
A Centralized Cache Miss Driven Technique to

Improve Processor Power Dissipation

Houman Homayoun
‡
, Mohammad Makhzan

†
, Jean-Luc Gaudiot

†
, Alex Veidenbaum

‡

†
Department of Electrical and Computer Engineering, UC Irvine

‡
Department of Computer Science, UC Irvine

{hhomayou,alexv}@ics.uci.edu {mmakhzan,gaudiot}@uci.edu

Abstract--Leakage and Dynamic power are a major challenge in

microprocessor design. Many circuit techniques along with

micro-architectural innovations have been proposed to reduce

power in individual processor units But it is not clear that these

techniques can be combined. A centralized approach which can

reduce power in more than one unit at a time with minimal the

hardware overhead is needed.

This paper proposes such a centralized approach that

attempts to simultaneously reduce power in processor units with

highest dissipation: the reorder buffer, the instruction queue, and

the integer and the floating-point register files. It is based on an

observation that utilization for the aforementioned units varies

significantly, during a period when an L2 cache miss or multiple

L1 cache misses are pending as compared to a period when none

of these are present. Therefore we propose to dynamically adjust

the size and thus power dissipation of these resources during such

periods. Circuit level modifications required for such resource

adaptation are presented. Simulation results for SPEC2K

benchmarks show a substantial reduction in both leakage and

dynamic power: the total dynamic power is reduced by as much as

30, 31, 31 and 48% for the reorder buffer, the integer register file,

the floating-point register file and the instruction queue,

respectively. The reduction in leakage is up to 33% for reorder

buffer and 37% for integer and floating-point register files. The

total energy-delay product is reduced, on average, by 15, 26, 20

and 17% for the reorder buffer, the integer register file, the

floating-point register file and the instruction queue respectively.

This comes at the cost of a performance impact which is as low as

0.9% for integer and 2.2% for floating-point benchmarks. The

required hardware modification is shown to be minimal.

I. INTRODUCTION

Both dynamic and leakage power dissipation are a major

challenge in designing new processors, in particularly for deep

sub-micron technology (65nm and below).

For many individual processor units, several power

reduction techniques have been proposed in the literature.

Attempts have been made to either design new power-efficient

units or to make current architectures more power-aware.

However, the prior efforts have resulted in approaches which

require considerable re-design and verification efforts. Further,

it is not clear that these techniques can be combined, and, if

they can be combined, that the power and energy-delay savings

would still be considerable and whether the cumulative of the

performance degradation and complexity they individually

introduce would still be negligible. The challenge is thus to

find a centralized and simple algorithm which can reduce

power for more than one unit (and ultimately the entire chip)

and comes with the least amount of re-design and verification

efforts, the lowest possible design risk (which would come with

any new design) and the least hardware overhead. Current

industry trends towards deploying multi simple-cores processor

on a single chip (multicore chips) emphasize the demand for

such simple centralized solutions for power conservations

rather than complex mechanisms.

In recent years, several efforts have sought such

centralized algorithm through two major approaches: either

dynamically adapting the data-path resources for power

conservation [18, 20, 21, 29] or dynamically adapting the

voltage and frequency level at a fine granularity or at the entire

chip [2, 4, 5]. These techniques have several drawbacks: first,

many of these techniques are unable to meet the performance

requirements of high-end computing; for instance a 8.5% and a

20% performance loss were reported in [18, 2] respectively.

Second, many of these techniques introduce significant

complexity and overhead: for instance cycle-by-cycle

monitoring of program IPC, floating-point IPC, resource

utilizations, commit rate or a combination of these [18, 20, 21,

29]), which make them difficult to implement in practice. In

addition, circuit assist to deploy such architectural approach are

less studied. This is particularly important for approaches using

resource size adaptation since their effectiveness is influenced

by the power/delay transition overhead associated when

resizing resources. Such transition overhead is largely

determined by a circuit implementation.

The research presented in this paper falls into the first

category and investigates dynamic recourses adaptation for

power reduction. Unlike previous approaches which require

continuous cycle-by-cycle monitoring of resource occupancy to

predict future resource needs, our approach is deterministic

rather than predictive. It relies on the fact that processor

resource utilization deterministically vary significantly when

cache miss(es) occur, especially the L2 cache miss(es). There

is thus no need for expensive cycle-by-cycle monitoring of

processor resource occupancy. In addition, our technique

requires minimal hardware modification.

The approach proposed in this paper aims to reduce power

in the reorder buffer (ROB), the instruction queue (IQ), the

integer register file (IRF), and the floating-point register file

(FRF) at the same time but with minimal hardware changes.

Novel circuit techniques are presented to accomplish the

proposed architectural strategy. It is based on the observation

that processor performance drops significantly after an L2

cache miss. Similarly, a considerable performance reduction

occurs during any period in which multiple L1 misses are

978-1-4244-1985-2/08/$25.00 ©2008 IEEE
195

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

pending. Indeed, during cache miss periods, the processor

needs significantly lower issue/wakeup width, but a larger

ROB and register files. Thus we propose to dynamically adjust

the issue/ wake up width, and the size of the reorder buffer and

of the IRF and FRF.

This paper makes four major contributions:

• It demonstrates a substantial, deterministic variation in

processor resource utilization when one or more L2

cache misses or at least three L1 cache misses are

pending (the cache miss period) as compared to when

none of these conditions are present,

• It presents a control algorithm to dynamically adjust

the size of these units during cache miss periods for

power conservation,

• It shows the minimal required hardware modifications

to dynamically adjust the size of these units,

• It presents Spice simulation results for the instruction

queue (using CACTI 4.0 for ROB and register files)

and shows a substantial reduction in both leakage and

dynamic power at negligible or no performance cost.

The rest of the paper is organized as follows: related work

and background are described in Section II. Section III presents

the motivation for proposed architectural techniques. Section

IV describes our proposed architectural technique. We describe

the issue/wakeup mechanism, ROB and register files

functionality and their major sources of complexity and power

consumption. We also discuss the circuit modification required

to implement our architectural algorithm. Evaluation

methodology is described in Sec. V, experimental results in

Sec. VI and conclusions in Sec. VII.

II. RELATED WORK AND BACKGROUND

There is a significant body of work on the design of the

Instruction Queue, of the ROB, and of the register file. Indeed,

several techniques have been proposed to reduce their power

expenditure. Yet, as we shall show, much improvement can

still be achieved by our technique.

A. Instruction Queue

The Instruction Queue is a CAM-like structure which holds

instructions until they can be issued. Four possible actions are

associated with it:

1) Set an entry for a new dispatched instruction,

2) Read an entry to issue an instruction to a functional unit,

3) Wakeup instructions waiting in the IQ once a result is

ready, and

4) Select instructions for issue when the instructions available

exceed the processor issue limit (to which we refer as issue

width or IW for short).

The main complexity of the Instruction Queue stems from

the associative search during the wakeup process. All above

tasks are energy demanding and make the Instruction Queue

one of the major energy consumers in the processor as shown

in [12, 22, 30].

B. ROB and Register File

The ROB and the register file are multi-ported SRAM

structures with many functions:

1) Setting entries for up to IW instructions in each cycle,

2) Releasing up to IW entries during commit stage in a cycle,

3) And flushing entries during the branch recovery.

It is easy to recognize that, combined, these functions have

high power dissipation (estimated to dissipate as much as 27%

and 16%, respectively, of the total chip power [17]).

C. Power Reduction

There has been a significant body of work on reducing

power in a single data-path component such as Instruction

Queue, the ROB, and the register file. Most recently, Canal and

Gonzalez [22] have proposed a scheme which schedules

instructions based on their expected issue time. Homayoun et

al. introduced the idea of lazy instructions and propose to

selectively wakeup them once predicted [12]. Unlike the above

algorithms which require substantial modifications or even

complete re-design, our proposed architecture requires only

minimal modification of a conventional instruction queue

logic; using gated-Vdd transistor to power gate the match lines

appropriately, and yet it is highly effective in reducing

instruction queue power.

In [16], it has been proposed to partition the ROB into

independent units, each with a separate pre-charge, sense amp,

input and output drivers and the ability to activate or deactivate

each based on a continuous monitoring of the processor IPC.

Our approach adaptively resizes the ROB, but does not require

continuous monitoring of IPC (and thus does not require

additional hardware and associated power overhead). Second,

our proposed circuit requires minimal hardware modifications;

an AND logic and a couple of pass transistors and a gated VSS

transistor, unlike [16] which requires a separate sense amp,

peripheral drivers and pre-charge units which require

considerable modifications. Third, the performance loss

associated with our proposed technique is less than that in [16],

while it is incurred when the power reduction algorithm is

applied to other units as well; IQ and IRF and FRF.

Past work on the design of the register file mostly either

attempt to limit the number of ports or limit its size [7, 8, 9, 11,

17, 19]. In [17], it has been proposed to bypass the register

information that will be used from the fetch stage to the decode

stage, hence putting unused registers into the low power mode

in the early pipeline stage. To avoid substantial performance

penalty, the registers had to be put back to high power mode

one cycle before being accessed. There are also proposals for

reducing the number of ports at the cost of additional

arbitration hardware. These techniques require substantial

modifications to the pipeline. Borch et al. have discussed

problems associated with reducing the number of register file

196
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

ports [6]. Further, banked register files, caching registers, and

using 2-level register files have been investigated to reduce the

number of registers and accordingly the required power [6, 11,

24]. Many of these techniques are based on speculation.

Relaxing physical register file release before the commit

stage and before all its consumers have read it has been studied

in [7].The drawback of these techniques is in the complexity

that speculation adds and more specifically the complexity they

introduce on handling the coherency in register caches and

banking conflicts.

There have also been some recent projects dealing with

centralized techniques which tackle power reduction in

multiple data-path components, either by dynamically adapting

the data-path resources for power conservation [18, 20, 21, 29]

or dynamically adapting the voltage and frequency level at a

fine granularity or at the entire chip level [2,4, 5].

Ponemarev et al. [18, 29] proposed to monitor processor

resource occupancies (infrequently) on which they base an

estimate for future requirements. In fact this does not always

result in correct estimation and thus it can incur performance

penalty. Indeed, mis-predictions mostly occurs when an

L2/multiple L1 cache miss/es occurs during which processor

resource occupancy grows significantly (as we will show in

this paper) and is not necessarily correlated to its past behavior.

This results in a significant performance degradation for

benchmarks with high L2 cache miss rate such as vortex and

applu (8% and 14% performance loss reported in [18, 29]

respectively). Thus it is important to take L1 and L2 cache miss

rate into consideration for resource adaptation.

Bahar and Manne [21] studied resource adaptation for a

multi-clustered Compaq 21264 processor for which the

dispatch rate can varies between 2, 4, and 6 to allow the unused

clustered to be shut off. Such variations are triggered when the

overall and floating-point IPC pass a threshold and require a

significant overhead of cycle by cycle monitoring dispatch unit,

IPC, etc. The power reduction of reorder buffer has not been

explored in this work.

Li et al. have proposed to apply voltage scaling during L2

cache-miss service time [5]. In fact applying voltage scaling for

such small period is not practical. For instance as reported in

[10] applying voltage scaling to the Intel Xscale requires 20

microseconds which translates to thousands of processor

cycles. This is far more than a few hundred cycles of L2 cache

miss service time.

III. MOTIVATION

A load instruction missing in the cache (DL1 or L2) prevents

any dependent instruction from being issued. Dependent

instructions thus fill up the reorder buffer, the instruction

queue, the register files, and/or the load and store queues

(LQ/SQ) until the miss returns. We now briefly study the ROB,

the instruction queue and the register file status during such

period for baseline architecture. At each cycle, up to IW (in our

case 4) instructions are dispatched to the ROB and up to IW

physical registers are being allocated out of the pool of free

registers. To allocate new instructions, the processor releases

up to IW committed-instruction physical registers and their

ROB entries. This is being done in program order to handle

precise interrupts. When a cache miss occurs, the load miss

instruction stays on top of the ROB and does not allow any

subsequent instruction to be committed. As a result, the

allocated ROB and register files entries for subsequent

instructions cannot be released. Thus, while the processor

dispatched up to IW instructions at each cycle, it cannot release

the ROB and the register file entries for the subsequent

instructions until the miss returns. This will gradually increase

the occupancy of the ROB and of the register files and

consequently reduce the processor issue rate. The same

scenario occurs for LQ/SQ and IQ: the subsequent dependent

instruction to the load cache miss cannot be issued due to the

data dependency. Such instructions reside in the IQ until the

miss returns. Accordingly, the IQ occupancy increases but due

to data dependencies, very few out of these can be issued.

Given the long cache miss service time (20 cycles for DL1

and 300 cycles for L2 in our architecture), the above scenario

can happen quite frequently. In the event of a L2 miss, due to

the long service time, either ROB, LQ/SQ or instruction queue

fills up with subsequent instructions and the processor ends up

stalled (issue rate = 0) until the miss is serviced. We refer to

this as scenario I.

In the event of a DL1 miss, the service time is much

smaller than it would be for L2 and it is less likely that any of

LQ/SQ, ROB and IQ (all referred as queues) fills up before the

cache miss is serviced. Note that when a DL1 cache miss

occurs, its dependent instructions cannot be issued and that all

the subsequent instructions cannot be committed as discussed

above. This reduces the issue rate and increases the occupancy

of the aforementioned queues. In the presence of many pending

DL1 cache misses, the impact on the issue rate could be large.

Also, the occupancy of queues increases significantly. We refer

to the case with multiple DL1 misses pending as scenario II.

We refer to the period during which one or more L2

miss/misses and/or multiple DL1 misses are pending as the

“cache miss period,” and to the rest of program execution time

as the “normal period.”

It should be noted that the two scenarios discussed above

would occur when the missed load is part of a correct

prediction path, otherwise after the correct path has been

identified, the missed load instruction will be flushed and will

release ROB/IQ/ LQ/SQ entries so that program execution can

continue (return to the normal period).

Figures 1 and Table I, show statistics for the above

discussed structure during a cache miss period. Fig. 1, presents

the issue rate reduction for scenario I compared to when there

is no pending L2 miss and issue rate reduction for scenario II

compared to the period where there are less than 3 pending

DL1 misses. The issue rate decreases significantly in both

cases. Across all benchmarks, the issue rate drops by more than

80% for scenario I. For the case of 3 DL1 misses, the reduction

across benchmarks varies significantly; from 60% for facerec

to around -1% for gcc and swim. The average is a 22%

197
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

reduction for integer benchmarks and 32.6% reduction for

floating-point benchmarks.

The reduction in issue rate during the cache miss period, as

shown above, results in a gradual increase in the occupancy of

ROB (reported in Table I). For integer benchmarks, the ROB

occupancy grows substantially; 98.2% for scenario I and 61.4%

Issue rate decrease

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip
2

cr
af

ty
ga

p
gcc

gz
ip

m
cf

par
se

r
tw

ol
f

vo
rte

x
vp

r

IN
T a

ve
ra

ge

ap
pl
u

ap
si A

rt

eq
ua

ke

fa
ce

re
c

ga
lg
el

lu
ca

s

m
gr

id
sw

im

w
up

w
ise

FP a
ve

ra
ge

Scenario I

Scenario II

Figure 1. Issue rate decrease for scenario I and II.

for scenario II. This growth is less significant for floating-point

benchmarks: 30.5% for scenario I and 25% for scenario II. As

expected, for most benchmarks, the ROB occupancy is smaller

for scenario II compared to I. This is consistent with the results

in Figure 1: the reduction in issue rate results in the ROB

occupancy increase.

Table 1. Relative ROB occupancy increase during cache miss period.

ROB
occupancy

increase

Scenario

I

Scenario

II

Scenario

I

Scenario

II

bzip2 165.0 88.6 applu 13.8 -4.9

crafty 179.6 63.6 apsi 46.6 18.2

gap 16.6 61.7 Art 31.7 56.9

gcc 97.7 43.9 equake 49.8 38.1

gzip 152.9 41.0 facerec 87.9 14.1

mcf 42.2 40.6 galgel 30.9 34.4

parser 31.3 102.3 lucas -0.7 54.0

twolf 81.8 58.8 mgrid 8.8 5.6

vortex 118.7 57.8 swim -4.3 11.4

vpr 96.6 55.7 wupwise 40.2 24.4

INT average 98.2 61.4 FP average 30.5 25.2

Our simulation results (not shown due to space limitation)

show that the IRF occupancy always grows for both scenarios

when experimenting with integer benchmarks. There is also a

similar case for FRF when running floating-point benchmarks

and only during scenario II. For the remaining cases, there is

significant variation across benchmarks (98% decreases to

580% increases). This is particularly the case for IRF with

floating-point benchmarks and for FRF with integer

benchmarks. Based on the results shown, in the next section

we propose a simple algorithm to reduce the power dissipation

in the ROB, the Register Files and the issue/wakeup units.

IV. PROPOSED CENTRALIZED APPROACH

The approach proposed in this paper aim to reduce the

dynamic and static power dissipation of the ROB, the Register

Files, and the Instruction Queue, by adaptive resizing.

Reducing the size of any of these units will require different

hardware modifications (which come at extra power/area cost)

which are decided by the resizing scheme. In order to

minimize the hardware cost, we propose a simple resizing

scheme and go from normal to half size and back. While this is

not the most optimal resizing scheme for individual units it is

the simplest one in terms of hardware modifications.

We propose to reduce the issue and the wakeup width of

the processor only during L2 miss service times (scenario I).

The results in Figure 1 show that the issue width for scenario II

is also reduced but not as significantly as it would have been in

scenario I. We are thus trying not to impact the IPC by

reducing the issue width for scenario II. Our experimental

results confirm this conjecture and show that the performance

degradation is not negligible.

Based on a significant increase in ROB occupancy during

cache miss periods, we propose to increase its size during such

periods (during both scenarios I and II). During normal

periods, we keep the ROB size at half its possible size.

The dynamic adaptation of register file requires more

caution since the FRF and IRF behave differently for integer

and floating-point benchmarks. Based on what discussed for

IRF we propose to increase its size during both scenarios I and

II and when running integer benchmarks. We propose to apply

a similar technique for FRF when running floating point

benchmark. In addition, as explained the IRF occupancy when

running floating point benchmarks is relatively small. Thus we

can reduce its size when running floating point benchmarks. A

similar case is true for FRF when running integer benchmarks.

After the cache miss period ends (start of normal period)

the ROB and register file occupancies decrease. We therefore

propose to reduce the size of ROB and register file by haf after

a cache miss period ends and once the augmented half part is

become empty.

A. Reducing the Effective Width of Issue and Wakeup

We propose reducing the size of the wakeup and issue width

from 4 to 2. In Figure 2 shows the circuit level implementation

for one row of the instruction queue. At each cycle, the match

lines are pre-charged high which allows the individual bits

associated with an instruction tag to be compared with the

results broadcasted on the taglines. Upon a mismatch, the

corresponding matchline is discharged. Otherwise, the match

line stays at Vdd, which indicates a tag match. At each cycle,

since we may have up to 4 instructions broadcasted on the

taglines, we need to have four sets of one-bit comparators for

each one-bit cell, as shown in Figure 2. All four matchlines

must be ORed together to detect a match on any of the

broadcasted tags. The result of the OR sets the ready bit of

instruction source operand showing that it is ready. As shown

in [14, 22], our results confirm that matchline discharge is the

major energy consumption activity responsible for more than

58% of the energy consumption in the instruction queue. As

the matchline must go across the entire width of the instruction

queue, it has a large wire capacitance. Adding the one-bit

comparators diffusion capacitance makes the equivalent

capacitance of matchline large. Pre-charging and discharging

this large capacitor is responsible for the majority of power

consumption in the instruction queue.

198
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

Previous studies have shown that a broadcasted tag has on

average one dependent instruction in the instruction queue [27].

In other words, most of the time, all the instruction queue

matchlines are discharged except one. For our configuration,

among 32x4 matchlines in the instruction queue on average in

each cycle, only one is not discharged. Discharging the other

matchlines will cause significant power dissipation in the

instruction queue.

Figure 2. Circuit implementation of instruction queue.

Results in Figure 1 showed the average issue rate (and of

course, the wakeup rate) to be far less than one for scenario I.

In other words, out of four taglines, on average only one carries

the broadcasted data from the functional units to all entries in

the instruction queue. This means that pre-charging the other

matchlines is not useful. We can thus avoid pre-charging such

matchlines by using a gated-Vdd transistor as shown in Figure

3(b). Therefore, the question is how to determine which set of

matchlines associated with specific tagline should be disabled

rather than pre-charged. The matchlines are being pre-charged

when the clock is low and are conditionally discharged

immediately after the results have been broadcasted on the

taglines (when the clock is high). Pre-charging the matchline

has to be done before the tags are broadcasted on the taglines.

In order to meet this deadline, we need to know the matchlines

associated with taglines which do not carry tags. This allows us

to disable them. In Figure 3(b) we show the circuit

modification needed to reduce the wakeup width from 4 to 2

and hence the disabling/pre-charging and discharging of half of

the matchlines. By multiplexing the data bus to taglines 1 and

3 we can safely turn off other matchlines associated with the

rest of the taglines. It should be noted that the multiplexing is

done only during those periods for which the average

issue/wakeup width is small; multiplexing the data bus over

taglines when the average issue rate is more than two can

significantly degrade the performance..

The worth case scenario in our design is the case in which

more than half of taglines are broadcasting tags during scenario

I where only half of matchlines are active. To respond to such

an event, we buffer (refer to as auxiliary broadcast buffer) half

of the tags and broadcast them whenever a tagline associated

with an active matchline becomes available. Considering the

very low average issue/wakeup rate during scenario I, such

worse case scenario happens very rarely. While it is extremely

rare, it is also possible that the auxiliary broadcast buffer

becomes full. Our experimental results show that a 4-entry

broadcast buffer is sufficient to minimize such occurrence. In

the very rare case that the broadcast buffer fills up, the

functional unit execution is stalled until the broadcast buffer

become available.

Reducing the wakeup/issue width during normal program

execution (when no cache miss is pending) requires a large

number of auxiliary broadcast buffers and comes at the cost of

a large power overhead which could adversely impact the

performance. This is another reason why we only apply

dynamic issue and wakeup width adaptation during scenario I.

 tag0 tag1 tag2 tag3

Select

tag0 tag1 tag2 tag3

Tag Lines Tag Lines

Drivers

(a) (b)

Wordline Precharge

Wordline Precharge
SLP
SLP

Figure 3. (a) Baseline issue/wake up logic (b) modified issue/wake up logic.

B. Dynamically Resizing ROB and Register Files

Figure 4 shows the circuit level implementation of an SRAM.

To read or write an entry each cycle all the bit lines must be

pre-charged high (fired). For write operations, the high voltage

on the bit lines induces a logic 1 into a cell for which the word

line is fired. To read the content of an entry, one of bit line or

bitline will be conditionally discharged. The sense amplifier

detects such a difference and will drive it to the output buffer.

Bit lines thus must run across the entire ROB or register file

height. As we may have multiple accesses to the same cell in a

cycle, the read bit line and the write bit line thus need to be

separated [28]. Hence, if we are to read N entries at each cycle

and write to W entries in the same cycle, we must have (N +

W) * 2 bit lines. In our design of register files, we have (8 + 4)

* 2 * 64 (data width is 64 bits) bit lines for register files and

(4+4) * 2 * 100 bit lines for ROB. Pre-charging and

discharging this large a number of bit lines is a major source of

power dissipation in these two structures [16, 28].

Figure 5 shows the breakdown of dynamic energy (for read

operations) and leakage power of the register file components.

The bit lines are the major consumers of power. It should be

noted that most of the leakage of bit lines is due to the leakage

currents of memory cells, which flow through the two off pass

transistor to the bit lines. Accordingly, by eliminating the

leakage in memory cells, we can eliminate the bit line leakage.

As shown, the ROB and register file utilization is relatively

low. Hence, one approach to reduce power dissipation in these

two units would be to turn off the unused entries and their

associated wordline drivers using circuit techniques such as

gated-Vdd or gated Vss and eliminating the leakage power

dissipation virtually completely (sleep mode). The transition

from sleep to active mode adds a one-cycle delay to the ROB or

register file access which has significant performance impact.

The algorithms proposed in the previous section reduce the

performance impact of frequently activating and deactivating

the entries. Resizing the ROB could be achieved by partitioning

it into several independent units with separate sense amps, pre-

chargers, input output drivers as explained in [16]. [16],

proposed to partition the ROB into 8 units. This requires 8

times more sense amps pre-charge lines and input and output

drivers compared to the non-partitioned structure. The cost in

199
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

terms of power and area is not negligible. To avoid adding to

the complexity of ROB and register files, we use the divided bit

line technique [26] proposed for SRAMs to reduce the bit line

capacitance and hence its dynamic power..

Local Wordline

Bitline Bitline

Sense amp

Output Drivers

Input Drivers

addr 0

addr 1

addr 2

addr 3

Decoder and Wordline Drivers

Figure 4. ROB and Register File SRAM Circuit

decode

8%

sense_am

p

4%

data

output

driver

29%

bitline and

memory

cell

58%

wordline

1%
sense_am

p

3%

bitline and

memory

cell

63%

decode

11%

wordline

8%

data output

driver

15%

Figure 5. (a) Dynamic energy (b) leakage power of the register file.

As shown in Figure 6,m two or more SRAM cells are

combined together to divide the bit line into several sub-bit

lines. In the non-divided bit line structure the bit line

capacitance is N * diffusion capacitance of pass transistors +

wire capacitance (usually 10% of total diffusion capacitance)

where N is the total number of rows (in our case 128 for ROB

and 128 for register files). In the divided bit line scheme the

equivalent bit line capacitance is reduced to M * diffusion

capacitance + wire capacitance, where M is the number of bit

line segments (sub-bit lines). As bit line dynamic power

dissipation is proportional to
2

cv , reducing the effective

capacitance would linearly reduces the bit line dynamic power.

It should be noted that the overhead of this technique is adding

a set of pass transistors per sub-bit line (shown in Figure 6 as

segment control switch). As a side effect, the large number of

segments increases the area and power overhead.

Wordline

Wordline

Segment Select

Wordline

Wordline

(Segment Select)

Pre -charge
Vdd Vdd

Segment Bit line

Bit line

Output Sense amp

(Downsizing Signal)
SS

DS

 Figure 6. Divided bit line circuit.

Since this technique is incorporated in CACTI [15], we

used the toolset to find the best number of bit line segments for

area and power optimizations. We found 8 bit line segments for

register files and the ROB results in minimal area and power

overhead. To downsize the ROB, the select signal of the lower

partition is being AND together with the downsize signal.

Doing that, no write and read can be done to/from the partition

and the entire partition can be turned off safely. To turn off the

entire partition we use the gated Vdd technique [25] to suppress

the voltage in all memory cells of the partition and eliminating

its leakage almost completely. We also use a similar technique

to eliminate leakage in the wordline driver of the disabled

partition. Beginning of a cache miss period triggers upsizing

the unit by de-asserting the downsize signal and turning on the

disabled partition. The overhead of downsizing and upsizing is

1 cycle (gated-Vdd overhead). The end of cache miss period

triggers downsizing the ROB. Note that the downsize signal is

asserted only when the segment is empty.

The benefits of such resizing is in reducing both dynamic

and leakage power. Leakage is suppressed by turning off the

entire segment of memory cells and wordline driver. Dynamic

power is reduced due to a smaller equivalent capacitance on the

bit lines. The same hardware modification is applied to register

files.

The same approach applied to ROB is being applied to IRF

and FRF when running integer and floating point benchmarks

respectively. In addition, the downsize signal is kept asserted

always for IRF when running floating point benchmarks and

for FRF when running integer benchmarks It should be noted

that Once the cache miss period ends and the augmented half

(lower partition) becomes empty, the size of ROB and register

file is reduced back to half of their size. This requires detecting

when the lower partition becomes empty after the end of cache

miss period. This can be accomplished by using an additional

bit in each row (entry) of the lower partition. This bit is set

when an entry in the lower partition is used (register write) and

reset when the entry is released (during commit).

V. EXPERIMENTAL METHODOLOGY

To evaluate the proposed approach, we estimate the leakage

and dynamic power reduction, the total energy-delay reduction,

and the IPC change. Table II describes the processor

architecture, the clock frequency is 2GHz. SPEC2K

benchmarks were compiled with the O4 flag using the Compaq

compiler for the Alpha 21264 processor and executed with

reference data sets.
Table II. Processor organization

L1 I-

cache

128KB, 64 byte/line, 2

cycles

Instruction

queue

64 entry (32 INT

and 32 FP)

L1 D-

cache

128KB, 64 byte/line, 2

cycles, 2 R/W ports
Register

file

128 integer and 128

floating-point

L2 cache 4MB, 8 way, 64

byte/line, 20 cycles

Load/store

queue

32 entry load and 32

entry store

issue 4 way out of order Arithmetic

unit

4 integer, 4 fp units

Branch

predictor

64KB entry g-

share,4K-entry BTB

Complex

unit

2 INT, 2 FP

multiply/divide units

Reorder

buffer

128 entry Pipeline 15 cycles (some stages

 are multi-cycles)

(a) (b)

200
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

The architecture was simulated using an extensively modified

version of SimpleScalar 4.0 [23]. The benchmarks were fast–

forwarded for 2 billion instructions, then fully simulated for 2

billion instructions. A modified version of Cacti4 [15] was

used for estimating power in the ROB and the Register files in

65nm technology. The power in the Instruction Queue was

evaluated using Spice and the TSMC 65nm technology with

Vdd at 1.08 volts.

VI. RESULTS

Power savings and performance changes associated with

our approach are shown in Figures 7 and 8. The approach is

used for the ROB, register files, and issue/wakeup width

simultaneously. Figure 7 shows the fraction of execution time

when the ROB, IRF and FRF and issue/wakeup width were

reduced to half their size for each benchmark.

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip
2

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

tw
ol
f

vo
rte

x
vp

r

IN
T
a
ve

ra
ge

ap
pl
u

ap
si A

rt

eq
ua

ke

fa
ce

re
c

ga
lg
el

lu
ca

s

m
gr
id

sw
im

w
up

w
is
e

FP
 a

ve
ra
ge

IRF

FRF

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip
2

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

tw
ol
f

vo
rte

x
vp

r

IN
T
 a
ve

ra
ge

ap
pl
u

ap
si

A
rt

eq
ua

ke

fa
ce

re
c

ga
lg
el

lu
ca

s

m
gr

id

sw
im

w
up

w
is
e

F
P
 a
ve

ra
ge

ROB

Issue/Wakeup Width

Figure 7. % size reduction for (a) IRF, FRF and (b) ROB, and issue /

wakeup width.

IPC reduction is shown in Figure 8. Leakage and dynamic

power reduction for individual units is shown in Figure 9. On

average, the performance loss is 0.9% for integer benchmarks

and 2.2% for floating-point benchmarks. The issue/wakeup

width is reduced from 4 to 2 for 21% of integer benchmarks’

life time (maximum is 88% for mcf). It is higher for floating-

point benchmarks: 48% on average (maximum 90% for swim).

This difference means that integer benchmarks consume more

issue bandwidth compared to floating-point benchmarks.

IPC Degradation

0%

1%

2%

3%

4%

5%

6%

bz
ip

2

cr
af

ty
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

tw
ol

f

vo
rte

x
vp

r

IN
T a

ve
ra

ge

ap
pl

u
ap

si Art

eq
ua

ke

fa
ce

re
c

ga
lg

el

lu
ca

s

m
gr

id

sw
im

wupw
is

e

FP
 a

ve
ra

ge

Figure 8. IPC degradation due to resource resizing

The same Figure show that ROB and Integer register file

are kept in the low power mode for 51% of integer benchmarks

life time, while ROB and FRF are kept in the low power mode

for 26% of the floating-point benchmarks lifetime. As

explained earlier, our proposed algorithm keeps FRF and IRF

in the low power mode for the entire lifetime of integer

benchmarks and floating-point benchmarks respectively (bars

showing 100% in Figure 7).

Figure 10 shows the energy-delay product reduction. In

most benchmarks, our technique reduces the total energy-delay

product by up to 48% (in IQ for mcf). Some of the benchmarks

show a slight increase in their energy-delay. For ROB and FRF,

this is the case for lucas and mgrid with 3% and 1% increase

respectively. For the instruction queue, the energy-delay

product increases for twolf, apsi and facrec with 1.5%, 2.3%

and 0.8% respectively. For IRF the energy-delay decreases

across all benchmarks. On average the total energy-delay

product decreases by 15, 26, 20 and 17% for ROB, IRF, FRF

and instruction queue respectively.

(a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

bz
ip
2

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

tw
ol

f

vo
rte

x
vp

r

IN
T

av
er

ag
e

ap
pl
u

ap
si A

rt

eq
ua

ke

fa
ce

re
c

ga
lg
el

lu
ca

s

m
gr

id

sw
im

w
up

w
is
e

FP
 a

ve
ra

ge

ROB Leakage Power

ROB Dynamic Power

Instruction Queue Power

(b)

0%

5%

10%

15%

20%

25%

30%

35%

40%

bz
ip
2

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

tw
ol
f

vo
rte

x
vp

r

IN
T

av
er

ag
e

ap
pl
u

ap
si A

rt

eq
ua

ke

fa
ce

re
c

ga
lg
el

lu
ca

s

m
gr

id

sw
im

w
up

w
is
e

FP
 a

ve
ra

ge

IRF Leakage

IRF Dynamic

FRF Lekage

FRF Dynamic

Figure 9. Dynamic and Leakage Power reduction in (a) ROB and

Instruction Queue and (b) IRF and FRF.

In floating-point benchmarks the instruction queue benefits

considerably from our technique: power reduction reaches 45%

(24% on the average). The average savings are 11% for integer

benchmarks. For reorder buffer, our technique affects more

integer benchmarks; 19% dynamic power reduction and 23%

leakage power savings. As for floating-point benchmarks, the

leakage and dynamic power savings reach 10% and 9%

respectively. The average dynamic and leakage power savings

(floating-point and integer benchmarks) for IRF is 26% and

30% respectively (20% and 24% for FRF).

Total Energy-Delay Reduction

-10%

0%

10%

20%

30%

40%

50%

60%

bz
ip
2

cr
af
ty

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

tw
ol
f

vo
rt
ex vp

r

ap
pl
u

ap
si A

rt

eq
ua

ke

fa
ce

re
c

ga
lg
el

lu
ca

s

m
gr

id

sw
im

w
up

w
is
e

av
er

ag
e

ROB

IRF

FRF

Instruction Queue

Figure 10. Total energy-delay reduction.

201
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

Applying the new algorithm, the total energy-delay

product is reduced, on average, by 15%, 26%, 20% and 17%

for the reorder buffer, the integer register file, the floating-point

register file and the instruction queue, respectively, for

SPEC2K benchmarks. This comes at the cost of a 0.9% and

2.2% performance loss for integer and floating-point

benchmark, respectively.

Our future work is to investigate ways to utilize this

algorithm for other processor structures, such as BTB,

load/store queue, L1 and L2 caches.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation under Grant CCF-0541403. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views

of the US National Science Foundation.

REFERENCES

[1] R. Gonzalez, A. Cristal, A. Veidenbaum, and M. Valero, “A Content
Aware Register File Organization”, Proc. 31st International Symposium
on Computer Architecture (ISCA04).

[2] K. Choi, R. Soma, and M. Pedram, “Fine-Grained Dynamic Voltage and
Frequency Scaling for Precise Energy and Performance Tradeoff Based
on the Ratio of Off-Chip Access to On-Chip Computation Times”. IEEE
Transaction on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 1, January 2005.

[3] Marco A. Ramirez, Adrian Cristal, Alexander V. Veidenbaum, Luis Villa,
Mateo Valero. A New Pointer-based Instruction Queue Design and Its
Power-Performance Evaluation. Proc. of the IEEE Int'l Conference on
Computer Design (ICCD-2005).

[4] C. Hsu and W. Feng “Effective Dynamic Voltage Scaling through CPU-
Boundedness Detection”. 4th IEEE/ACM Workshop on Power-Aware
Computer Systems, December 2004.

[5] H. Li, C.-Y. Cher, T. Vijaykumar, and K. Roy. “VSV: L2-miss-driven
variable supply-voltage scaling for low power.” International Symposium
on Microarchitecture , December 2003.

[6] E. Borch, E. Tune, S. Manne, and J. Emer, “Loose loops sink chips,” In
Eighth International Symposium on High Performance Computer
Architecture, pages 299–310, Feb. 2002.

[7] D. Balkan, J. Sharkey, D. Ponomarev and A. Aggarwal, “Address- Value
decoupling for early register deallocation,” Proc. 35th Int’l Conf. on
Parallel Processing (ICPP-06).

[8] I. Park, M. D. Powell, and T. N. Vijaykumar, “Reducing register ports for
higher speed and lower energy,” In MICRO-35, Istanbul, Turkey,
November 2002.

[9] H. Homayoun, S. Pasricha, M. Makhzan, A. Veidenbaum, “Improving
Performance and Reducing Energy-Delay with Adaptive Resource
Resizing for Out-of-Order Embedded Processors”. ACM
SIGPLAN/SIGBED 2008 Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2008). Tucson, Arizona.

[10] M. Fleischmann. “Crusoe Power Management: Cutting x86 Operating
Power Through LongRun.” Embedded Processor Forum, June 2000.

[11] J. H. Tseng and Krste Asanović, “Banked multiported register files for
high-frequency superscalar microprocessors,” In 30th intl. symposium on
Computer architecture, June 2003.

[12] H. Homayoun and A. Baniasadi, “Using lazy instruction prediction to
reduce processor wakeup power dissipation.” The 2nd workshop on
unique chips and systems, in conjunction with the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS-
2006).

[13] E. Tune, R. Kumar D.M. Tullsen, and B. Calder, “Balanced
multithreading: Increasing throughput via a low cost multithreading
hierarchy,” In Proceedings of The 37th Annual International Symposium
on Microarchitecture (MICRO-37 2004), 4-8 December 2004, Portland,
OR, USA, pages 183–194. IEEE Computer Society, 2004.

[14] A. Buyuktosunoglu, D. H. Albonesi, P. Bose, P. W. Cook and S. E.
Schuster, “Tradeoffs in power-efficient issue queue design,” In
Proceedings of the 2002 International Symposium on Low Power
Electronics and Design, Aug. 2002.

[15] “Cacti4,” http://quid.hpl.hp.com:9081/cacti/.

[16] D. Ponomarev, G. Kucuk and K. Ghose, “Energy–Efficient design of the
reorder buffer,” PATMOS'02 Seville, Spain, September 2002.

[17] J.L. Ayala, M. Lopez-Vallejo, A. Veidenbaum and C.A. Lopez, “Energy
aware register file implementation through instruction predecode,”
Proceedings IEEE International Conference On Application-specific
Systems, Architectures, and Processors (ASIP03). June 2003

[18] D. Ponomarev G. Kucuk, K. Ghose, “Dynamic Allocation of Datapath
Resources for Low Power.” in Proc. Workshop on Complexity-Effective
Design (WCED'01), held in conjunction with ISCA 2001.

[19] H. Homayoun, S. Pasricha, M. Makhzan, A. Veidenbaum, “Dynamic
Register File Resizing and Frequency Scaling to Improve Embedded
Processor Performance and Energy-Delay Efficiency”, 45th Design
Automation Conference, Anaheim California, 2008.

[20] D. Albonesi, et al, “Dynamically Tuning Processor Resources with
Adaptive Processing”, IEEE Computer, Special Issue on Power-Aware
Computing, Dec. 2003.

[21] I. Bahar and Srilatha Manne, “Power and Energy Reduction Via Pipeline
Balancing”, Proc. International Symposium on Computer Architecture
(ISCA), 2001.

[22] R. Canal and A. Gonzalez, “Reducing the complexity of the issue logic,”
In Proceedings of 2001 International Conferences on Supercomputing,
June 2001.

[23] “SimpleScalar4 tutorial”, SimpleScalar LLC.
http://www.simplescalar.com/tutorial.html.

[24] R. Balasubramonian, S. Dwarkadas and D. H. Albonesi, “Reducing the
complexity of the register file in dynamic superscalar processors,”
MICRO 2001.

[25] M.D. Powell, S. Yang, B. Falsafi, K. Roy and T.N. Vijaykumar, “Gated
Vdd: A circuit technique to reduce leakage in deep-submicron cache
memories,” In Proc. IEEE ISLPED, 2000.

[26] A. Karandikar and K. K. Parhi, “Low power SRAM design using
hierarchical divided bit-line approach,” Prec. Of International Conference
on Computer Design, 1998.

[27] M. Huang, J. Renau and J. Torrellas, “Energy-efficient hybrid wakeup
logic,” Proceedings of the 2002 International Symposium on Low Power
Electronics and Design Aug. 2002.

[28] V. V. Zyuban and P. M. Kogge, “The energy complexity of register
files.” 1998 International Symposium on Low Power Electronics and
Design.

[29] D. Ponomarev, G Kucuk, K. Ghose “Reducing Power Requirements of
Instruction Scheduling Through Dynamic Allocation of Multiple
Datapath Resources”, Proc. 34th IEEE/ACM International Symposium on
Microarchitecture (MICRO-34), 2001.

[30] J. S. Hu, N. Vijaykrishnan and M. J. Irwin, “Exploring wakeup-free
instruction scheduling,” In Proceedings of the 10th International
Conference on High-Performance Computer Architecture (HPCA-10
2004), 14-18 February 2004, Madrid, Spain

202
Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

