
Efficient Utilization of Adversarial Training towards Robust
Machine Learners and its Analysis

(Invited Paper)
Sai Manoj P D

George Mason University
Fairfax, VA

spudukot@gmu.edu

Sairaj Amberkar
George Mason University

Fairfax, VA
samberka@gmu.edu

Setareh Rafatirad
George Mason University

Fairfax, VA
srafatir@gmu.edu

Houman Homayoun
George Mason University

Fairfax, VA
hhomayou@gmu.edu

ABSTRACT
Advancements in machine learning led to its adoption into numer-
ous applications ranging from computer vision to security. Despite
the achieved advancements in the machine learning, the vulnera-
bilities in those techniques are as well exploited. Adversarial sam-
ples are the samples generated by adding crafted perturbations to
the normal input samples. An overview of different techniques to
generate adversarial samples, defense to make classifiers robust
is presented in this work. Furthermore, the adversarial learning
and its effective utilization to enhance the robustness and the re-
quired constraints are experimentally provided, such as up to 97.65%
accuracy even against CW attack. Though adversarial learning’s
effectiveness is enhanced, still it is shown in this work that it can
be further exploited for vulnerabilities.
ACM Reference Format:
Sai Manoj P D, Sairaj Amberkar, Setareh Rafatirad, and Houman Homay-
oun. 2018. Efficient Utilization of Adversarial Training towards Robust
Machine Learners and its Analysis. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD ’18), November 5–8, 2018, San Diego, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3240765.3267502

1 INTRODUCTION
Machine learning (ML), especially the deep neural networks (DNNs)
and the convolutional neural networks (CNNs) have transformed
the processing capabilities of the present day computing systems.
These techniques are widely deployed in different domains rang-
ing from computer vision to hardware security. For instance, au-
tonomous driving is envisaged due to the advancements in the
field of ML and computer vision [1–3]. Similarly, ML has made
its impact on malware and side-channel attack detection towards
securing the computing systems [4–8]. Despite the benefits offered
by the advancements in the ML, it has also been exploited for the
vulnerabilities in the existing ML techniques.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3267502

Though the ML techniques are shown to be robust to the noise,
the exposed vulnerabilities have shown that the outcome of the ML
can be manipulated by adding crafted perturbations to the input
data [9–12], often referred as Adversarial samples. These adversarial
samples are constructed by perturbing the input in one or multiple
cycles iteratively under certain constraints in order to amplify the
classification error rate.

A simple adversarial sample generated from the MNIST digit
dataset [13] for digit ‘9’ is shown in Figure 1. The Figure 1(a) is
the normal sample which is classified as 9 by the DNN classifier,
presented in Section 3. The images in Figure 1(b), (c) are gener-
ated by the fast gradient sign method (FGSM) and Carlini Wagner
(CW) attack techniques, respectively. One can observe from the
Figure 1(a), (b) and (c) that the normal and adversarial samples look
similar for human observation. It needs to be noted that the noise
in Figure 1 (b) and (c) can be increased or reduced by tuning the
parameters of the attack. With the change in attack parameters, the
classifier output and it’s confidence will be modified. More details
on generating the adversarial attacks are presented in Section 2.1,
and the details regarding the classifier architecture and the dataset
are presented in Section 3.

0 5 10 15 20 25

0

5

10

15

20

25

(a) Normal
MNIST
Digit ‘9’

0 5 10 15 20 25

0

5

10

15

20

25

(b) FGSM -
classified as
Digit ‘4’

0 5 10 15 20 25

0

5

10

15

20

25

(c) CW -
classified as
Digit ‘4’

0 5 10 15 20 25

0

5

10

15

20

25

(d) MNIST
image of a
‘shoe’

0 5 10 15 20 25

0

5

10

15

20

25

(e) FGSM -
classified as
Sneaker

Figure 1: (a) A normal MNIST Digit image classified cor-
rectly; (b) FGSM generated adversarial sample for image in
(a); (c) CW generated adversarial sample for image in (a); (d)
Normal MNIST Fashion image classified as shoe; (e) FGSM
generated image of (e) classified as sneakers

Though the term adversarial samples in the context of ML is
introduced in the recent few years, similar concepts date back to
2004 [14] in the context of spam filtering. The work in [15] has
shown that the linear classifiers can be fooled by crafted modifi-
cations in the content of spam emails to classify them as normal
emails. Similar work on biometric recognition fooling is proposed
in [16]. The adversarial attacks can be broadly classified into two

categories: (a) poisoning attacks and (b) evasion attacks. Poisoning
attacks are attacks on the ML classifier during the training phase
[17–21], and the evasive attacks are targeted for inference stage
of ML techniques. As the poisoning attacks focus on attacking the
classifiers during training phase it is more suitable for online envi-
ronments. Thus, this work focuses on the evasive attacks, as many
of the existing ML works are primarily offline learning based and
are constrained by resources and the processing time requirements.

In this work, we first provide an overview of evasive attacks on
the ML classifiers. Further, we present different existing defense
techniques for the adversarial attacks. As FGSM is one of the fastest
evasive attacks, an in-depth discussion regarding the FGSM adver-
sarial attack is provided. In this work, we look at initially introduced
defense against adversarial samples, Adversarial training is one of
the defense techniques introduced for adversarial attacks. Adver-
sarial training [22] is similar to a brute force solution, where one
generates an ample number of adversaries and train the classifier
to alleviate the impact of adversarial attacks. Though, adversarial
training is shown to be confined to be efficient for one or few at-
tacks, it is not always the case. Further, in this work, we show how
to efficiently utilize the adversarial training in order to enhance the
robustness of the ML classifier even against the recent and pow-
erful adversarial attacks such as CW. Contrarily, we also provide
the information regarding under which circumstances this robust
adversarial training fails. We show that adversarial training with
FGSM can show high robustness to even CW attacks, under certain
conditions by having a classification accuracy of up to 97% against
adversarial attacks. Having said this, it fails when the number of
binary steps as well as the number of iterations are increased , in a
nutshell if the attacker has more computational capability

The rest of this paper is organized as follows. Section 2 introduces
the existing adversarial attacks and defense mechanisms for the
adversarial attacks. The simulation results and effective ways to
utilize the adversarial training and its analysis are presented in
Section 3 with conclusions drawn in Section 4.

2 BACKGROUND
Adversarial samples are the samples that are generated by introduc-
ing crafted perturbations into the normal input data generated by
introducing optimum yet worst-case perturbations in order to make
the adversarial data look similar to the normal input data, but still
the ML model mispredicts the class with a high probability. These
adversarial samples can be considered as an optical illusion for
the ML classifiers. In this section, we present different techniques
widely used for generating the adversarial samples, and review
some of the popular defense techniques deployed.

2.1 Adversarial Attacks
We present an overview of different adversarial attacks that are
effective against the ML classifiers here.

2.1.1 Fast Gradient Sign Method (FGSM).
The most common adversarial attack technique is to perturb

the image with gradient of the loss with respect to the image or
input, gradually increasing the magnitude of the perturbation until
the image is misclassified.

Fast Gradient Sign method (FGSM) [10] is one of the first known
adversarial attacks. The complexity to generate FGSM attack is
lower compared to other adversarial attacks, even against deep
learning models. Some of the advantages of this technique are
its low complexity, fast implementation. Consider a ML classifier
model with θ as the parameter, x being the input to the model,
and y is the output for a given input x , and L(θ ,x ,y) be the cost
function used to train the neural network. Then the perturbation
with FGSM is computed as the sign of the model’s cost function
gradient. The adversarial perturbation generated with FGSM [10]
is mathematically given as

xadv = x + ϵsiдn(∇xL(θ ,x ,y)) (1)
where ϵ is a scaling constant ranging between 0.0 to 1.0 is set

to be very small such that the variation in x (δx) is undetectable.
One can observe that in FGSM the input x is perturbed along each
dimension in the direction of gradient by a perturbation magni-
tude of ϵ . Considering a small ϵ leads to well-disguised adversarial
samples. Also, a large ϵ , is likely to introduce large perturbations.

2.1.2 Basic Iterative Method (BIM).
As seen previously, FGSM adds perturbation in each of the di-

mension, however, no optimization on perturbations are performed.
Kurakin proposed an iterative version of FGSM, called as Basic
iterative method (BIM) in [23]. BIM is an extension of FGSM tech-
nique, where instead of applying the adversarial perturbation once
with ϵ , the perturbation is applied multiple times iteratively with
small ϵ . This produces a recursive noise on the input and optimized
application of noise, given mathematically as follows:

xadv0 = x

xadvN+1 = Clipx,ϵ (x
adv
N + ϵsiдn(∇xL(θ ,x

adv
N ,y))

(2)

In the above expression,Clipx,ϵ represents the clipping of the adver-
sarial input magnitudes such that they are within the neighborhood
of the original sample x . This technique allows more freedom for
the attack compared to the FSGM method, as the perturbation can
be controlled and the distance of the adversarial sample from the
classification boundary can be carefully fine-tuned. The simulations
in [23] have shown that BIM can cause higher misclassifications
compared to the FGSM attack on the Imagenet samples.

2.1.3 Momentum Iterative Method (MIM).
The momentum method is an accelerated gradient descent tech-

nique that accumulates the velocity vector in the direction of the
gradient of the loss function across multiple iterations. In this tech-
nique, the previous gradients are stored, which aids in navigating
through narrow valleys of the model, and alleviate problems of
getting stuck at local minima or maxima. This momentum method
also shows its effectiveness in stochastic gradient descent (SGD) to
stabilize the updates. This MIM principle is deployed in [24] to gen-
erate adversarial samples. MIM has shown a better transferability
and shown to be effective compared to FGSM attack.

2.1.4 Jacobian-based Saliency Map Attack (JSMA).
In contrast to application of noise in each of the directions,

Papernot in [25] proposed a simple iterative method where the
forward derivative of DNN is exploited for adding the perturbations.
Consider a neural network F with input x , and the output of class
j, denoted by Fj (x). The main principle of this work is: in order to

achieve a target class t , the probability for Ft (X) must be increased,
on the other hand the probabilities of Fj (X) for all the other classes
j , t have to be decreased, until t = arд max jFj (X) is achieved.
This is a targeted attack, however it can be used as an untargeted
attack as well. This is accomplished by exploiting the saliency map,
as defined below

S(X , t)[i] =

{
0, if ∂Ft (X)

∂Xi
< 0 or

∑
j,t

∂Fj (X)

∂Xi
> 0

(
∂Ft (X)

∂Xi
)|
∑
j,t

∂Fj (X)

∂Xi
|, otherwise

(3)

For an input feature i startingwith the normal inputx , we determine
the pair of features {i, j} that maximizes S(X , t)[i] + S(X , t)[j] and
perturb each of the features by a constant offset ϵ . This process is
repeated iteratively until the target misclassification is achieved.

2.1.5 DeepFool Attack.
DeepFool (DF) is an untargeted adversarial attack optimized for

L2 norm, introduced in [26]. DF is efficient and produces adversarial
samples which are more similar to the original inputs as compared
to the discussed adversarial samples generated by FGSM and BIM
attacks. The principle of the Deepfool attack is to assume neural
networks as completely linear with a hyper-plane separating each
class from another. Based on this assumption, an optimal solution
to this simplified problem is derived to construct adversarial sam-
ples. As the neural networks are non-linear in reality, the same
process is repeated considering the non-linearity into the model.
This process is repeated multiple times for creating the adversaries.
This process is terminated when an adversarial sample is found i.e.,
misclassification happens. Considering the brevity and focus of the
current work, we limit the details in this draft. However, the inter-
ested readers can refer to the work in [26] for exact formulation of
DF.

2.1.6 Carlini and Wagner Attack (CW).
One of the most recent adversarial attacks is introduced by

Carlini and Wagner in [27], popularly called as Carlini and Wagner
(CW) attack. The CW attack is shown to outperform adversarial
defense techniques such as defensive distillation. It is an iterative
attack that finds adversarial samples against multiple defenses as
compared to other attacks. At a high level, this attack is iterative
using Adam optimizer and a specially chosen loss function to find
adversarial examples with lower distortions than the other attack.
This comes at the cost of speed as this attack is much slower than
the other attacks. It encompasses a range of attacks based on the
norms, all cast through the same optimization framework, thus
resulting in 3 powerful attacks, that are designed employing L0,
L2, and L∞ norms. For the L2 attack, which is considered in this
work, the perturbation in the input i.e., δ is defined in terms of an
auxiliary variable ω. The objective of the CW attack with L2 norm
can be mathematically defined as

δ∗i =
1
2
(tanh(ωi + 1)) − xi (4)

Then, the δ∗i which is an unrestricted perturbation is optimized
over ω as follows:

min
ω

| |
1
2
(tanh(ω) + 1) − x | |22 + c f (

1
2
tanh(ω) + 1) (5)

Similarly, if the L2 is considered, the optimization becomes

min
δ

| |δ | |2 + c · f (x + δ) (6)

S .T .x + δ ∈ [0, 1]n (7)

where f (objective function) is defined as

f (x ′) = max(max{Z (x ′) : i , t} − Z (x ′) − k) (8)

Here, Z (x ′) is the pre-softmax output for class i , t is the target class,
and k is the parameter that controls the confidence with which the
misclassification occurs. The parameter k encourages the solver to
find an adversarial instance x ′ that will be classified as class t with
high confidence. The three variants of this attack were shown to be
quite effective in comparison to other attacks on a network trained
with defensive distillation [27].

2.2 Adversarial Defenses
Till now, different adversarial attack techniques are discussed. Here,
we discuss some of the prominent existing defenses against the
above discussed attacks.

2.2.1 Adversarial Training.
Adversarial training is one of the preliminary solutions for mak-

ing the ML classifiers robust against the adversarial examples, pro-
posed in [22]. The preliminary idea is to train the ML classifier
with the adversarial examples so that the ML classifier can have
adversarial information [9, 10, 26] and adapt its model based on
the learned adversarial data. One of the major drawbacks of this
technique is to determine what kind of attack is going to happen
and train the classifier based on those attacks and determining the
criticality of the adversarial component.

2.2.2 Defensive Distillation.
Defensive distillation is another defense technique proposed in

[25], that trains the classifier using the distillation training tech-
niques and hides the gradient between softmax layer and the pre-
softmax layer. This makes it complex to generate adversarial ex-
amples directly on the network [28], as the knowledge is imparted
from a bigger network during the training process. However, [27]
shows that such a defense can be bypassed with one of the follow-
ing three strategies: (1) choosing a more proper loss function; (2)
calculation of gradients from pre-softmax layer rather than soft-
max layer; or (3) attack an easy-to-attack dummy network first
and then transfer to the distilled network, similar to the distillation
defense. The generation of adversaries can be simpler if the attacker
knows the parameters and architecture of the defense network i.e.,
whitebox attack.

2.2.3 MagNet.
MagNet is proposed in [29], where a two-level strategy with

detector and reformer is proposed. In the detector phase(s), the
system learns to differentiate between normal and adversarial ex-
amples by approximating the manifold of the normal examples.
This is performed with the aid of auto-encoders. Further, in the
reformer, the adversarial samples are moved close the manifold of
normal samples with small perturbations. Further using the diver-
sity metric, the MagNet can differentiate the normal and adversarial
samples. MagNet is evaluated against different adversarial attacks
presented previously and has shown to be robust in [29].

2.2.4 Detecting Adversaries.
Another idea of defense proposed in the existing works is to

detect adversarial examples with the aid of statistical features [30]
or separate classification networks [31]. In [31], for each adversarial
technique, a DNN classifier is built to classify whether the input is
a normal sample or an adversary. The detector was directly trained
on both normal and adversarial examples. The detector showed
good performance when the training and testing attack examples
were generated from the same process and the perturbation is large
enough. However, it does not generalize well across different attack
parameters and attack generation processes.

3 EXPERIMENTAL RESULTS
The impact of adversarial training on different attacks is analyzed
here. We evaluated the accuracy on the MNIST Digit [13] and
MNIST Fashion [32] datasets. The adversarial attacks are generated
using Cleverhans library [33]. The source code to reproduce the
experiments presented in this work can be found on github at the
urlfound at bottom of this page 1.

3.1 Network Architecture
We used the ML classifier i.e., DNN architecture similar to the
[34] for classifying the MNIST Digits dataset. The MNIST dataset
comprises of 60,000 examples for training, and 10,000 examples for
testing. On a normal classifier, we achieve an accuracy of 98.15% on
MNISTDigits dataset and 89.36% onMNIST fashion dataset with the
employed classifier architecture, which are close to the state-of-the-
art results. More details on network architecture and configuration
are presented in Table 1, and 2 respectively. For generating the
adversarial attacks, we have employed the L2 norms, and the most
non-trivial parameters influencing the accuracy are reported in
Table 3.

Table 1: Architectural details of employed ML classifier
(DNN)

Parameter MNIST Digits MNIST Fashion
Input 28×28 28×28
hidden layers 2 3
Input layer 784 neurons 784 neurons
Hidden layer 1 (ReLu) 512 neurons 512 neurons
Dropout 0.2 0.2
Hidden layer 2 (ReLu) 512 neurons 512 neurons
Dropout 0.2 0.2
Hidden layer 3 (ReLu) 512 neurons
Dropout 0.2
Output layer (Softmax) 10 neurons

Table 2: Training parameters of the employed classifiers
Parameter MNIST Digits MNIST Fashion
Optimization method ADAM ADAM
Batch size 128 128
Epochs 20 20
Learning rate 0.001 0.001
Loss Cross entropy Cross entropy

1https://github.com/saimanojpd/ICCAD-18_Adversarial_Training.git

Table 3: Accuracy of the classifier after and before adversar-
ial attacks

Attack Parameter No attack With attack

FGSM ϵ = 0.3 98.15% 6.59%
ϵ = 0.5 98.15% 3.09%

BIM ϵ = 0.3 98.15% 1.41%
ϵ = 0.5 98.15% 1.33%

MIM ϵ = 0.3 98.15% 1.46%
ϵ = 0.6 98.15% 1.29%

JSMA θ = 0.1, γ = 1 98.15% 3.60%
θ = 1, γ = 1 98.15% 2.26%

DF MI1=10 98.15% 1.36%
MI1=100 98.15% 1.29%

CW BS2=10, MI1=300 98.15% 4.32%
BS2=5, MI1=1000 98.15% 1.41%

1 Maximum iterations
2 Binary step

3.2 Performance with Adversarial Attacks

0 5 10 15 20 25

0

5

10

15

20

25

(a)
0 5 10 15 20 25

0

5

10

15

20

25

(b)
0 5 10 15 20 25

0

5

10

15

20

25

(c)
0 5 10 15 20 25

0

5

10

15

20

25

(d)

0 5 10 15 20 25

0

5

10

15

20

25

(e)
0 5 10 15 20 25

0

5

10

15

20

25

(f)
0 5 10 15 20 25

0

5

10

15

20

25

(g)
Figure 2: One of the normal MNIST Digit image is repre-
sented in (a), followed by generated adversarial images gen-
erated from (b) FGSM; (c) BIM; (d) MIM; (e) JSMA; (f) DF; and
(g) CW attacks

Table 3 reports the performance of the employed neural network
on MNIST Digits dataset.

Normal Classification Accuracy: In the absence of adversarial
samples, the classifier achieves an accuracy of 98.15%, loss of 0.088,
precision of 0.98, and recall of 0.98. Similarly, for MNIST Fashin, the
classifier achieves an accuracy of 89.36%, loss of 0.3144, precision
of 0.89, and recall of 0.89.

Effect of Adversaries: The adversarial samples generated from
the discussed adversarial attacks are shown in Figure 2. As one can
observe that the adversarial samples generated with FGSM, MIM,
and BIM look alike and the adversarial samples from JSMA, DF, and
CW look alike. It needs to be noted that the digit ‘4’ is classified as
‘9’ in all the cases. The noise in each of them can be altered, which
leads to differences in the confidence of output.

Table 3 shows the accuracy of the classifier in the presence of
difference attacks. The number of adversarial samples are 10,000 in
each case, and one can observe that in the presence of adversaries
the classification accuracy falls to as low as 1.3%. With the increase
in ϵ , the accuracy decreases in case of FGSM, MIM, and BIM. With

Table 4: Accuracy (%) for MNIST Digit Classification under Different Adversarial Attacks on Different Adversarial Trained
Networks

BIM MIM FGSM
ϵ = 0.3 ϵ = 0.5 ϵ = 0.9 ϵ = 0.3 ϵ = 0.5 ϵ = 0.9 ϵ = 0.3 ϵ = 0.5 ϵ = 0.9

A
dv
.t
ra
in
in
g
w
ith FGSM 96.38 89.63 48.69 97.35 94.84 60.13

CW 62.85 44.34 34.12 63.61 45.29 30.80 51.80 32.60 26.59
JSMA 9.86 1.28 0.59 8.06 1.62 0.64 23.83 13.50 10.18
DF 53.40 31.68 25.68 54.25 32.13 22.92 41.04 24.95 18.94
MIM 99.86 97.22 71.52 87.60 61.69 40.31
BIM 99.17 91.99 76.00 84.45 53.46 34.33

DF JSMA (θ ,γ) CW (BS, MI)
MI=50 MI=100 MI=10 (1, 1) (0.9, 0.9) (1, 0.1) (5, 1000) (9, 200) (10, 300)

A
dv
.t
ra
in
in
g
w
ith FGSM 97.33 90.66 90.66 81.47 86.15 92.25 97.65 88.34 86.75

CW 99.70 44.74 44.74 72.36 80.83 92.27
JSMA 92.40 6.22 6.22 93.20 88.70 85.40
DF 73.43 82.29 89.40 99.75 92.15 90.12
MIM 98.07 44.33 44.33 78.55 85.91 92.68 98.28 88.39 85.32
BIM 97.58 47.65 47.65 78.67 83.98 91.16 97.86 87.79 84.36

the number of iterations, the accuracy decreases for DF and CW
attacks. The step size for each attack iteration ϵiter is set to 0.06
in the simulations. For the FGSM, with the increase in the θ , γ the
attack can hamper the classification accuracy of a neural network
classifier.

3.3 Effective Adversarial Training
As seen from Figure 1 and Section 2.1.1, the FGSM samples are
generated by perturbing almost all the pixels in the original input.
As such, the other attacks can be seen as selective tweaking of
the FGSM. Thus, the adversarial training with FGSM can enhance
the robustness of the classifier. However, the perturbations based
on correlations and optimization might not be fully captured in
FGSM samples, as there is no specific optimization involved. Here,
we analyze the effect of adversarial training when the classifier is
trainedwith the samples generated by different attacks.We consider
six different attacks presented in Section 2.1 for adversarial training.

3.3.1 Performance Evaluation and Comparison.
Table 4 presents the performance (accuracy) of the employed

classifier (DNN) when trained with adversarial samples generated
from different attacks and tested with all the six attacks for the
MNIST Digits dataset. For instance, the row with FGSM indicates
that the classifier is trained with adversarial samples generated by
FGSM attack. The classifier is provided with adversarial samples
generated with the attacks mentioned in the top row of Table 4.
As the training and testing with same kind of attacks have shown
accuracies of nearly 99%, we have not reported them in the Table
to avoid confusion and wrong analysis. The following observations
can be made from the reported results in Table 4:

• FGSM, MIM, and BIM based adversarial training achieve
good classification accuracy even when tested with attacks
such as CW and DF.

• However, the FGSM based adversarial training outperforms
MIM, and BIM. For instance, with DF attack, only FGSM
based adversarial training achieves higher accuracy com-
pared to MIM, and BIM.

• The classifier trained with CW/JSMA/DF performs better
compared to normal classifier when attacked with any of
the CW/JSM/DF attacks. However, the samples generated
by the FGSM, MIM, and BIM still keeps the misclassification
rate high.

Based on these observations and Figure 2, one can notice that
the FGSM, MIM, and BIM have similar characteristics. Also, FGSM
based adversarial training outperforms the others and can aid
achieving robustness (to some extent) even against the most ad-
vanced (unessen) attacks such as CW, and DF. On the other hand,
CW, JSMA, and DF has shown similar performances and trends. As
such, when trained with one of them, it can aid to achieve robust-
ness against the other two, compared to no defense classifiers.

In addition to MNIST Digits, we have also tested with MNIST
Fashion dataset. The deployed DNN achieves an accuracy of 88%,
whereas state-of-the-art network [35] achieves an accuracy of 96%,
at max. However, as the major intention of the work is not on
performance improvement, rather on adversarial analysis. We have
performed adversarial training on the MNIST Fashion dataset as
well. It has shown to follow similar trend as what is observed with
MNIST Digits test case.

A glance of the results are presented below:
• With the FGSM based adversarial training, the adversarial
training achieves accuracies of 80%, 84%, and 81% when the
number of iterations of DF are kept 50, 100, and 10 respec-
tively. Similar trends are obtained when tested with CW, and
JSMA.

• On the other hand, when the adversarial training is per-
formed with DF and tested with FGSM, the accuracies are
29%, 17%, and 11% with ϵ of 0.3, 0.5, and 0.9, respectively.
Similar trends are obtained when tested with BIM, and MIM.

In this work, we performed the adversarial training and testing
on the same kind of network, as the adversaries are generated for
the same or similar network architecture as the testing network
architecture. From the above analysis, it needs to be noted that
the FGSM based adversarial training enhance the robustness even
against unseen attacks such CW and DF.

Table 5: Pitfalls of Adversarial Training
BIM MIM

ϵ = 0.6, ϵ = 0.9 ϵ = 0.7, ϵ = 0.7
ϵiter = 0.6 ϵiter = 0.6 ϵiter = 0.5 ϵiter = 0.7

FGSM 0.7345 0.4869 0.6013 0.7352
DF 0.3044 0.2568 0.2292 0.2564
JSMA 0.0063 0.0059 0.0064 0.0066
CW 0.3971 0.3412 0.308 0.3385

3.3.2 Pitfalls.
Though the adversarial training, especially FGSM retrained clas-

sifier has shown robustness to the adversarial attacks, the adver-
sarial training has some of the shortcoming in addition to what is
exposed in literature. Table 5 reports the classification accuracies
for MNIST Digits dataset showing the pitfalls of adversarial train-
ing based approach. Though, FGSM retrained classifier is robust
to adversarial attacks caused by MIM and BIM based adversarial
samples, it fails when the ϵ , that is if the perturbation is increased
rapidly i.e., the magnitude of perturbations increase drastically. This
can also be observed from Table 4. Similarly, the classifier trained
with DF/JSM/CW fails fatally when the number of iterations are
increased with additional processing capabilities. However, under
certain scenarios such as maximum perturbations and if attacker
has more computational power, the FGSM based retraining still has
to be enhanced. As such the main pitfall of the adversarial train-
ing is its ineffectiveness to the large perturbations and increased
iteration based (optimized) advanced attacks.

4 CONCLUSION
Among different adversarial attacks, FGSM is one of the fastest
and less complex adversarial attacks that perturbs the input in all
dimensions. Furthermore, it has been seen that the FGSM, BIM, and
MIM adversarial samples look alike, and the adversarial samples
generated with JSMA, CW, and DeepFool are similar. It has been
seen in this work, that the adversarial training with FGSM is shown
to be effective even against some of the recent attacks such as CW,
and DeepFool. Adversarial learning with FGSM has achieved up to
97.65% accuracy even against CW attacks. Though the adversarial
trainingwith FGSM is seen tomake theML classifiers robust against
the adversarial attacks, the FGSM adversarial training fails when the
difference in perturbation between trained and tested adversarial
samples are seen to be very large.

REFERENCES
[1] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, “Weighted quantization-

regularization in DNNs for weight memory minimization towards HW imple-
mentation,” IEEE Transactions on Computer Aided Systems of Integrated Circuits
and Systems, 2018.

[2] E. Ackerman, “How drive.ai is mastering autonomous driv-
ing with deep learning,” accessed August 2018. [Online]. Avail-
able: https://spectrum.ieee.org/cars-that-think/transportation/self-driving/
how-driveai-is-mastering-autonomous-driving-with-deep-learning

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in International Conference on Neural Information
Processing Systems, 2012.

[4] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan,
and S. Stolfo, “On the feasibility of online malware detection with performance
counters,” in International Symposium on Computer Architecture, 2013.

[5] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based
side-channel attacks using hardware performance counters,” Appl. Soft Comput.,

vol. 49, no. C, Dec 2016.
[6] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and D. Ponomarev,

“EnsembleHMD: Accurate hardwaremalware detectors with specialized ensemble
classifiers,” 2018.

[7] F. Brasser and et al, “Hardware-assisted security: Understanding security vulner-
abilities and emerging attacks for better defenses,” in International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES), 2018.

[8] H. Sayadi, N. Patel, P. D. S. Manoj, A. Sasan, S. Rafatirad, and H. Homayoun,
“Ensemble learning for hardware-based malware detection: A comprehensive
analysis and classification,” in ACM/EDAA/IEEE Design Automation Conference,
2018.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in International Conference
on Learning Representations (ICLR), 2014.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations (ICLR), 2015.

[11] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in IEEE European Symposium
on Security and Privacy (Euro S&P), 2016.

[12] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial
examples and black-box attacks,” in International Conference on Learning Repre-
sentations (ICLR), 2017.

[13] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist digit dataset,” accessed August 2018.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[14] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adversarial classifi-
cation,” in ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2004.

[15] D. Lowd and C. Meek, “Adversarial learning,” in ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, 2005.

[16] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, “Impact of artificial
“gummy” fingers on fingerprint systems.” vol. 26, 04 2002.

[17] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini, C. Sutton,
J. D. Tygar, and K. Xia, “Exploiting machine learning to subvert your spam filter,”
in Usenix Workshop on Large-Scale Exploits and Emergent Threats, 2008.

[18] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft, and
J. D. Tygar, “ANTIDOTE: Understanding and defending against poisoning of
anomaly detectors,” in ACM SIGCOMM Conference on Internet Measurement, 2009.

[19] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines,” in International Conference on Machine Learning, 2012.

[20] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is feature selection
secure against training data poisoning?” in International Conference on Machine
Learning, 2015.

[21] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee,
E. Lupu, and F. Roli, “Towards poisoning of deep learning algorithms with back-
gradient optimization,” in ACM Workshop on Artificial Intelligence and Security,
2017.

[22] U. Shaham, Y. Yamada, and S. Negahban, “Understanding adversarial training:
increasing local stability of neural nets through robust optimization,” ArXiv
e-prints, 2015.

[23] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in International Conference on Learning Representations, 2017.

[24] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial
attacks with momentum,” in Neural Information Processing Systems Conference,
2017.

[25] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in IEEE Symposium
on Security and Privacy (S&P), 2016.

[26] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” CoRR, vol. abs/1511.04599, 2015.

[27] N. Carlini and D.Wagner, “Towards evaluating the robustness of neural networks,”
in IEEE Symposium on Security and Privacy (SP), 2017.

[28] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
ArXiv e-prints, 2015.

[29] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial
examples,” in ACM Conference on Computer and Communications Security (CCS),
2017.

[30] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. D. McDaniel, “On the
(statistical) detection of adversarial examples,” CoRR, vol. abs/1702.06280, 2017.

[31] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations.” in International Conference on Learning Representations, 2017.

[32] zalandoresearch, “Mnist fashion dataset,” accessed August 2018. [Online].
Available: https://github.com/zalandoresearch/fashion-mnist

[33] N. Papernot and et al, “Technical report on the cleverhans v2.1.0 adversarial
examples library,” arXiv preprint arXiv:1610.00768, 2018.

[34] keras, “Mnist model,” accessed August 2018. [Online]. Available: https:
//github.com/keras-team/keras/blob/master/examples/mnist_mlp.py

[35] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmenta-
tion,” arXiv preprint arXiv:1708.04896, 2017.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 30.60 points
 Normalise (advanced option): 'original'

 32

 D:20180816092532
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

