We observe that some algorithms do
not see reduction in area from 4 HPCs to 2 HPCs. is is because such
algorithms generate same number and equally complex models due to
their nature. For instance, JRip-Boosted generates 10 models with 4
HPCs and 10 models with 2 HPCs, hence it is not guaranteed that the
area of the 2 HPCs will be less than 4 HPCs. Because JRIP is a rule-
based learning algorithm and the area highly depends on how many
rules are generated for each model and the 2 HPCs case may have more
rules per model.

To the best of our knowledge, there has been no prior work
available that discusses the area costs for implementing ML classifiers
as a function of HPCs. It can be argued that the number of HPCs can
be increased during design time. However, there are several studies
available such as [17, 21, 23] that discuss and justify the limited number
of HPCs due to complex microarchitecture of modern microprocessors.
Because of deeper pipelines, modern complex cache design and etc.,
implementing the hardware performance counter registers becomes a
challenge issue in terms of counting multiple microarchitectural low-
level features and at the same time maintaining the accuracy, while
achieving higher accuracy requires beer and more complex hardware
design. As a result, increasing the number of HPCs with limited
accuracy doesn't appear to be a good trade-off. Compare to that,
ensemble learning algorithm such as AdaBoost can be easily
implemented on the programmable logic present in modern
heterogeneous microprocessors. Clearly, the results show some trade-
offs between the accuracy, latency, and area overhead. erefore, it is

Figure 5: Performance results (ACC*AUC) for various ML classifiers with varying number of HPCs

 8HPC-General 4HPC-Boosted 2HPC-Boosted
Classifier Latency

@10ns
Area
(%)

Latency
@10ns

Area
(%)

Latency
@10ns

Area
(%)

BayesNet 14 11.5 56 13.6 32 10.9
J48 9 3 67 4.3 35 4.1
SGD 34 4.3 87 6.3 51 5.1
JRip 4 2.5 56 5.3 37 8.2
MultiLperc. 302 61.1 591 61.7 201 42.2
OneR 1 2.1 70 5.1 38 5
REPTree 39 2.9 60 3.9 30 3.7
SMO 34 4.3 87 6.3 51 5.1

Table 3: Hardware implementation results

Pe
rf

or
m

an
ce

 (%
)

MLP

important to compare classifiers by taking all of these parameters into
consideration.

5. RELATED WORK
In this section, we discuss the latest efforts on hardware-based
malware detection. e work in [3] was the first study that proposed
to use hardware performance counters data for malware detection and
demonstrated the effectiveness of offline machine learning algorithms
in malware classification. ey showed high detection accuracy results
for Android malware by applying complex ML algorithms, namely
Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN).
Although they have discussed implementing classifiers on hardware,
they did not present any hardware overhead analysis results. e
hardware implementation overhead, particularly area and latency are
important as they decide which ML classifier responds in real-time and
performs most cost-efficient.

e researchers in [5] and [15] discussed the feasibility of
unsupervised learning method on low-level features to detect Return-
oriented programming (ROP) and buffer overflow aacks by finding an
anomaly in hardware performance counters information. Although
unsupervised algorithms can be more effective in detecting new
malware and aacker evolution, they are complex in nature requiring
more sophisticated analysis, resulting in complex hardware
implementations. Also, their soware implementation is not an
effective solution to detect malware at run-time, due to large latency
to compute the complex algorithms. In a different study in [13], the
authors used sub-semantic features rather than performance counters
to detect malware. Moreover, they suggested changes in
microprocessor pipeline to detect malware in truly real-time nature.
ey discussed estimated latency and area utilization of Logistic and
ANN algorithm implementation for their architecture. However, our
work is different as it does not require any change in the processor
pipeline. e work in [2] collected hardware performance counters to
construct support vector machine (SVM) detectors to identify
malicious programs in real-time. However, they haven’t discussed HW
implementation and analysis of those classifiers.

e work in [11] used logistic regression to classify malware into
different types and trained a specialized classifier for detecting each
type. In their ensemble learning implementation, they limited their
experiments on just combining classifiers. In addition, they have
ignored to account for the impact of reducing the number of HPCs on
the performance of detectors. Our work is different, as we thoroughly
study various ML classifiers from different type to investigate the
effectiveness of each model in malware detection. Moreover, we
explore the effectiveness of different ensemble learning techniques to
boost the accuracy and performance of the malware detectors. e
prior works, mostly focus on a particular learning classifier and limited
type of malware. A quantitative comparison of these works shows that
there is no unique classifier that delivers the best results across various
metrics including performance (accuracy and robustness), area
overhead as well as detection delay and various type of malware. Given
that, in this work we thoroughly examined various general and
ensemble learning techniques in terms of accuracy, robustness,
performance, and hardware implementation costs such as area and
latency.

6. CONCLUSION
Hardware-based detectors rely on machine learning classifiers and use
HPCs information at run-time. A comparison of recent works on ML-
based malware detectors shows that there is no unique general
classifier that delivers the best results in terms of performance
(accuracy and robustness), area overhead as well as detection delay
across various types of malwares. In addition, prior studies mostly
relied on a large number of HPCs to gain high accuracy making them

less practical for run-time detection using very limited number of
HPCs available in modern processors. In this paper, we showed a clear
trade-off between the type and count of HPCs and malware classifier
performance. To achieve a high accuracy and performance of more
than 80% across all studied general ML classifiers, at least 16 HPCs are
required, far beyond 2-8 HPCs available in modern architectures. In
response to this challenge, this paper proposed using ensemble
learning classifiers to boost the performance of general ML classifiers
such that by only using 2-4 HPCs they can match the performance of
8-16 HPCs. e proposed ensemble classifiers are applied on 8 general
ML classifiers and the results are comprehensively evaluated in terms
of accuracy, robustness, performance, and hardware design overhead.
e experimental results show that in all studied cases, boosting
techniques improves the performance of malware detection
classification by up to 17% while using a significantly lower number of
performance counters. Given the implementation cost of on-chip
HPCs and their limited availability and accuracy, the results of this
research will help in making an architectural decision on the number
and types of HPCs needed to implement in future architectures, to
most effectively improve the performance of ML classifiers for
detecting the malicious soware.

REFERENCES
[1] Virustotal intelligence service. hp://www.virustotal. com/ intelligence/. Accessed:

December 2017.
[2] Bahador et al., “Hpcmalhunter: Behavioral malware detection using hardware

performance counters and singular value decomposition”, In IEEE ICCKE, 2014.
[3] J. Demme et al., “On the feasibility of online malware detection with performance

counters”, In ACM SIGARCH Computer Architecture News, Vol. 41, 2013.
[4] N. Patel et al., “Analyzing hardware based malware detectors”, In DAC’17, June 2017.
[5] A. Garcia-Serrano et al., “Anomaly detection for malware identification using

hardware performance counters”, preprint arXiv:1508.07482, 2015.
[6] Guthaus et al., “Mibench: A free, commercially representative embedded benchmark

suite”, In IISWC’01, 2001.
[7] M. Hall et al., “e weka data mining soware: an update”, ACM SIGKDD

explorations newsleer, 2009.
[8] M. Helsley, “Lxc: Linux container tools. IBM developer Works Technical Library,

2009.
[9] Intel. “Intel 64 and ia-32 architectures soware developer’s manual, volume 3b:

System programming guide”, Part, 2:18-65, 2016.
[10] G. Jacob et al., “Behavioral detection of malware: from a

survey towards an established taxonomy”, Journal of Computer Virology,
4(3):251{266, 2008.

[11] Kh. Khasawneh et al., “Ensemble learning for low-level hardware-supported
malware detection”, In International Workshop on Recent Advances in Intrusion
Detection, pages 3-25. Springer, 2015.

[12] McAfee Labs. Infographic: Mcafee labs threats report. December 2017.
[13] M. Ozsoy et al., “Malware-aware processors: A framework for efficient online

malware detection”, In HPCA’15, 2015.
[14] H. Sayadi et al., “Machine learning-based approaches for energy-efficiency

prediction and scheduling in composite cores architectures”, In ICCD’17, Boston,
MA, November 2017.

[15] A. Tang et al., “Unsupervised anomaly-based malware detection using hardware
features”, In International Workshop on Recent Advances in Intrusion Detection,
pages 109-129. Springer, 2014.

[16] Wang et al., “Confirm: Detecting firmware modifications in embedded systems using
hardware performance counters,” In ICCAD’15, 2015.

[17] Sprunt et al., “e basics of performance-monitoring hardware”, In IEEE Micro’02,
November 2002.

[18] Y. Freund et al., “Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting”, Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[19] L. Breiman, “Bagging predictors”, In Springer Journal of Machine Learning, Vol. 24,
pp. 123–140, August 1996.

[20] H. Sayadi et al., “Scheduling multithreaded applications onto heterogeneous
composite cores architecture”, In IGSC’17, Orlando, FL, October 2017.

[21] C. Malone., et al., “Are hardware performance counters a cost-effective way for
integrity checking of programs”, In ACM STC Workshop, 2011.

[22] H. Sayadi et al., “Power conversion efficiency-aware mapping of multithreaded
applications on heterogeneous architectures: A comprehensive parameter tuning” In
ASP-DAC’18, South Korea, January 2018.

[23] N. C. Doyle et al., “Performance impacts and limitations of hardware memory access
trace collection,” In DATE’17, May 2017.

[24] H. Sayadi et al., “Comprehensive Assessment of Run-Time Hardware-Supported
Malware Detection Using General and Ensemble Learning”, In CF’18, Ischia, Italy,
May 2018.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

