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Abstract--Leakage and Dynamic power are a major challenge in 

microprocessor design.  Many circuit techniques along with 

micro-architectural innovations have been proposed to reduce 

power in individual processor units But it is not clear that these 

techniques can be combined. A centralized approach which can 

reduce power in more than one unit at a time with minimal the 

hardware overhead is needed. 

This paper proposes such a centralized approach that 

attempts to simultaneously reduce power in processor units with 

highest dissipation:  the reorder buffer, the instruction queue, and 

the integer and the floating-point register files. It is based on an 

observation that utilization for the aforementioned units varies 

significantly, during a period when an L2 cache miss or multiple 

L1 cache misses are pending as compared to a period when none 

of these are present. Therefore we propose to dynamically adjust 

the size and thus power dissipation of these resources during such 

periods.  Circuit level modifications required for such resource 

adaptation are presented. Simulation results for SPEC2K 

benchmarks show a substantial reduction in both leakage and 

dynamic power: the total dynamic power is reduced by as much as 

30, 31, 31 and 48% for the reorder buffer, the integer register file, 

the floating-point register file and the instruction queue, 

respectively. The reduction in leakage is up to 33% for reorder 

buffer and 37% for integer and floating-point register files. The 

total energy-delay product is reduced, on average, by 15, 26, 20 

and 17% for the reorder buffer, the integer register file, the 

floating-point register file and the instruction queue respectively. 

This comes at the cost of a performance impact which is as low as 

0.9% for integer and 2.2% for floating-point benchmarks. The 

required hardware modification is shown to be minimal. 

I. INTRODUCTION 

Both dynamic and leakage power dissipation are a major 

challenge in designing new processors, in particularly for deep 

sub-micron technology (65nm and below).  

For many individual processor units, several power 

reduction techniques have been proposed in the literature. 

Attempts have been made to either design new power-efficient 

units or to make current architectures more power-aware. 

However, the prior efforts have resulted in approaches which 

require considerable re-design and verification efforts. Further, 

it is not clear that these techniques can be combined, and, if 

they can be combined, that the power and energy-delay savings 

would still be considerable and whether the cumulative of the 

performance degradation and complexity they individually 

introduce would still be negligible.  The challenge is thus to 

find a centralized and simple algorithm which can reduce 

power for more than one unit (and ultimately the entire chip) 

and comes with the least amount of re-design and verification  

efforts, the lowest possible design risk (which would come with 

any new design) and the least hardware overhead.  Current 

industry trends towards deploying multi simple-cores processor 

on a single chip (multicore chips) emphasize the demand for 

such simple centralized solutions for power conservations 

rather than complex mechanisms.  

In recent years, several efforts have sought such 

centralized algorithm through two major approaches: either 

dynamically adapting the data-path resources for power 

conservation [18, 20, 21, 29] or dynamically adapting the 

voltage and frequency level at a fine granularity or at the entire 

chip [2, 4, 5].  These techniques have several drawbacks:  first, 

many of these techniques are unable to meet the performance 

requirements of high-end computing; for instance a 8.5% and a 

20% performance loss were reported in [18, 2] respectively. 

Second, many of these techniques introduce significant 

complexity and overhead: for instance cycle-by-cycle 

monitoring of program IPC, floating-point IPC, resource 

utilizations, commit rate or a combination of these [18, 20, 21, 

29]), which make them difficult to implement in practice.  In 

addition, circuit assist to deploy such architectural approach are 

less studied. This is particularly important for approaches using 

resource size adaptation since their effectiveness is influenced 

by the power/delay transition overhead associated when 

resizing resources. Such transition overhead is largely 

determined by a circuit implementation. 

The research presented in this paper falls into the first 

category and investigates dynamic recourses adaptation for 

power reduction. Unlike previous approaches which require 

continuous cycle-by-cycle monitoring of resource occupancy to 

predict future resource needs, our approach is deterministic 

rather than predictive. It relies on the fact that processor 

resource utilization deterministically vary significantly when 

cache miss(es) occur, especially the L2 cache miss(es).  There 

is thus no need for expensive cycle-by-cycle monitoring of 

processor resource occupancy. In addition, our technique 

requires minimal hardware modification. 

The approach proposed in this paper aims to reduce power 

in the reorder buffer (ROB), the instruction queue (IQ), the 

integer register file (IRF), and the floating-point register file 

(FRF) at the same time but with minimal hardware changes. 

Novel circuit techniques are presented to accomplish the 

proposed architectural strategy.  It is based on the observation 

that processor performance drops significantly after an L2 

cache miss. Similarly, a considerable performance reduction 

occurs during any period in which multiple L1 misses are 
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pending.  Indeed, during cache miss periods, the processor 

needs significantly lower issue/wakeup width, but a larger 

ROB and register files. Thus we propose to dynamically adjust 

the issue/ wake up width, and the size of the reorder buffer and 

of the IRF and FRF.  

This paper makes four major contributions: 

• It demonstrates a substantial, deterministic variation in 

processor resource utilization when one or more L2 

cache misses or at least three L1 cache misses are 

pending (the cache miss period) as compared to when 

none of these conditions are present, 

• It presents a control algorithm to dynamically adjust 

the size of these units during cache miss periods for 

power conservation, 

• It shows the minimal required hardware modifications 

to dynamically adjust the size of these units, 

• It presents Spice simulation results for the instruction 

queue (using CACTI 4.0 for ROB and register files) 

and shows a substantial reduction in both leakage and 

dynamic power at negligible or no performance cost.  

The rest of the paper is organized as follows:  related work 

and background are described in Section II. Section III presents 

the motivation for proposed architectural techniques.  Section 

IV describes our proposed architectural technique. We describe 

the issue/wakeup mechanism, ROB and register files 

functionality and their major sources of complexity and power 

consumption. We also discuss the circuit modification required 

to implement our architectural algorithm. Evaluation 

methodology is described in Sec. V, experimental results in 

Sec. VI and conclusions in Sec. VII. 

II. RELATED WORK AND BACKGROUND 

 
There is a significant body of work on the design of the 

Instruction Queue, of the ROB, and of the register file.  Indeed, 

several techniques have been proposed to reduce their power 

expenditure.  Yet, as we shall show, much improvement can 

still be achieved by our technique. 

A. Instruction Queue 

The Instruction Queue is a CAM-like structure which holds 

instructions until they can be issued. Four possible actions are 

associated with it: 

1) Set an entry for a new dispatched instruction, 

2) Read an entry to issue an instruction to a functional unit, 

3) Wakeup instructions waiting in the IQ once a result is 

ready, and 

4) Select instructions for issue when the instructions available 

exceed the processor issue limit (to which we refer as issue 

width or IW for short). 

The main complexity of the Instruction Queue stems from 

the associative search during the wakeup process. All above 

tasks are energy demanding and make the Instruction Queue 

one of the major energy consumers in the processor as shown 

in [12, 22, 30]. 

B. ROB and Register File 

The ROB and the register file are multi-ported SRAM 

structures with many functions: 

1) Setting entries for up to IW instructions in each cycle, 

2) Releasing up to IW entries during commit stage in a cycle,  

3) And flushing entries during the branch recovery. 

It is easy to recognize that, combined, these functions have 

high power dissipation (estimated to dissipate as much as 27% 

and 16%, respectively, of the total chip power [17]).  

C. Power Reduction 

There has been a significant body of work on reducing 

power in a single data-path component such as Instruction 

Queue, the ROB, and the register file. Most recently, Canal and 

Gonzalez [22] have proposed a scheme which schedules 

instructions based on their expected issue time. Homayoun et 

al. introduced the idea of lazy instructions and propose to 

selectively wakeup them once predicted [12].  Unlike the above 

algorithms which require substantial modifications or even 

complete re-design, our proposed architecture requires only 

minimal modification of a conventional instruction queue 

logic; using gated-Vdd transistor to power gate the match lines 

appropriately, and yet it is highly effective in reducing 

instruction queue power.   

In [16], it has been proposed to partition the ROB into 

independent units, each with a separate pre-charge, sense amp, 

input and output drivers and the ability to activate or deactivate 

each based on a continuous monitoring of the processor IPC.  

Our approach adaptively resizes the ROB, but does not require 

continuous monitoring of IPC (and thus does not require 

additional hardware and associated power overhead). Second, 

our proposed circuit requires minimal hardware modifications; 

an AND logic and a couple of pass transistors and a gated VSS 

transistor, unlike [16] which requires a separate sense amp, 

peripheral drivers and pre-charge units which require 

considerable modifications. Third, the performance loss 

associated with our proposed technique is less than that in [16], 

while it is incurred when the power reduction algorithm is 

applied to other units as well; IQ and IRF and FRF. 

Past work on the design of the register file mostly either 

attempt to limit the number of ports or limit its size [7, 8, 9, 11, 

17, 19].  In [17], it has been proposed to bypass the register 

information that will be used from the fetch stage to the decode 

stage, hence putting unused registers into the low power mode 

in the early pipeline stage. To avoid substantial performance 

penalty, the registers had to be put back to high power mode 

one cycle before being accessed. There are also proposals for 

reducing the number of ports at the cost of additional 

arbitration hardware. These techniques require substantial 

modifications to the pipeline. Borch et al. have discussed 

problems associated with reducing the number of register file 
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ports [6].  Further, banked register files, caching registers, and 

using 2-level register files have been investigated to reduce the 

number of registers and accordingly the required power [6, 11, 

24].  Many of these techniques are based on speculation. 

Relaxing physical register file release before the commit 

stage and before all its consumers have read it has been studied 

in [7].The drawback of these techniques is in the complexity 

that speculation adds and more specifically the complexity they 

introduce on handling the coherency in register caches and 

banking conflicts.  

There have also been some recent projects dealing with 

centralized techniques which tackle power reduction in 

multiple data-path components, either by dynamically adapting 

the data-path resources for power conservation [18, 20, 21, 29] 

or dynamically adapting the voltage and frequency level at a 

fine granularity or at the entire chip level [2,4, 5].  

Ponemarev et al. [18, 29] proposed to monitor processor 

resource occupancies (infrequently) on which they base an 

estimate for future requirements.  In fact this does not always 

result in correct estimation and thus it can incur performance 

penalty. Indeed, mis-predictions mostly occurs when an 

L2/multiple L1 cache miss/es occurs during which processor 

resource occupancy grows significantly (as we will show in 

this paper) and is not necessarily correlated to its past behavior. 

This results in a significant performance degradation for 

benchmarks with high L2 cache miss rate such as vortex and 

applu (8% and 14% performance loss reported in [18, 29] 

respectively). Thus it is important to take L1 and L2 cache miss 

rate into consideration for resource adaptation. 

Bahar and Manne [21] studied resource adaptation for a 

multi-clustered Compaq 21264 processor for which the 

dispatch rate can varies between 2, 4, and 6 to allow the unused 

clustered to be shut off. Such variations are triggered when the 

overall and floating-point IPC pass a threshold and require a 

significant overhead of cycle by cycle monitoring dispatch unit, 

IPC, etc. The power reduction of reorder buffer has not been 

explored in this work. 

Li et al. have proposed to apply voltage scaling during L2 

cache-miss service time [5]. In fact applying voltage scaling for 

such small period is not practical. For instance as reported in 

[10] applying voltage scaling to the Intel Xscale requires 20 

microseconds which translates to thousands of processor 

cycles.  This is far more than a few hundred cycles of L2 cache 

miss service time. 

III. MOTIVATION 

A load instruction missing in the cache (DL1 or L2) prevents 

any dependent instruction from being issued.  Dependent 

instructions thus fill up the reorder buffer, the instruction 

queue, the register files, and/or the load and store queues 

(LQ/SQ) until the miss returns. We now briefly study the ROB, 

the instruction queue and the register file status during such 

period for baseline architecture. At each cycle, up to IW (in our 

case 4) instructions are dispatched to the ROB and up to IW 

physical registers are being allocated out of the pool of free 

registers. To allocate new instructions, the processor releases 

up to IW committed-instruction physical registers and their 

ROB entries. This is being done in program order to handle 

precise interrupts. When a cache miss occurs, the load miss 

instruction stays on top of the ROB and does not allow any 

subsequent instruction to be committed. As a result, the 

allocated ROB and register files entries for subsequent 

instructions cannot be released. Thus, while the processor 

dispatched up to IW instructions at each cycle, it cannot release 

the ROB and the register file entries for the subsequent 

instructions until the miss returns. This will gradually increase 

the occupancy of the ROB and of the register files and 

consequently reduce the processor issue rate. The same 

scenario occurs for LQ/SQ and IQ: the subsequent dependent 

instruction to the load cache miss cannot be issued due to the 

data dependency. Such instructions reside in the IQ until the 

miss returns. Accordingly, the IQ occupancy increases but due 

to data dependencies, very few out of these can be issued. 

Given the long cache miss service time (20 cycles for DL1 

and 300 cycles for L2 in our architecture), the above scenario 

can happen quite frequently. In the event of a L2 miss, due to 

the long service time, either ROB, LQ/SQ or instruction queue 

fills up with subsequent instructions and the processor ends up 

stalled (issue rate = 0) until the miss is serviced. We refer to 

this as scenario I. 

In the event of a DL1 miss, the service time is much 

smaller than it would be for L2 and it is less likely that any of 

LQ/SQ, ROB and IQ (all referred as queues) fills up before the 

cache miss is serviced.  Note that when a DL1 cache miss 

occurs, its dependent instructions cannot be issued and that all 

the subsequent instructions cannot be committed as discussed 

above. This reduces the issue rate and increases the occupancy 

of the aforementioned queues. In the presence of many pending 

DL1 cache misses, the impact on the issue rate could be large. 

Also, the occupancy of queues increases significantly. We refer 

to the case with multiple DL1 misses pending as scenario II. 

We refer to the period during which one or more L2 

miss/misses and/or multiple DL1 misses are pending as the 

“cache miss period,” and to the rest of program execution time 

as the “normal period.” 

It should be noted that the two scenarios discussed above 

would occur when the missed load is part of a correct 

prediction path, otherwise after the correct path has been 

identified, the missed load instruction will be flushed and will 

release ROB/IQ/ LQ/SQ entries so that program execution can 

continue (return to the normal period). 

Figures 1 and Table I, show statistics for the above 

discussed structure during a cache miss period. Fig. 1, presents 

the issue rate reduction for scenario I compared to when there 

is no pending L2 miss and issue rate reduction for scenario II 

compared to the period where there are less than 3 pending 

DL1 misses. The issue rate decreases significantly in both 

cases. Across all benchmarks, the issue rate drops by more than 

80% for scenario I. For the case of 3 DL1 misses, the reduction 

across benchmarks varies significantly; from 60% for facerec 

to around -1% for gcc and swim. The average is a 22% 
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reduction for integer benchmarks and 32.6% reduction for 

floating-point benchmarks.  

The reduction in issue rate during the cache miss period, as 

shown above, results in a gradual increase in the occupancy of 

ROB (reported in Table I). For integer benchmarks, the ROB 

occupancy grows substantially; 98.2% for scenario I and 61.4%  
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Figure 1. Issue rate decrease for scenario I and II. 

for scenario II. This growth is less significant for floating-point 

benchmarks: 30.5% for scenario I and 25% for scenario II. As 

expected, for most benchmarks, the ROB occupancy is smaller 

for scenario II compared to I. This is consistent with the results 

in Figure 1: the reduction in issue rate results in the ROB 

occupancy increase.  

Table 1. Relative ROB occupancy increase during cache miss period. 

ROB 
occupancy 

increase 

Scenario 

I 

Scenario 

II 
 

Scenario 

I 

Scenario 

II 

bzip2 165.0 88.6 applu 13.8 -4.9 

crafty 179.6 63.6 apsi 46.6 18.2 

gap 16.6 61.7 Art 31.7 56.9 

gcc 97.7 43.9 equake 49.8 38.1 

gzip 152.9 41.0 facerec 87.9 14.1 

mcf 42.2 40.6 galgel 30.9 34.4 

parser 31.3 102.3 lucas -0.7 54.0 

twolf 81.8 58.8 mgrid 8.8 5.6 

vortex 118.7 57.8 swim -4.3 11.4 

vpr 96.6 55.7 wupwise 40.2 24.4 

INT average 98.2 61.4 FP average 30.5 25.2 

Our simulation results (not shown due to space limitation) 

show that the IRF occupancy always grows for both scenarios 

when experimenting with integer benchmarks. There is also a 

similar case for FRF when running floating-point benchmarks 

and only during scenario II.  For the remaining cases, there is 

significant variation across benchmarks (98% decreases to 

580% increases).  This is particularly the case for IRF with 

floating-point benchmarks and for FRF with integer 

benchmarks.  Based on the results shown, in the next section 

we propose a simple algorithm to reduce the power dissipation 

in the ROB, the Register Files and the issue/wakeup units. 

IV. PROPOSED CENTRALIZED APPROACH 

The approach proposed in this paper aim to reduce the 

dynamic and static power dissipation of the ROB, the Register 

Files, and the Instruction Queue, by adaptive resizing. 

Reducing the size of any of these units will require different 

hardware modifications (which come at extra power/area cost) 

which are decided by the resizing scheme.  In order to 

minimize the hardware cost, we propose a simple resizing 

scheme and go from normal to half size and back. While this is 

not the most optimal resizing scheme for individual units it is 

the simplest one in terms of hardware modifications.  

We propose to reduce the issue and the wakeup width of 

the processor only during L2 miss service times (scenario I).   

The results in Figure 1 show that the issue width for scenario II 

is also reduced but not as significantly as it would have been in 

scenario I.  We are thus trying not to impact the IPC by 

reducing the issue width for scenario II.  Our experimental 

results confirm this conjecture and show that the performance 

degradation is not negligible.  

Based on a significant increase in ROB occupancy during 

cache miss periods, we propose to increase its size during such 

periods (during both scenarios I and II).  During normal 

periods, we keep the ROB size at half its possible size.  

The dynamic adaptation of register file requires more 

caution since the FRF and IRF behave differently for integer 

and floating-point benchmarks. Based on what discussed for 

IRF we propose to increase its size during both scenarios I and 

II and when running integer benchmarks. We propose to apply 

a similar technique for FRF when running floating point 

benchmark. In addition, as explained the IRF occupancy when 

running floating point benchmarks is relatively small. Thus we 

can reduce its size when running floating point benchmarks. A 

similar case is true for FRF when running integer benchmarks.  

After the cache miss period ends (start of normal period) 

the ROB and register file occupancies decrease. We therefore 

propose to reduce the size of ROB and register file by haf after 

a cache miss period ends and once the augmented half part is 

become empty.  

 

A.   Reducing the Effective Width of Issue and Wakeup 

We propose reducing the size of the wakeup and issue width 

from 4 to 2.  In Figure 2 shows the circuit level implementation 

for one row of the instruction queue.  At each cycle, the match 

lines are pre-charged high which allows the individual bits 

associated with an instruction tag to be compared with the 

results broadcasted on the taglines. Upon a mismatch, the 

corresponding matchline is discharged.  Otherwise, the match 

line stays at Vdd, which indicates a tag match.  At each cycle, 

since we may have up to 4 instructions broadcasted on the 

taglines, we need to have four sets of one-bit comparators for 

each one-bit cell, as shown in Figure 2.  All four matchlines 

must be ORed together to detect a match on any of the 

broadcasted tags.  The result of the OR sets the ready bit of 

instruction source operand showing that it is ready. As shown 

in [14, 22], our results confirm that matchline discharge is the 

major energy consumption activity responsible for more than 

58% of the energy consumption in the instruction queue.  As 

the matchline must go across the entire width of the instruction 

queue, it has a large wire capacitance.  Adding the one-bit 

comparators diffusion capacitance makes the equivalent 

capacitance of matchline large. Pre-charging and discharging 

this large capacitor is responsible for the majority of power 

consumption in the instruction queue. 
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Previous studies have shown that a broadcasted tag has on 

average one dependent instruction in the instruction queue [27]. 

In other words, most of the time, all the instruction queue 

matchlines are discharged except one. For our configuration, 

among 32x4 matchlines in the instruction queue on average in 

each cycle, only one is not discharged. Discharging the other 

matchlines will cause significant power dissipation in the 

instruction queue.    

 
Figure 2. Circuit implementation of instruction queue. 

Results in Figure 1 showed the average issue rate (and of 

course, the wakeup rate) to be far less than one for scenario I.  

In other words, out of four taglines, on average only one carries 

the broadcasted data from the functional units to all entries in 

the instruction queue.  This means that pre-charging the other 

matchlines is not useful.  We can thus avoid pre-charging such 

matchlines by using a gated-Vdd transistor as shown in Figure 

3(b). Therefore, the question is how to determine which set of 

matchlines associated with specific tagline should be disabled 

rather than pre-charged. The matchlines are being pre-charged 

when the clock is low and are conditionally discharged 

immediately after the results have been broadcasted on the 

taglines (when the clock is high).  Pre-charging the matchline 

has to be done before the tags are broadcasted on the taglines. 

In order to meet this deadline, we need to know the matchlines 

associated with taglines which do not carry tags. This allows us 

to disable them.  In Figure 3(b) we show the circuit 

modification needed to reduce the wakeup width from 4 to 2 

and hence the disabling/pre-charging and discharging of half of 

the matchlines.  By multiplexing the data bus to taglines 1 and 

3 we can safely turn off other matchlines associated with the 

rest of the taglines. It should be noted that the multiplexing is 

done only during those periods for which the average 

issue/wakeup width is small; multiplexing the data bus over 

taglines when the average issue rate is more than two can 

significantly degrade the performance.. 

The worth case scenario in our design is the case in which 

more than half of taglines are broadcasting tags during scenario 

I where only half of matchlines are active. To respond to such 

an event, we buffer (refer to as auxiliary broadcast buffer) half 

of the tags and broadcast them whenever a tagline associated 

with an active matchline becomes available. Considering the 

very low average issue/wakeup rate during scenario I, such 

worse case scenario happens very rarely. While it is extremely 

rare, it is also possible that the auxiliary broadcast buffer 

becomes full. Our experimental results show that a 4-entry 

broadcast buffer is sufficient to minimize such occurrence. In 

the very rare case that the broadcast buffer fills up, the 

functional unit execution is stalled until the broadcast buffer 

become available.  

Reducing the wakeup/issue width during normal program 

execution (when no cache miss is pending) requires a large 

number of auxiliary broadcast buffers and comes at the cost of 

a large power overhead which could adversely impact the 

performance. This is another reason why we only apply 

dynamic issue and wakeup width adaptation during scenario I. 

 tag0 tag1 tag2 tag3 

Select 

tag0 tag1 tag2 tag3 

Tag Lines Tag Lines 

Drivers 

(a) (b)

Wordline      Precharge 

Wordline      Precharge 
SLP 
SLP 

 
Figure 3. (a) Baseline issue/wake up logic (b) modified issue/wake up logic. 
 
 

B.  Dynamically Resizing ROB and Register Files  

Figure 4 shows the circuit level implementation of an SRAM. 

To read or write an entry each cycle all the bit lines must be 

pre-charged high (fired).  For write operations, the high voltage 

on the bit lines induces a logic 1 into a cell for which the word 

line is fired. To read the content of an entry, one of bit line or 

bitline  will be conditionally discharged.  The sense amplifier 

detects such a difference and will drive it to the output buffer. 

Bit lines thus must run across the entire ROB or register file 

height. As we may have multiple accesses to the same cell in a 

cycle, the read bit line and the write bit line thus need to be 

separated [28].  Hence, if we are to read N entries at each cycle 

and write to W entries in the same cycle, we must have (N + 

W) * 2 bit lines.  In our design of register files, we have (8 + 4) 

* 2 * 64 (data width is 64 bits) bit lines for register files and 

(4+4) * 2 * 100 bit lines for ROB.  Pre-charging and 

discharging this large a number of bit lines is a major source of 

power dissipation in these two structures [16, 28].  

Figure 5 shows the breakdown of dynamic energy (for read 

operations) and leakage power of the register file components. 

The bit lines are the major consumers  of power.  It should be 

noted that most of the leakage of bit lines is due to the leakage 

currents of memory cells, which flow through the two off pass 

transistor to the bit lines. Accordingly, by eliminating the 

leakage in memory cells, we can eliminate the bit line leakage. 

As shown, the ROB and register file utilization is relatively 

low. Hence, one approach to reduce power dissipation in these 

two units would be to turn off the unused entries and their 

associated wordline drivers using circuit techniques such as 

gated-Vdd or gated Vss and eliminating the leakage power 

dissipation virtually completely (sleep mode). The transition 

from sleep to active mode adds a one-cycle delay to the ROB or 

register file access which  has significant performance impact. 

The algorithms proposed in the previous section reduce the 

performance impact of frequently activating and deactivating 

the entries. Resizing the ROB could be achieved by partitioning 

it into several independent units with separate sense amps, pre-

chargers, input output drivers as explained in [16]. [16], 

proposed to partition the ROB into 8 units. This requires 8 

times more sense amps pre-charge lines and input and output 

drivers compared to the non-partitioned structure.  The cost in 
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terms of power and area is not negligible. To avoid adding to 

the complexity of ROB and register files, we use the divided bit 

line technique [26] proposed for  SRAMs to reduce the bit line 

capacitance and hence its dynamic power.. 

  
Local Wordline

Bitline Bitline

Sense amp

Output Drivers

Input Drivers

addr 0

addr 1

addr 2

addr 3

Decoder and Wordline Drivers

 
Figure 4. ROB and Register File SRAM Circuit  
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Figure 5. (a)  Dynamic energy (b) leakage power of the register file. 

As shown in Figure 6,m two or more SRAM cells are 

combined together to divide the bit line into several sub-bit 

lines. In the non-divided bit line structure the bit line 

capacitance is N * diffusion capacitance of pass transistors + 

wire capacitance (usually 10% of total diffusion capacitance) 

where N is the total number of rows (in our case 128 for ROB 

and 128 for register files). In the divided bit line scheme the 

equivalent bit line capacitance is reduced to M * diffusion 

capacitance + wire capacitance, where M is the number of bit 

line segments (sub-bit lines). As bit line dynamic power 

dissipation is proportional to 
2

cv , reducing the effective 

capacitance would linearly reduces the bit line dynamic power. 

It should be noted that the overhead of this technique is adding 

a set of pass transistors per sub-bit line (shown in Figure 6 as 

segment control switch). As a side effect, the large number of 

segments increases the area and power overhead.  

   

Wordline

Wordline

Segment Select 

Wordline

Wordline

(Segment Select) 

Pre -charge 
Vdd Vdd 

Segment Bit line

Bit line

Output Sense amp

( Downsizing Signal ) 
SS

DS 

 
   Figure 6. Divided bit line circuit. 

Since this technique is incorporated in CACTI [15], we 

used the toolset to find the best number of bit line segments for 

area and power optimizations. We found 8 bit line segments for 

register files and the ROB results in minimal area and power 

overhead. To downsize the ROB, the select signal of the lower 

partition is being AND together with the downsize signal. 

Doing that, no write and read can be done to/from the partition 

and the entire partition can be turned off safely. To turn off the 

entire partition we use the gated Vdd technique [25] to suppress 

the voltage in all memory cells of the partition and eliminating 

its leakage almost completely. We also use a similar technique 

to eliminate leakage in the wordline driver of the disabled 

partition. Beginning of a cache miss period triggers upsizing 

the unit by de-asserting the downsize signal and turning on the 

disabled partition. The overhead of downsizing and upsizing is 

1 cycle (gated-Vdd overhead). The end of cache miss period 

triggers downsizing the ROB. Note that the downsize signal is 

asserted only when the segment is empty. 

The benefits of such resizing is in reducing both dynamic 

and leakage power. Leakage is suppressed by turning off the 

entire segment of memory cells and wordline driver. Dynamic 

power is reduced due to a smaller equivalent capacitance on the 

bit lines. The same hardware modification is applied to register 

files.  

The same approach applied to ROB is being applied to IRF 

and FRF when running integer and floating point benchmarks 

respectively. In addition, the downsize signal is kept asserted 

always for IRF when running floating point benchmarks and 

for FRF when running integer benchmarks It should be noted 

that Once the cache miss period ends and the augmented half 

(lower partition) becomes empty, the size of ROB and register 

file is reduced back to half of their size.  This requires detecting 

when the lower partition becomes empty after the end of cache 

miss period. This can be accomplished by using an additional 

bit in each row (entry) of the lower partition. This bit is set 

when an entry in the lower partition is used (register write) and  

reset when the entry is released (during commit).  

V. EXPERIMENTAL METHODOLOGY  

To evaluate the proposed approach, we estimate the leakage 

and dynamic power reduction, the total energy-delay reduction, 

and the IPC change. Table II describes the processor 

architecture, the clock frequency is 2GHz. SPEC2K 

benchmarks were compiled with the O4 flag using the Compaq 

compiler for the Alpha 21264 processor and executed with 

reference data sets.  
Table II. Processor organization 

L1 I-

cache 

128KB, 64 byte/line, 2 

cycles 

Instruction 

queue 

64 entry (32 INT  

and 32 FP) 

L1 D-

cache 

128KB, 64 byte/line, 2 

cycles, 2 R/W ports 
Register 

file 

128 integer and 128  

floating-point 

L2 cache 4MB, 8 way, 64 

byte/line, 20 cycles 

Load/store 

queue 

32 entry load and 32  

entry store 

issue 4 way out of order Arithmetic 

unit 

4 integer, 4 fp units 

Branch 

predictor 

64KB entry g-

share,4K-entry BTB 

Complex 

unit 

2 INT, 2 FP  

multiply/divide units 

Reorder 

buffer 

128 entry Pipeline 15 cycles (some stages 

 are multi-cycles) 

(a) (b) 
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The architecture was simulated using an extensively modified 

version of SimpleScalar 4.0 [23]. The benchmarks were fast–

forwarded for 2 billion instructions, then fully simulated for 2 

billion instructions.  A modified version of Cacti4 [15] was 

used for estimating power in the ROB and the Register files in 

65nm technology.  The power in the Instruction Queue was 

evaluated using Spice and the  TSMC 65nm technology with 

Vdd at 1.08 volts.  

VI. RESULTS 

Power savings and performance changes associated with 

our approach are shown in Figures 7 and 8.  The approach is 

used for the ROB, register files, and issue/wakeup width 

simultaneously.  Figure 7 shows the fraction of execution time 

when the ROB, IRF and FRF and issue/wakeup width were 

reduced to half their size for each benchmark. 
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Figure 7. % size reduction for (a) IRF, FRF and (b) ROB, and issue / 

wakeup width. 

IPC reduction is shown in Figure 8. Leakage and dynamic 

power reduction for individual units is shown in Figure 9. On 

average, the performance loss is 0.9% for integer benchmarks 

and 2.2% for floating-point benchmarks. The issue/wakeup 

width is reduced from 4 to 2 for 21% of integer benchmarks’ 

life time (maximum is 88% for mcf).  It is higher for floating-

point benchmarks: 48% on average (maximum 90% for swim). 

This difference means that integer benchmarks consume more 

issue bandwidth compared to floating-point benchmarks.   
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Figure 8. IPC degradation due to resource resizing 

The same Figure show that ROB and Integer register file 

are kept in the low power mode for 51% of integer benchmarks 

life time, while ROB and FRF are kept in the low power mode  

for 26% of the floating-point benchmarks lifetime. As 

explained earlier, our proposed algorithm keeps FRF and IRF 

in the low power mode for the entire lifetime of integer 

benchmarks and floating-point benchmarks respectively (bars 

showing 100% in Figure 7). 

Figure 10 shows the energy-delay product reduction. In 

most benchmarks, our technique reduces the total energy-delay 

product by up to 48% (in IQ for mcf). Some of the benchmarks 

show a slight increase in their energy-delay. For ROB and FRF, 

this is the case for lucas and mgrid with 3% and 1% increase 

respectively.  For the instruction queue, the energy-delay 

product increases for twolf, apsi and facrec with 1.5%, 2.3% 

and 0.8% respectively. For IRF the energy-delay decreases 

across all benchmarks. On average the total energy-delay 

product decreases by 15, 26, 20 and 17% for ROB, IRF, FRF 

and instruction queue respectively. 
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Figure 9. Dynamic and Leakage Power reduction in (a) ROB and 

Instruction Queue and (b) IRF and FRF. 

In floating-point benchmarks the instruction queue benefits 

considerably from our technique: power reduction reaches 45% 

(24% on the average). The average savings are 11% for integer 

benchmarks. For reorder buffer, our technique affects more 

integer benchmarks; 19% dynamic power reduction and 23% 

leakage power savings. As for floating-point benchmarks, the 

leakage and dynamic power savings reach 10% and 9% 

respectively.  The average dynamic and leakage power savings 

(floating-point and integer benchmarks) for IRF is 26% and 

30% respectively (20% and 24% for FRF).  
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Figure 10. Total energy-delay reduction. 
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Applying the new algorithm, the total energy-delay 

product is reduced, on average, by 15%, 26%, 20% and 17% 

for the reorder buffer, the integer register file, the floating-point 

register file and the instruction queue, respectively, for 

SPEC2K benchmarks. This comes at the cost of a 0.9% and 

2.2% performance loss for integer and floating-point 

benchmark, respectively. 

Our future work is to investigate ways to utilize this 

algorithm for other processor structures, such as BTB, 

load/store queue, L1 and L2 caches.  
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