
Power Conversion Efficiency-Aware Mapping of Multithreaded Applications on 
Heterogeneous Architectures: A Comprehensive Parameter Tuning 

Abstract - Heterogeneous Multicore Processors (HMPs) are 
comprised of multiple core types (small vs. big core architectures) 
with various performance and power characteristics which offer 
the flexibility to assign each thread to a core that provides the 
maximum energy-efficiency. Although this architecture provides 
more flexibility for the running application to determine the 
optimal run-time settings that maximize energy-efficiency, due to 
the interdependence of various tuning parameters such as the 
type of core, run-time voltage and frequency, and the number of 
threads, the scheduling becomes more challenging. More 
importantly, the impact of Power Conversion Efficiency (PCE) of 
the On-Chip Voltage Regulators (OCVRs) is another important 
parameter that makes it more challenging to schedule 
multithreaded applications on HMPs. In this paper, the 
importance of concurrent optimization and fine-tuning of the 
circuit and architectural parameters for energy-efficient 
scheduling on HMPs is addressed to harness the power of 
heterogeneity. In addition, the scheduling challenges for 
multithreaded applications are investigated for HMP 
architectures that account for the impact of power conversion 
efficiency. A highly accurate learning-based model is developed 
for energy-efficiency prediction to guide the scheduling decision. 
Using the predictive model, we further develop a PCE-aware 
scheduling scheme is developed for effective mapping of 
multithreaded applications onto an HMP. The results indicate 
that the proposed learning-based scheme outperforms the state of 
the art solution by 10% when there is no PCE gap between big 
and little cores. The energy-efficiency improves up to 60% when 
the PCE gap between big and little cores increases.  

I. INTRODUCTION 
Heterogeneous multicore processors offer significant 

advantages over homogeneous designs in terms of both 
performance and power by executing workloads on the most 
appropriate core type. By running multithreaded applications 
on a heterogeneous architecture, each thread is able to run on a 
core that matches required resources more closely than a one-
size-fits-all solution [11]. Commercially available 
heterogeneous architectures include Intel Quick IA [6], ARM’s 
big.LITTLE [8], and the Nvidia Tegra 3 [7] that integrates a 
high performance big core with a low power little core on a 
single chip. Although heterogeneous architectures take 
advantage of variation in the application characteristics at run-
time to improve energy-efficiency, they create unique 
challenges in the effective mapping of threads to cores. The 
effectiveness of heterogeneous architectures significantly 
depends on the scheduling policy and how efficiently the 
application is assigned to the most appropriate processing core 
[1,3,4,9,11].  

Previous studies have mainly examined the advantages of 
using single threaded applications in HMPs [1,3,4,10,11,13]. 
However, running multithreaded applications on HMPs and 
choosing the ideal processor architecture to optimize energy-
efficiency is a more challenging problem, that must consider 
the possible number of cores and threads, type of core micro-
architecture, and the potential to combine multiple core types 
[22,23]. In addition, prior work have ignored power conversion 
efficiency as a critical optimization parameter. In fact, unlike a 
homogeneous architecture, in an HMP, the maximum load on 
cores varies significantly depending on the core type. For 
instance, in an Exynos 5, the maximum power of big A15 is 
five times more than little A7 [12]. Therefore, there is a 

difference in power conversion efficiency on big and little 
cores for the same application that is critical for scheduling. 
For instance, assume the same application executed on a big 
core and little core dissipates 1W and 0.9 W of power, 
respectively. Now consider a PCE of 90% and 70% for the big 
and little cores, respectively. The execution of the application 
now requires 1.1 W and 1.4W of power supplied to the big and 
little cores, respectively, which implies a change in the most 
efficient core type after accounting for PCE. Since power 
conversion efficiency is dependent on the load (core type), it is 
shown in this paper that it is critical to account for PCE when 
making scheduling decisions. The experimental results 
demonstrate that PCE directly affects the choice of the right 
core type (big vs. little) optimize energy-efficiency. In this 
work, an energy-efficient scheduling approach is proposed that 
accounts for the interplay between various application and 
micro-architectural tuning parameters with respect to the 
impact of on-chip power delivery on the energy-efficiency of 
the HMP executing multithreaded programs. To the best 
knowledge of the authors, there has been no prior effort to 
concurrently fine-tune the core type, operating 
voltage/frequency, and application thread counts that also 
considers the impact of the PCE of the voltage regulators on 
the optimization of the energy-efficiency in an HMP.  

The tuning parameters that influence scheduling decisions 
in an HMP are shown in Fig. 1. In addition, recent prior work 
as well as the contribution of this work is illustrated in Fig. 1. 
Previous studies on mapping applications to multicore 
architectures have focused primarily on 1) homogeneous 
architectures, and 2) configuring individual or a subgroup of 
tuning parameters at a time, such as application thread counts 
[5,9,17,21], voltage/frequency [3,10], core type 
[4,8,11,17,18,19] and have ignored the interplay among all 
parameters. In addition, the recent studies in [22, 23] attempt to 
examine the interplay among tuning parameters for an HMP 
but have ignored the impact of PCE of voltage regulators. This 
study indicates that tuning parameters individually, while 
important, do not produce an optimized configuration that 
achieves the best energy-efficiency on an HMP. The best 
configuration for a multithreaded application is effectively 
found, only when tuning parameters are jointly optimized. 
Exploring the impact of on-chip voltage regulator PCE on the 
energy-efficiency of an HMP running multithreaded 
applications is an additional main contribution of this work. 
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The key contributions of this work are summarized as follows: 
 The interplay of tuning parameters on 

performance, power, and energy-efficiency is evaluated 
for an HMP. The specific parameters at the micro-
architecture, system and application levels that are critical 
to performance as well as power and energy-efficiency and 
are studied in this work are core type, voltage/frequency 
settings and the running thread counts.  

 The impact of power conversion efficiency of on-chip 
voltage regulators on the selection of tuning parameters is 
investigated for maximizing the energy-efficiency. 
Specifically, four different settings for PCE of VRs are 
implemented to examine the effect of PCE on the energy-
efficiency of multithreaded applications running on the 
HMP. The results indicate that the energy-efficiency of the 
multithreaded applications running on an HMP 
significantly depends on the power conversion efficiency 
of the on-chip voltage regulators.  

 A system level optimization technique is developed that is 
aware of the PCE of the on-chip VRs. Based on conducted 
workload characterization and analysis of the PCE, a 
machine learning-based model is proposed for predicting 
the energy-efficiency of various configurations to guide 
scheduling of multithreaded applications.     

II. OVERVIEW OF PCE-AWARE SCHEDULING 
The primary objective of this paper is to analyze the 

interplay of various tuning parameters, (core type, 
voltage/frequency, number of threads), for running 
multithreaded applications on HMPs and to highlight the 
importance of accounting for the PCE of OCVRs for each core 
type to assist in scheduling decisions. An overview of the 
three-stage PCE-aware approach for predicting the right core 
type and application configuration is depicted in Fig. 2. The 
machine learning-based approach begins from extracting 
micro-architectural data (referred as feature extraction) and the 
power and performance (execution time) characteristics, to 
characterize the multithreaded workload, prepare the dataset 
for PCE analysis, and train the prediction model. The extracted 
features include the hardware performance counter data, which 
represent the application behavior at run-time.  

Since PCE is dependent on voltage regulator design, the 
architecture of the big and little cores, and the maximum load 
gap between the two, in this work, no specific assumption is 
made regarding the PCE of the big and little cores. Instead, all 
possible scenarios representing various differences between the 
PCE of the big and little cores are explored. Next, a 
comprehensive PCE analysis is performed by implementing 
various PCE models for both big and little cores and evaluating 
the impact of power conversion efficiency on the energy-

efficiency of multithreaded applications. Furthermore, a 
machine learning-based predictor (that is built off-line) 
accordingly takes in feature data as well as the PCE of the 
regulator and predicts the best system configuration for a given 
application. Finally, the processors are configured and the 
application is scheduled to run on the predicted configuration.  

III. EXPERIMENTAL SETUP AND METHODOLOGY 
In this section details of the experimental setup are 

provided. Sniper [13] version 6.1, a parallel, high speed and 
cycle-accurate x86 simulator for multicore systems is used for 
simulation. McPAT is integrated with Sniper and is used to 
obtain power consumption of the cores. The SPLASH-2 [14] 
and PARSEC [2] multithreaded benchmark suites are 
examined through simulation. For architectural simulation, a 
big.LITTLE heterogeneous architecture is modeled. For the 
little core architecture, a core similar to the Atom Silvermont 
is modeled and the big core is configured with resources 
similar to the Xeon Gainestown. The Uncore event set of 
Silvermont and the Intelligent Performance Counter of 
Gainestown are used to collect data for characterization and 
drive the scheduling algorithm. The Energy Delay Product 
(EDP) is used to characterize energy-efficiency, that aims to 
balance performance and power consumption.  

The micro-architectural configuration of the little and big 
core of the described HMP is listed in Table I. The examined 
HMP consists of 8 little and 4 big cores.  It is important to 
note that for benchmark simulation, the binding (one-thread-
per-core) model is applied with #threads = #cores to maximize 
the performance of multithreaded applications [4, 5].  

IV. POWER CONVERSION EFFICIENCY ANALYSIS 
In this section, the motivation to include the voltage 

regulator efficiency as one of the tuning parameters influencing 
the energy-efficiency of the HMP is described. For analyzing 
the efficiency of on-chip voltage regulators, per-core voltage 
regulation is considered as shown in Fig. 3. In the model, each 
core has a dedicated OCVR, which is a flexible state of the art 
VR configuration that enables the system to set the voltage and 
frequency for each core individually to address core-to-core 
process variation [15, 16]. In addition, since the power 
management unit directly controls the OCVRs, turning them on 
or off, a power gating circuit is not needed. The impact of 
power conversion efficiency of the on-chip VRs on energy-
efficiency of multithreaded applications is demonstrated by 
implementing the PCE scenarios listed in Table II.  

The first case listed in Table I represents Full Efficient 
VRs. This is the ideal scenario in which the power conversion 
efficiency of the little and big cores is assumed to be 100%. 
The full efficiency case is used as a baseline for comparing the 
other PCE models and evaluating the impact of OCVR TABLE I. ARCHITECTURAL SPECIFICATION. 

Microarch. Parameter Little Core Big Core 

Dispatch Width 2 4 
Window Size 32 128 
Levels of Cache 2 3 
L1 I-Cache/Acc. Time 32KB, 8-way/4-cyc 32KB, 4-way/2-cyc 

L1 D-Cache/Acc. Time 24KB, 6-way/4-cyc 32KB, 4-way/2cyc 
L2-Cache/Acc. Time 1024KB/16-way/12- cyc 256KB/8-way/8cyc 
L2-Shared Cores 2 1 
L3 Cache - 8MB/16-way 

 

TABLE II. FOUR PCE SCENARIOS FOR LITTLE AND BIG CORE VRS. 
VRs PCE Models 
(Little Core vs. Big Core) 

PCE_Little 
 

PCE_Big 

Full Efficiency  100% 100% 
Low gap 60% 80% 
Medium gap 40% 80% 
Large gap 20% 80% 

 

 
Fig. 2. An overview of the PCE-aware learning-based approach.  

 
Fig. 3. The power-supply configurations for the experimental HMP. 



efficiency on the EDP. For this purpose, three different PCE 
sets are assigned to each OCVR with low, medium and large 
gap between the little and big core. The values are chosen more 
accurately than the baseline model represent the PCE of on-
chip VRs and to effectively determine the impact of PCE 
variation on the energy-efficiency of HMP.   

An example depicting the EDP of the barnes application 
while considering different on-chip VR models with varying 
PCE is shown in Fig. 4. The VR models are based on the 2-
phase and 4-phase dc-dc buck converter models in [15]. The 
PCE of the VR models used for the big cores and little cores 
are listed in Table II. In order to effectively present the impact 
of voltage regulator PCE on the EDP in each case, in this 
section, the EDP results for one of the studied frequencies (2.8 
GHz) is chosen to examine the gap between the energy-
efficiency of the two cores for different per-core PCE values. 
Note that changing the number of threads interestingly affects 
the impact of the PCE on the energy-efficiency. As seen from 
Fig. 4-(a) and 4-(b), when the number of running threads is low 
(less than 3), the PCE significantly impacts the choice of 
selecting the more energy-efficient core as compared to the 
higher number of threads. The results shown in Fig 4-(a) 
clearly indicate there is a large gap between the energy-
efficiency of little and big core when running the application 
with lower number of threads. However, that is not the case 
with higher thread counts. As the number of threads increases, 
the difference between the EDP of the little and big core 
reduces which makes the big core more competitive with the 
little core in terms of energy-efficiency.  

As shown in Fig. 4-(b), it is assumed that there is a low 
gap between the PCE of the little and big cores. The assumed 
Little_PCE is 60% and the Big_PCE is 80%. As can be seen, 
even though the gap between the EDP of the little and big 
cores is relatively smaller than the baseline case, where the 
PCE for both core types is 100% (Fig. 4-a), as the number of 
threads is changed accordingly, the little core still outperforms 
the big core in terms of EDP delivering better energy-
efficiency. Therefore, when the gap between the PCE of the 
little and big cores is relatively small, similar to the case when 
the PCE for both core types is 100%, it is more energy-
efficient to migrate from the big core to the little core and run 
the application to achieve a lower EDP.    

 The EDP results for the scenario in which the PCE gap of 
the little and big core is increased to 40% (medium PCE gap) is 

depicted in Fig. 4-c. As is seen, the EDP for the little core 
increases and overlaps with the EDP of the big core, indicating 
that the two cores are almost as energy-efficient for PCE gap of 
40%. In the last scenario, the PCE gap between the little and 
big core VRs is further increased. As shown, for large PCE 
gap, the big core outperforms the little core in terms of EDP. 
Therefore, as the PCE gap increases, the selection of the little 
core is no longer optimal in terms of EDP for running 
multithreaded applications.  

The results of PCE analysis indicates that the most energy-
efficient choice varies depending on the PCE gap between the 
big and little cores and the best choice changes compared to the 
case when the PCE is ignored. Also, as shown in Fig. 4, the 
number of threads along with the PCE gap determines the most 
efficient core. It is, therefore, important to explore the impact 
of the power conversion efficiency of the on-chip voltage 
regulators in an HMP to determine the optimal core 
configuration that achieves the optimized EDP.             

V. ENERGY-EFFICIENT SCHEDULING FRAMEWORK 
A. Joint analysis of (Core Type, Freqeuncy, Thread Counts) 

with respect to various PCE models  
In section, to understand the interplay among all tuning 

parameters and determine the optimum configuration for 
maximizing the energy-efficiency, the interplay among the 
tuning parameters were comprehensively investigated with 
respect to each selected voltage regulator PCE model. Due to 
space limitations, the optimal configurations that yield the 
optimal EDP for two corner cases are reported which are the 
full efficiency and large PCE gap models listed in Table III. 
The relative EDP variation is also calculated for each 
benchmark, which indicates the relative difference between 
energy-efficiency for the best configuration of parameters in 
the little and big cores. The variation parameter (Var) is 
described as follows:  

𝑉𝑎𝑟 = ቆ
𝐿𝑖𝑡𝑡𝑙𝑒௦௧_ா – 𝐵𝑖𝑔௦௧_ா

𝐿𝑖𝑡𝑡𝑙𝑒௦௧_ா
ቇ × 100               (1) 

 The variation parameter indicates whether to run the 
application on the little core or big core. For this purpose, a 
variation threshold is defined that decides what type of core 
architecture is best suited for executing the corresponding 
multithreaded application more energy-efficiently. The user-
defined threshold is adjusted based on the architecture and 
available resources as well as the cost of migration. Note that 
migrating applications from the little core to the big core or, 
vice versa, comes with power as well as delay overhead. In this 
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Fig. 4. Energy-efficiency (in terms of EDP) of barnes for four different PCE gaps between little and big cores: a) full efficiency, b) low, c) medium, d) large. 
 

          TABLE III. OPTIMAL CONFIGURATION WITH OPTIMIZATION TARGET OF EDP FOR FULL EFFICIENCY PCE AND LARGE GAP PCE MODEL. 
 

Benchmark 
Full Efficiency Large PCE Gap 

Best-Little Best-Big Var. 
(%) 

Best-Little Best-Big Var. 
(%) Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread 

barnes 2.4 8 2.8 4 -444.8 2.4 8 2.8 4 -36.2 
fmm 2.4 8 2.4 4 2.2 2.4 8 2.4 4 75.5 
cholesky 2.4 8 2 4 28 2.4 8 2 4 77 
radix 2.8 8 2.8 4 -138.7 2.8 8 2.8 4 40.3 
radiosity 2.4 8 1.6 4 -102.8 2.4 8 1.6 4 49.3 
raytrace 2.4 5 2 4 -28.9 2.4 5 2 4 67.7 
fft 2 4 2 2 36.3 2 4 2 2 79.1 
lu.cont 2.4 8 2.8 4 27.2 2.4 8 2.8 4 98.7 
blackscholes 2.8 4 2.4 4 83.85 2.8 4 2.4 4 195.3 
bodytrack 2 3 2 3 41.23 2 3 2 3 112.6 
ferret 2 6 2 6 2.4 2 6 2 6 132.6 

 



work, a conservative implementation with a delay overhead of 
10K cycles is assumed, which is much longer than the 
overhead to flush the pipeline and copy the content of private 
cache [3,4,18]. Moreover, a 20% variation threshold is 
assumed to select the more energy-efficient core to run the 
multithreaded application. As a result, if the percentage of 
variation between the best-little and best-big architectures is 
found to be less than 20%, we use the little core for scheduling 
instead of the big core to avoid migration overhead.   

An important observation from the optimal configurations 
highlighted in Table III is that as the gap in PCE increases, the 
optimal configurations corresponding to the best EDP show to 
occur more on the big core. The percentage of applications 
executed on each of the two core types for the four PCE 
scenarios is shown in Fig. 5. As shown, for the full efficiency 
model, the little core has a higher probability of being the 
optimal configuration. However, as the PCE gap gradually 
increases, the energy-efficient core is shifted from the little to 
the big core. As a result, for the large PCE gap model, as 
compared to the full efficient scheme, the possibility of the big 
core being the more energy-efficient than the little core 
increases by 45%. The reason is due to the significant increase 
in the EDP of the little core as compared to the big core when 
the PCE gap between the two cores increases. As shown in Fig. 
5, close to 55% of the optimal configurations indicate that the 
little core is more energy-efficient. The number of optimal 
configurations reduces to less than 10% as the PCE gap 
increases to 60%. Therefore, considering the PCE of the 
OCVRs in scheduling decisions of multithreaded applications 
on HMPs is critical. In order to perform a comprehensive EDP 
characterization of the studied architectures, all possible 
configurations (core types and number of threads) are 
categorized into four classes. The first two are Fully-Little and 
Fully-Big configurations that refer to cases in which the lowest 
EDP is achieved with full utilization of either the little or big 
core, respectively. In other words, the optimum number of 
threads is equal to the maximum number of existing little/big 
cores. On the other hand, Partially-Little and Partially-Big 
configurations are utilized when the best number of threads is 
lower than the maximum available cores.  

The diversity of optimum configurations across various 
applications and on-chip voltage regulator PCE scenarios 
demonstrates that when running a given multithreaded 
workload on an HMP, depending on the application and the 
PCE of the OCVRs, different core configuration parameters 
(core type, voltage/frequency, number of threads) lead to the 
best energy-efficiency. The simulation results indicate that the 
optimal configuration varies across the applications. The 
dispersed pattern of optimum results implies that there is a 
necessity of developing a prediction method to guide 
scheduling decisions of unknown multithreaded applications in 
order to improve the EDP of an HMP with respect to a given 
PCE of the OCVRs.   
B. Prediction Model for Energy-efficiency  

1) Model selection: Recent studies have proposed ordinary 
least squares regression (OLSR) modeling to estimate the 
power [10] and performance [3, 11, 19] of a processor at run-
time. The results of this work indicate that OLSR is not the best 

suited algorithm for performance and power estimation as 
outliers, particularly for heterogeneous architectures, mislead 
the model. In fact, various applications experience different 
phases with different behavior. In addition, superscalar 
processors are complex, which makes it difficult to develop a 
general model for estimation of power/performance. OLSR 
models are highly sensitive to the outliers and potentially 
produce misleading results as even a single point of data 
substantially impacts the regression efficiency. Thus, in this 
paper, based on a comprehensive characterization of various 
applications, a more robust regression algorithm is evaluated in 
addition to OLSR, referred as the Quantile Linear Regression 
(QLR) model [20], to predict the energy-efficiency for various 
configurations of the studied HMP. The primary advantage of 
QLR as compared to OLSR is the robustness against outliers. 
For the QLR model, a specific quantile of data is set instead of 
the mean value. The quantile is set to 0.1, which results in 
minimizing the median of the error values.  

 Although the use of non-linear regression or neural 
network models potentially provides a more accurate 
estimation of the energy-efficiency of an application, the 
complexity of the design is increased, with a corresponding 
increase in hardware complexity. The overhead in area, power 
and performance of implementing a linear regression model in 
hardware is minimal and shown to be easily integrated into a 
core [11]. The QLR model achieves higher accuracy as 
compared to OLSR. A comparison between the derived 
coefficients of the two different predictors using ordinary 
linear regression and quantile linear regression is shown in 
Fig. 6. In the figure, the black dotted line is the slope 
coefficient for the QLR and the red lines are the least squares 
estimate for OLSR and the corresponding confidence interval. 
The lower and upper quantiles are well beyond the least 
squares estimate. The effects of L2 cache access and branch 
miss prediction vary over quantiles, and the magnitude of the 
effects at various quantiles differs considerably from the 
OLSR coefficient, even in terms of the confidence intervals 
around each coefficient (58% for the L2-access and 30% for 
the branch miss predictor). Therefore, an ordinary least 
squares regression is not an optimal solution to capture the 
actual behavior of applications when predicting the energy-
efficiency.  

2) QLR derivation and training: Training process involves 
finding the best processor and application configuration and 
extracting feature values for each training workload, reducing 
the extracted features to the most vital performance counters, 
and developing a learning model from the training data. Note 
that the input variables in the developed classifiers are 
extracted performance counter information from different 
training applications as well as the PCE value for each on-chip 
voltage regulator, while the output variable is the EDP for a 
given set of tuning parameters. Therefore, a subset (less than 
two third) of applications from the SPLASH2 and PARSEC 
multithreaded benchmark suites is considered. The studied 

 
Fig. 5. Optimal core type selection for different power conversion efficiencies. 
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  Fig. 6. Quantile graphs for predictors:  a) L2-Access, b) Branch miss prediction. 
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applications represent diverse compute, memory and I/O 
intensity behavior. For each benchmark, twelve pieces of 
hardware performance counter data are collected on all 
possible configurations of core types, voltage/frequency 
operating points, and thread counts. The micro-architectural 
parameters are listed in Table IV.   

Given the twelve hardware performance counters, 
Principle Component Analysis (PCA) and correlation analysis 
are used on the training set to monitor the critical micro-
architecture parameters and capture application characteristics. 
By applying the attribute reduction method, the four most 
related performance counters are determined which include 
the L1 D-cache access, L2 cache-access, L2 cache-miss and 
branch miss prediction. Since the primary purpose of the 
prediction model is to predict energy-efficiency across various 
application, system and micro-architectural parameters, the 
primary tuning parameters in must be considered in the model 
as well. Therefore, along with the identified key performance 
counter parameters, three tuning parameters (core type, 
frequency, #threads) are included as input variables to the 
model to enable predicting the EDP for each configuration that 
results when changing the core type, operating frequency, 
and/or thread counts.  

After identifying the four key hardware performance 
parameters and considering the tuning parameters, the 
proposed PCE-aware energy-efficiency prediction model is 
formulated using quantile linear regression as follows:  

𝑄𝐿𝑅𝑀ா =  ൭0 +  𝑖 × 𝑃𝑖

ସ

ୀଵ

൱ + 5 × 𝐶𝑇 + 6 × 𝑓       (2) 

where 0 is the intercept, i denotes the corresponding 
coefficients of the regression model, Pi are extracted hardware 
performance counters, and QLRMPCE is the estimated energy-
efficiency (in terms of EDP) given the PCE of the on-chip 
voltage regulators. In addition, the core/thread configurations 
are given by CT, and f represents the frequency on the 
corresponding core architecture. The i coefficients can be 
interpreted as the expected change in EDP per unit change in 
L1 D-cache access, L2 cache-access, L2 cache-miss, branch 
misprediction, core/thread and frequency setting. The model 
predicts continuous values representing the energy delay 
product as a function of performance counter inputs and 
tuning parameters, which are then used to make the scheduling 
decisions at run-time. During run-time, given an unknown 
application, the QLRMPCE predict the EDP of all possible 
configurations based on a single set of executing data. The 
configuration corresponding to the lowest estimated EDP is 
then selected for the run.  
C. Energy-Efficient PCE-aware Scheduling Algorithm  

An overview of the PCE-aware scheduling scheme using 
the regression-based prediction model is provided in Fig. 7. As 
illustrated, the scheduling algorithm is split between an offline 
step and an online step. In offline analysis, the prediction 
model is trained using quantile linear regression, as described 
in section V-B. For the online tuning step, a multithreaded 
application is run with the most aggressive configuration 
settings, where all tuning parameters are set to maximum 
(maximum number of threads, highest frequency, and the big 
core). Next, date from the hardware performance counters is 
extracted by profiling the multithreaded application, as it is 
running with the maximum configuration settings. The 

profiling stage is used for run-time characterization and 
resource utilization of the applications. The regression 
classifier takes the key performance counter parameters and 
configuration settings as inputs, and outputs the system 
energy-efficiency for the given configuration and given PCE. 
Note that the linear weights are estimated using the training 
data set. Given the input configuration parameters during run-
time, the QLRMPCE predicts the optimal energy-efficiency. 
The output resulting in the optimal energy-efficiency and the 
corresponding new configuration is then chosen as the current 
operating point at run-time. The predictive model, by 
observing the run-time behavior of a multithreaded application 
running with a specific configuration, predicts the right 
configuration of parameters that includes the number of 
threads, operating voltage and frequency, and core type (big or 
little) to achieve the maximum energy-efficiency for a given 
PCE. It is important to note that the QLRMPCE can be trained 
for other objectives such as ED2P optimization.  
D. Evaluation Results  

In order to evaluate the accuracy of the prediction model, 
the value of the relative mean absolute error (RMAE) is 

calculated which is defined as 
|௦௧௧ௗ ௩௨ି௧௨ ௩௨|

(௧௨ ௩௨)
×

100%. The RMAE metric indicates the relative difference 
between the predicted and observed maximum energy-
efficiency. To validate the QLRMPCE model, we applied 
percentage split method to divide the dataset into two sets, 
using 60% (known applications) of the data to train the model 
and 40% (unknown applications) to simulate and evaluate.  

The average relative errors of the QLRMPCE are listed in 
Table V. As shown, all possible configurations of the 16 
operating points consisting of various frequencies and 
core/thread configurations are characterized. As shown, the 
proposed prediction classifier is most accurate in estimating 
the energy-efficiency of the Fully-Big and Fully-Little 
architectures, both operating at 2 GHz. In addition, the 
developed learning model achieves an average error of 6.85% 
across all training data samples and possible configurations. 
The proposed classifier assists the scheduling decisions of 
multithreaded applications on an HMP that include choosing 
the core type, setting the operating voltage and frequency, and 
adapting the number of running threads. The performance 
overhead of implementing the QLRMPCE in hardware and 
calculating values at each interval is negligible. The power 

TABLE IV. HARDWARE PERFORMANCE DATA USED FOR THE REGRESSION MODEL. 
Category Hardware performance counter 
Memory 
subsystem 

L1 D-cache access, L1 D-cache miss, L1 I-cache access, L1 I- 
cache miss, L2 cache access, L2 cache miss, I-TLB miss, D-
TLB miss                                                                                 

Instructions Integer instruction issue, Integer floating point issue 

Branch Branch instruction, Branch misprediction 

 

 
 Fig. 7. Proposed PCE-aware scheduling scheme with energy-efficiency prediction. 

TABLE V. AVERAGE RELATIVE ERROR OF QLRMPCE 

 Core/Thread Configurations 

Freq. Full-Little Partial-Little Full-Big Partial-Big 

2.8 GHz 10.5% 10.74% 11.69% 2.03% 
2.4 GHz 22.49% 21.4% 4.67% 4.87% 
2.0 GHz 1.9% 3.9% 1.74% 3.1% 
1.6 GHz 3.35% 2.2% 3.6% 2.61% 



overhead of implementing the QLRMPCE is 5uW, which is 
further reduced by gating idle units during each interval [11]. 
In order to evaluate the efficiency of the prediction model, the 
following scheduling schemes are studied for comparison:    
- Oracle: This model is based on the heterogeneous 
architecture with an ideal energy-efficiency predictor, where 
all future behavior of the application as well as the power and 
performance for various configurations are known in advance. 
Since the Oracle scheme provides the upper bound for energy-
efficiency, it is used to normalize and compare the other 
schemes.  
- QLRMPCE: This scheme is based on the proposed PCE-aware 
quantile linear regression model to estimate the EDP for 
various core sizes, frequency/voltage points, and number of 
threads for a given voltage regulator PCE.  
- Elastic-Core [3]: This dynamic scheme proposed recently 
uses a linear regression model to predict the power and 
performance of single-threaded applications as a function of 
core type and frequency settings. However, unlike the model 
in this paper, the impact of PCE is not accounted for. In 
addition, although Elastic-Core does not account for the 
number of threads, the thread counts in this paper are set to 
maximum values to better evaluate the model by fairly 
comparing it against a recent dynamic scheduling solution.   
- Performance Aggressive Scheduling (PAS): In this scheme, 
all tuning parameters are set to maximum values to achieve 
the maximum performance. Therefore, each application is 
executed on big cores operating at 2.8 GHz and with 4 threads.  
- Power Minimized Scheduling (PMS): This scheduling 
scheme attempts to minimize power consumption. The 
application is running on a little core and the frequency and 
number of threads are set to minimum values.  

The energy-efficiency of the studied applications 
normalized to the Oracle model with a fully efficient VR is 
shown in Fig. 8. The QLRMPCE on average achieves close to 
95% efficiency as compared to the Oracle model. The 
QLRMPCE has improved energy-efficiency as compared to the 
Elastic-Core and PAS schemes by an average of respectively, 
10% and 30% across all benchmarks, respectively. The 
average energy-efficiency of different scheduling schemes 
across various studied PCE gap models is shown in Fig. 9. By 
increasing the PCE gap, the energy-efficiency of the Elastic-
Core, PAS, and PMS scheduling schemes diminishes. For the 
largest PCE gap, the proposed QLRMPCE outperforms a state 
of the art solution, the Elastic-Core, in energy-efficiency by 
60%. The results verify the efficacy of the proposed prediction 
model and the effectiveness of the proposed scheduling 
scheme to harness the power an HMP for enhanced energy-
efficiency.  

VI. CONCLUSION 
      Emerging heterogeneous multicore architectures are 
complex processors with various tuning optimization knobs 
for improving performance and energy-efficiency. Scheduling 
multithreaded applications in these architectures is a 
challenging problem given the various optimization 
parameters at the application (number of running threads), 

system (operating voltage and frequency), and architecture 
(core type- big vs. little) levels. In addition, unlike 
homogeneous architectures, the efficiency of on-chip voltage 
regulators and the power conversion efficiency gap between 
the big and little cores in these architectures are critical 
parameters that must be accounted for. The interplay among 
the tuning parameters and the influence each has on the 
energy-efficiency, make the scheduling and tuning of the 
application even more challenging. In this paper, a PCE-aware 
scheduling and tuning solution is developed that highlights the 
importance of accounting for the PCE of big and little core to 
find the appropriate core type that optimizes the EDP. A 
predictive model is developed for estimating the energy-
efficiency of multithreaded applications. Based on the 
predictive model, a scheduling scheme is developed for 
effective mapping of multithreaded applications to an HMP by 
setting the tuning parameters to maximize the energy-
efficiency. The results indicate that the proposed scheduling 
scheme achieves on average close to 95% efficiency as 
compared to the Oracle scheduler.  
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Fig. 8. Normalized energy-efficiency of applications on various scheduling 
schemes relative to Oracle scheduling.  
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Fig. 9.  Average energy-efficiency results of different 
scheduling schemes with respect to various PCE models. 

 


