
FFT-Cache: A Flexible Fault-Tolerant Cache Architecture
for Ultra Low Voltage Operation

Abbas BanaiyanMofrad1, Houman Homayoun2, Nikil Dutt1
1Center for Embedded Computer Systems

University of California, Irvine
2Department of Computer Science and Engineering

University of California, San Diego
{abanaiya, dutt}@uci.edu, hhomayou@eng.ucsd.edu

ABSTRACT
Caches are known to consume a large part of total microprocessor
power. Traditionally, voltage scaling has been used to reduce both
dynamic and leakage power in caches. However, aggressive
voltage reduction causes process-variation-induced failures in
cache SRAM arrays, which compromise cache reliability. In this
paper, we propose Flexible Fault-Tolerant Cache (FFT-Cache)
that uses a flexible defect map to configure its architecture to
achieve significant reduction in energy consumption through
aggressive voltage scaling, while maintaining high error
reliability. FFT-Cache uses a portion of faulty cache blocks as
redundancy – using block-level or line-level replication within or
between sets – to tolerate other faulty caches lines and blocks. Our
configuration algorithm categorizes the cache lines based on
degree of conflict of their blocks to reduce the granularity of
redundancy replacement. FFT-Cache thereby sacrifices a minimal
number of cache lines to avoid impacting performance while
tolerating the maximum amount of defects. Our experimental
results on SPEC2K benchmarks demonstrate that the operational
voltage can be reduced down to 375mV, which achieves up to
80% reduction in dynamic power and up to 48% reduction in
leakage power with small performance impact and area overhead.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories

B.3.4 [Reliability, Testing, and Fault-Tolerance]: Error-
checking, Redundant design

General Terms
Algorithms, Design, Reliability

Keywords
Low power cache, Fault-tolerant cache, Flexible fault remapping

1. INTRODUCTION
Caches are already known to consume a large portion (about

30-70%) of total processor power [3][4] and on-chip cache size
will continue to grow due to device scaling coupled with

performance requirements. Therefore, it becomes critical to
manage the power and reliability of the caches in order to reduce
total power consumption while maintaining the reliability of the
entire processor system.

Traditionally, voltage scaling has been used to reduce the
dynamic and the leakage power consumption of the cache.
However, aggressive voltage scaling causes process-variation-
induced failures in the SRAM cells. An SRAM cell can fail due to
an access time failure, a destructive read failure or a write failure
[1][2]. Figure 1 represents the failure rate of an SRAM cell based
on the operational voltage in a 90nm technology [14][30]. To save
power while achieving an acceptable manufacturing yield of
99.9% for 64KB L1 and 2MB L2 caches, a minimal operational
voltage must be selected. From Figure 1 we can see that the
probability of failure for each memory array must be kept at less
than 1 out of 1000 to get this yield. Based on this assumption, we
estimate the minimum operational voltage for L1 as 620 mV and
for L2 660 mV, and we are not able to further reduce the
operational voltage without incurring cell failures.

Figure 1.Probability of SRAM cell failure vs.Vdd

Since applications may not be tolerant to even a single bit
error, typically caches must be operated at a high Vdd to ensure a
very low probability of failure, leading to high energy
consumption. However, by exploiting mechanisms that allow a
cache to become inherently resilient to a large number of cell
failures, we can operate the cache at a lower Vdd and thus gain
significant energy savings. This paper presents FFT-Cache, an
approach that aims to: 1) design a very low power, fault-tolerant
cache architecture that can detect and replicate memory faults
arising from operation in the near-threshold region; 2) minimize
non-functional or redundant memory area to lessen impact on
cache capacity; and 3) tolerate cache faults as much as possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10...$10.00.

95

As can be seen in Figure 1, the failure rate of an SRAM cell
increases exponentially when lowering Vdd; consequently for
near threshold voltages the number of faulty cells is very high
resulting in almost all of the cache lines and blocks becoming
faulty. This poses a difficult challenge for the protection of caches
while working in the near-threshold voltage regime. To illustrate
this concept, we performed a Monte Carlo simulation for both
L1/L2 caches and the results are represented in Figure 2. Before
description of this figure, let’s define some parameters. For the
rest of this paper, we refer to every physical cache word-line
containing a set of blocks as a line or set. The number of blocks in
a line or a set equals the associativity of a cache. Also, each block
is divided into multiple equally sized subblocks that can be as
small as a single bit or as large as an entire block. Each subblock
is labeled faulty if it has at least one faulty bit. Two blocks (lines)
have a conflict if they have at least one faulty subblock (block) in
the same position. Also, we define the Max Global Block (MGB)
parameter as the maximum number of blocks in a line that can be
set as global (sacrificial) blocks.

(a) A 64KB 4-way set associative L1 cache with 64B block

size, 8b subblock size, and MGB=1

(b) A 2MB 8-way set associative L2 cache with 128B block

size, 8b subblock size, and MGB=2

Figure 2. Number of cache lines in different categories while
varying the supply voltage.

Figure 2 represents the number of caches lines in different
categories for a 64KB 4-way set associative L1 and a 2MB 8-way
set associative L2 cache for different Vdd values. In this figure we
categorize the cache lines to five groups:

No-Faulty -- include cache lines with no faulty block.
Min-Faulty -- include cache lines with the number of faulty

blocks below a threshold, MGB parameter. We will discuss this
parameter in Section 3.2.

 No-Conflict -- include cache lines that have multiple faulty
blocks but without conflict.

Low-Conflict -- include cache lines with multiple faulty blocks
for which their number of conflicts is less than the MGB
parameter.

High-Conflict -- include cache lines with multiple faulty blocks
and the number of conflicts between blocks is more than the MGB
parameter.

Figure 2 shows that by increasing the probability of bit failure,
the amount of conflicts between blocks in each cache line will be
increased. For example for L1 cache, with Vdd values greater than
0.4V there is no line in the High-Conflict group, but by decreasing
the voltage below 0.4V the amount of High-Conflict lines
increases exponentially. Therefore, for caches that operate below
0.4V it is essential to deal with lines in the High-Conflict group.
To the best of our knowledge most of the previous cache
protection techniques only consider conflicts between two or more
cache lines and none of them deals with conflicts inside of the
cache lines [18][19][28][30].

In this work, we propose Flexible Fault-Tolerant Cache (FFT-
Cache), a cache architecture that uses a flexible defect map to
efficiently tolerate the large number of faults when operating in
the near threshold region. FFT-Cache uses a novel flexible defect
map to replicate faulty data blocks in both the same set and
different cache sets. It divides each cache block into multiple sub-
blocks. FFT-Cache uses a portion of faulty cache blocks as
redundancy to tolerate other faulty caches lines and blocks. This
can be accomplished by using either block-level or line-level
replication in the same set or between two or more sets. Our
configuration algorithm categorizes the cache lines based on
degree of conflict between their blocks to reduce the granularity
of redundancy replacement. Using this approach, FFT-Cache first
attempts to replicate faulty blocks in the same set; otherwise it
attempts to use faulty blocks to replicate other faulty lines. If not,
it attempts to disable the fewest number of cache lines for
tolerating faulty blocks/lines. While significantly increasing fault-
tolerance, our FFT-Cache approach when operated in low-power
mode incurs a small (5%) performance degradation and a small
(13%) area overhead.

The main contributions of our FFT-Cache approach are that
we: 1) deploy a new flexible defect map to replicate faulty data
blocks in both the same set and different cache sets; 2) use a
portion of faulty cache lines (global blocks) as redundancy to
tolerate other faulty blocks or lines; 3) categorize the cache lines
based on the degree of conflict of their blocks to reduce the
granularity of redundancy replacement; and 4) use a simple and
efficient algorithm to initiate and update the flexible defect map to
optimize the proposed fault-tolerant architecture with minimum
non-functional cache area.

The rest of this paper is organized as follows: Section 2
reviews related work and distinguishes our proposed approach.
Section 3 introduces the proposed FFT-Cache architecture.
Section 4 evaluates the architecture and presents experimental
results. Section 5 concludes the paper.

2. RELATED WORK
In the literature, several fault-tolerant techniques have been

proposed to improve the cache yield and/or lower the minimum
achievable voltage scaling bound. A number of these works use
circuit-level techniques to improve the reliability of each SRAM
cell. Besides the familiar 6T SRAM cell, several other designs,
including 8T SRAM cell [8][9], 10T SRAM cell [13], and 11T
SRAM cell [11] have been proposed. All of these SRAM cells

96

improve read stability, though the stability of the inverter pair
remains unchanged. Most of these cells have a large area
overhead which poses a significant limitation for performance and
power consumption of caches. Kulkarni et al. [12] proposed a
Schmidt trigger based 10T SRAM cell with inherent tolerance
towards process variation using a feedback-based mechanism.
However, this SRAM cell requires a 100% increase in area and
about 42% increase in access time for low voltage operation.

At the system level, a wide range of Error Detection Code
(EDC) and Error Correcting codes (ECC) have been used. ECC is
proven as an effective mechanism for handling soft errors [23].
However, in a high-failure rate situation, most coding schemes are
not practical because of the strict bound on the number of
tolerable faults in each protected data chunk. In addition, using
ECC codes incurs a high overhead in terms of storage for the
correction code, large latency, slow and complex decoding [16]. A
recent work uses a configurable part of the cache for storing
multiple ECC check bits for different segments of cache line using
an elaborate Orthogonal Latin Square Code ECC [21] to enable
dynamic error correction. This requires up to 8 levels of XOR
gates for decoding, resulting in significant increase in cache
critical path delay.

Several architectural techniques have also been proposed to
improve reliability of on-chip cache by using either redundancy or
cache resizing. Earlier works on fault-tolerant cache design use
various cache down-sizing techniques by disabling a faulty line or
block of cache. Ozdemiret et al. proposed Yield-Aware cache [15]
in which they developed multiple techniques that turn off either
cache ways or horizontal regions of the cache that cause delay
violation and/or have excessive leakage. Agarwal et al. [1]
proposed a fault tolerant cache architecture in which the column
multiplexers are programmed to select a non-faulty block in the
same row, if the accessed block is faulty. Similarly, PADed cache
[17] uses programmable address decoders that are programmed to
select non-faulty blocks as replacements of faulty blocks. Sasan et
al. [19][20] proposed a number of cache architectures in which the
error-prone part of the cache is fixed using either a separate
redundancy cache or parts of the same cache. RDC-cache [19]
replicates a faulty word by another clean word in the last way of
next cache bank.

In [18] two schemes called Word-disable (WDIS) and Bit-fix
(BFIX) have been proposed. The WDIS scheme combines two
consecutive cache blocks into a single cache block, thereby
reducing the capacity by 50%, whereas the BFIX scheme
sacrifices a (functional) cache block to repair defects in three
other cache blocks, thereby reducing the capacity by 25%.

The buddy cache [27] pairs up two non-functional blocks in a
cache line to yield one functional block. A similar idea was
proposed independently in [26]. The salvage cache [28] improves
on this technique by using a single non-functional block to repair
several others in the same line [28]. However, all of these
methods are not efficient in the near-threshold region with high
fault probabilities. Indeed at such a low voltage, the cache would
be effectively downgraded to just a fraction (e.g. 30%) of its
original size, which results in a large performance degradation in
terms of IPC across standard benchmarks.

ZerehCache [29] introduces an interconnection network
between the row decoder and data array which requires significant
layout modifications. In this scheme, an external spare cache is
used to provide redundancy; thus, applying the interconnection
network allows a limited redundancy borrowing across the
statically specified, fixed-size groups. However, its
interconnection network has a noticeable area overhead and power
consumption cost.

MC2 [22] maintains multiple copies of each data item,
exploiting the fact that many embedded applications have unused
cache space resulting from small working set sizes. On every
cache access, MC2 detects and corrects errors using these multiple
copies. Thus MC2 – while particularly useful for embedded
applications with small working sets – may result in high area and
performance overhead for other applications, particularly in the
presence of high fault rates.
Ansari et al. [30] propose a fault-tolerant cache that intertwines a
set of n + 1 partially functional cache lines together to give the
overall appearance of n functional lines. They partition the set of
all cache word-lines into large groups, where one word-line (the
sacrificial line) from each group is set aside to serve as the
redundant word-line for the other word-lines in the same group.

FFT-Cache differs from previous approaches in that it
minimizes the amount of non-functional area by using global
blocks inside of functional lines to keep the replication data,
resulting in lower area and power overhead.

3. PROPOSED ARCHITECTURE
In this section, we first describe the proposed FFT-Cache

architecture that uses a Flexible Defect Map (FDM) to efficiently
tolerate SRAM failures. Next, we present the cache configuration
that includes FDM generation and configuration stages to
configure the architecture for fault-tolerant data access.

3.1 FFT-Cache Organization
The FFT-Cache architecture has two banks of data that can be

accessed concurrently, and they include multiple cache lines, with
each line including multiple blocks. FFT-Cache achieves fault-
tolerance by using a portion of the faulty cache blocks as
redundancy to tolerate other faulty cache lines and blocks. Using
this approach, FFT-Cache tries to sacrifice the minimal number of
cache lines to minimize performance degradation and tolerate the
maximum amount of defects. This is done by using either block-
level or line-level replication in the same set or between two sets.
The information of faulty locations is kept in a Flexible Defect
Map (FDM) which is then used to configure the address mapping.
To replicate the faulty subblocks in a line (called a host line), our
scheme tries to find a faulty block in the same line or in another
line that has no conflict with other blocks in the host line. We
refer to such a block as a Target block. If FFT-Cache cannot find
a target block for the host line, it tries to find another faulty line
(called a target line) that has no conflict with the host line. It then
sacrifices the target line to replicate all faulty blocks of the host
line. Thus, based on the earlier discussion, the sacrificial target
line (block) could be one of: 1) Local Target block, 2) Global
Target block, or 3) Target line.

Note that a local target block can be accessed in the same cycle
as the host line, and does not require any additional access
overhead. This is not true for a global target block or a target line,
for which two consecutive accesses are required if the global
target block or target line are in the same bank as the host line. In
order to access the host line and global target line (block) in
parallel, and to minimize the access latency overhead, the host
line and target line should be in different banks. Note that since
target blocks/lines do not store any independent data, they are
considered non-functional. Therefore, the target lines are not
addressable as data lines and thus they are removed from the
address scope of the cache. This could impact performance as it
reduces the effective size of the cache. A major advantage of FFT-
Cache over other fault-tolerant methods is we minimize the
number of non-functional and target lines by initially attempting

97

to find a local target block to sacrifice. If a local target block was
not found, it then attempts to find a global target block. Finally if
the first two attempts are not successful, FFT-Cache sacrifices a
different cache line as a target line, as other fault-tolerant methods
do.

In our fault-tolerant cache architecture, each cache access in
low power mode first accesses the FDM. Based on the fault
information of the accessed line, the target block/line may be
accessed from another bank (in case of a global target block or
target line). Then based on the location of target block/line
retrieved from the FDM, one or two levels of MUXing is used to
compose a fault free block by choosing appropriate subblocks
from both host and target blocks (lines). Figure 3 outlines the
flowchart for accesses using the FFT-Cache.

Figure 3. FFT-Cache Access Flowchart

3.2 FFT-Cache Configuration
We now describe the configuration process for FFT-Cache.

Initially, a raw defect map is generated at boot time: using the
memory Built-In Self Test (BIST) unit, the L1 and L2cache(s) are
tested under low voltage conditions. The output of the BIST is
used to initialize the FDM. If there are multiple operating points
for different combinations of voltage, temperature and frequency,
the BIST operation is repeated for each of these settings. The
obtained defect map is then modified and processed to be usable
with FFT-Cache. Updating the FDM is done at full voltage, using
a simple algorithm that we explain next. The configuration
information can be stored on the hard-drive and is written to the
FDM at the next system boot-up. In addition, in order to protect
the defect map and the tag arrays, we use the well studied 8T
SRAM cell [10] which has about 30% area overhead for these
relatively small arrays in comparison with 6T SRAM cells. These
8T SRAM cells are able to meet the target voltage in this work for
the aforementioned memory structures without failing. An
example of an FDM entry for a cache with associativity of 4 is
represented in Figure 4.

Figure 4. Details of a row of FDM

Each FDM entry includes multiple configuration bits, the
defect map of each way (block), status of each block and the
address of the Target line. Each bit in the defect map section
represents the faulty state of a subblock. Way Status bits represent
the status of each way or block in a cache line. The status of each
cache block can assume one of the following: 1) Non-Faulty, 2)
Faulty, 3) Local Target, and 4) Global. Initially the status of all
blocks in the cache is Non-faulty, representing the absence of any
faulty subblocks. If a block contains at least one faulty subblock,
its status will be Faulty. A block that is used as a target block for
other blocks in a line gets the status of Local Target. A block that
has a conflict with other blocks in a set and cannot be used as a
local target block, gets the status of Global and may be used as a
Global target block. As mentioned before, MGB represents the
maximum number of blocks in a line that can be set as Global
block; the remaining blocks can then be composed as a group of
blocks without conflict, which allows them to find a Global
Target block. This would guarantee that at most half of the cache
needs to be sacrificed for tolerating faults.
We now present the algorithms for FDM initialization and
configuration.

Begin FDM initialization algorithm

1. Run BIST and find faulty cache lines at a subblock level and
fill defect map sections of each entry

2. Set the “Way Status” field of faulty blocks to 11(Faulty) and
other non-faulty blocks to 00(Non-faulty)

3. For lines with at least one faulty subblock, set the “Faulty
Line” bit to 1 (Faulty) and for other lines with no faulty
subblock, set it to 0 (Non-faulty)

4. Set “Target Line” address field of all rows same as their
address

5. If the number of faulty blocks in a set is below MGB then set
“Same Set” bit to 0

6. If there is no conflict between all except MGB blocks in a
line then:
– Set “Same Set” bit to 1 and make them a group and

select one of them as Target block
– Set “Way Status” bits of the Target block to 01(Target)

and set its number in the “Target Way” number
– For other out of group blocks (if any), set their status

bits to 10(Global)
7. If there are more than one conflict between blocks then set

Same Set bit to 0
8. Repeat Steps 5-8 for all entries of FDM

End FDM initialization algorithm

After completion of the FDM initialization algorithm, we run the
FDM configuration algorithm.

98

Begin FDM configuration algorithm

1. Traverse the faulty rows of FDM and based on the
conflicts between faulty blocks in each row,
categorize the FDM entries into four groups:

– If the number of faulty blocks in a row is below MGB set
it in the min_faulty block group.

– If there is no conflict between faulty blocks in a row, set
the row in the no_conflict group.

– If there is only one conflict between one of the blocks
with other blocks in the row, set the row in the
low_conflict group.

– If there is more than one conflict between the blocks
within a group, set the row in the high_conflict group.

2. For lines in the min_faulty block group set the status of
faulty blocks to Global block.

3. For lines in the no_conflict group make one of its faulty
blocks as Local Target block.

4. For the lines in low_conflict group, make the status of the
block that has conflict with other blocks as Global and then
attempt to find a Global Target block for each line.

5. For the lines in high_conflict group, try to find a similar line
from other bank to make it as the Global Target line.

End FDM configuration algorithm

Figure 5 shows an example of the FDM configuration for a
given distribution of faults in 5 lines of a 4-way set associative
cache with 4 subblocks in each block (way). The first line is a
clean line without any faulty blocks. The second line is a member
of min_faulty group and sets its faulty block as Global block. The
third line is an example of a no_conflict group in which the first
block (in Way0) is set as Local Target block to be sacrificed for
fault-tolerance of other faulty blocks. The fourth line is a member
of the low_conflict group with the first block as a Global block
which has conflict with other blocks. The fifth line is a member of
high_conflict group with two conflicts between its blocks (block0
has conflict with block2 and block1 with block3).

Figure 5. An example of FDM configuration for a given
distribution of faults in a 4-way set associative cache.

3.3 Architecture Details
We now present the architecture of the FFT-Cache. We begin

with the architecture of a conventional 2-way set associative
cache (labeled CC) in Figure 6. Based on the tag match results,
either Way0 or Way1 is being selected. The data is transferred
to/from memory cells using multiplexers as indicated in the
figure.

Figure 7 shows the architecture of the proposed FFT-Cache.
Let’s assume the cache is divided into two banks, with each bank
containing two ways (blocks) that are further divided into 2
subblocks. The new modules (MUXs and FDM) added to the
conventional cache are highlighted in the figure. Note that two
levels of MUXing are added to compose the final fault-free block,
based on either multiple blocks within a set or between two or
more sets in different banks of data. The additional multiplexer
network would allow us to compose the final fault-free block from
any of the subblocks in any of the cache way in either Bank0 or
Bank1, based on the FDM data. Next, we present the hardware
implementation of the FFT-Cache and analyze its overhead.

Figure 6. A conventional 2-way set associative cache (CC).

Figure 7. Architecture details of the proposed FFT-Cache
with FDM and 2 subblocks per block.

The total number of n-to-1 multiplexers required to compose
the final fault-free block is: k ൈ ሺn ൈ b െ 1ሻ

Where k is the number of subblocks in a block, n is the number
of ways (set associativity) and b is the number of banks. For
instance for a 2 bank, 64KB, 4-way set associative cache, with
each way with 16 subblocks, a total of 112 4-to-1 multiplexers are
required. The size of FDM equals to the multiplication of number
of cache lines by FDM entry size. For such cache, the FDM size
will be 256 ൈ ሾ5 4 ൈ ሺ2 32ሻ 8ሿ bits.

3.4 Hardware implementation
For a quantitative comparison, we synthesized the MUXing

layer and output logic for FFT-Cache as well as the multiplexer
and output driver of the conventional cache (CC) using Synopsys
Design Compiler for TSMC 90nm standard cell library for both
L1 and L2 caches. The area and delay of various multiplexers
(MUX2, MUX4,…MUX32) are used to estimate the overall
area/delay overhead of the MUXing network in FFT-Cache and
the CC in nominal Vdd. We found that the delay of FFT-Cache
output logic increased by only 5% compared to CC output MUX
network while area and power consumption are increased by only
2% compared to a CC MUX network.

99

Recall that the FFT-Cache architecture replaces CC’s output
MUX with FFT-Cache MUXing layer and output logic; thus we
expect that the proposed mechanism will only result in a minimal
increase of the cache delay (estimated at < 5%).

4. Evaluation
This section evaluates the effectiveness of FFT-Cache

architecture in reducing power consumption of the processor
while keeping overheads as low as possible. Before presenting the
experimental results, we describe our methodology/experimental
set-up, develop an analytical failure model, and outline the
exploration space for our experiments.

4.1 Methodology
Table 1 outlines our experimental setup for the baseline

processor configuration. The processor is configured with a 64K
4-way set associative L1 cache. The architecture was simulated
using an extensively modified version of Simplescalar 4.0 [5]
using SPEC2K benchmarks. Benchmarks were compiled with the
-O4 flag using the Compaq compiler targeting the Alpha 21264
processor. The benchmarks were fast–forwarded for 3 billion
instructions, then fully simulated for 4 billion instructions using
the reference data sets. We used CACTI6.5 [7] to evaluate area,
power and delay of both L1 and L2 caches and their related
FDMs. The Synopsys standard industrial tool-chain (with TSMC
90nm technology library) was used to evaluate the overheads of
the MUXing layer components (i.e., MUXes, comparators,
MUXes selection logic, etc.).

The load/store latency of 2 cycles is assumed to be broken into
actual cache access taking place in cycle 1, while the bus access
takes only a part of the next cycle. From our discussion in Section
3.4, the cache delay is increased only slightly (<5%) in nominal
Vdd. However, considering the increase in logic delay due to Vdd
scaling, we conservatively assume that in the worst case, the
latency of the cache would be increased by one full cycle for L1
and two cycles for L2.

Table 1.Processor Configuration

L1/Inst Cache
2 banks 64 KB, 4 Way, 2 Cycles,
1 port, 64B block size

L2 Cache
2 banks 2 MB, 8 Way, 20 Cycles,
1 port, 128B block size

Fetch, dispatch 4 wide

Issue 4 way out of order
Memory 300 cycles
Reorder buffer 96 entry
Instruction queue 32 entry
Register file 128 integer and 125 floating point

Load/store queue 32 entry
Branch predictor 64KB entry g-share
Arithmetic unit 4 integer, 4 floating point units
Complex unit 2 INT, 2 FP multiply/divide units

For a given set of cache parameters (e.g., associativity,

subblock size, MGB, etc.), a Monte Carlo simulation with 1000
iterations is performed using our FDM configuration algorithm
described in Section 3.3 to identify the portion of the cache that
should be disabled while achieving a 99% yield. In other words,
probability of failure of the cache must below 0.001 when
operating in low-power mode.

4.2 Probability of Cache Failure
To estimate the probability of failure for the cache, we

developed an analytical model of the FFT-Cache. Assume an n-
way set-associative cache with m sets, k subblocks in a block,

each of which has d data bits with a fault probability pF. We also
define c as the maximum acceptable disabled blocks in a set
(MGB). We derive the following equations:

The probability of failure for each subblock that has at least
one faulty bit:

Pfaulty-subblock=Pfs= 1-(1-pF)d

The probability of failure for each block that has at least one
faulty subblock:

Pfaulty-block =Pfb= 1-(1-pF)dk

The probability of two blocks being paired with no conflict such
that for each pair of subblocks at the same location at least one of
them should not be faulty:

Ppaired-block = Ppb = (1-Pfs
2)k

The probability of finding possible blocks in a set to compose an
operational group without any conflict between them such that
each pair of them being a paired block without conflict:

Pgroup-block = Pgb= (Ppb)
α ,	α ൌ ൫ିଶ ൯

The probability of two cache sets being paired with no conflict
such that at least one of β possible groups of blocks in them is
paired:

Ppaired-set = Pps= β (Ppb)	, ߛ ൌ ݊ െ ܿ, β ൌ ൫
ି൯

As defined, a set is faulty only if all of its blocks are faulty and
none of the possible groups within them is operational. Hence, the
probability that a set is functional:

Pset= 1 - (Pfb)
n (1-Pgb)

β

Let’s consider R as the number of cache lines that can be disabled,
so at most 2R sets can be faulty but paired for the cache to be
operational. The probability that the FFT-Cache is operational is:

ܲ� ൌቀ
݉
2݅
ቁ ௦ܲ௧

ିଶሺ1 െ ௦ܲ௧ሻଶ
ோ

ୀ

ܲ௦

We used our analytical models of failure to determine the
failure probability of a 64KB L1 FFT-Cache and compared it to
SECDED and DECTED methods with equal area overhead. The
results, as shown in Figure 8, demonstrate that, at a given voltage,
FFT-Cache is the most reliable cache, while SECDED is the least
reliable cache. If we adopt the definition for Vdd-min as the
voltage at which 1 out of every 1000 cache instances is defective
[18], based on this figure the FFT-Cache can reduce the Vdd
below 375mv in comparison with 465mv and 520mv for
DECTED and SECDED methods, respectively.

Figure 8. Probability of cache failure vs Vdd for SECDED,
DECTED, and FFT-Cache.

100

Vdd-min = 375 mV

(a) Percentage of disabled lines and global blocks for 4-way L1 (Max global block = 1) while varying Vdd and subblock size

(b) Percentage of disabled lines and global blocks for 8-way L1 (4b subblocks) while varying Vdd and Max global block

Figure 9.The effect of changing one design parameter of L1 FFT-Cache while fixing other parameters for different Vdd values.

(a) Percentage of disabled lines and global blocks for 8-way L2(Max global block = 4)while varying Vdd and subblock size

(b) Percentage of disabled lines and global blocks for 8-way L2(4b subblocks)while varying Vdd and Max global block

Figure 10.The effect of changing one design parameter of L2 FFT-Cache while fixing other parameters for different Vdd values.

4.3 Design Space Exploration
Figure 9 and Figure 10 present the design space exploration of

FFT-Cache for L1 and L2 caches, respectively. We study the
impact of various FFT-Cache configuration parameters including
subblock size and MGB on the number of target lines/blocks
(non-functional cache part). In addition, we study the impact of
cache associativity on FFT-Cache functionality. Note that since
MGB is decided by cache associativity (i.e., half of cache blocks
in a line can be a global block candidate), it makes a lot of sense
to study the impact of cache associativity on the size of non-
functional cache part.

As mentioned earlier, to evaluate our design for a given set of
cache parameters (associativity, MGB, subblock size, and Vdd), a
Monte Carlo simulation with 1000 iterations is performed using
the FDM configuration algorithm described in Section 3.2 to
identify the Global blocks and lines that should be disabled. Our
simulation model targets 99% yield for the cache.

We present the results for different associativity (4 and 8) and
various subblock sizes (4, 8, 16 and 32) and various MGB values
(1, 2, 3 and 4).

As evident in these figures, decreasing Vdd increases the size
of cache non-functional part. It is notable that for very low voltage

101

(below 400mv), the number of global blocks decreases. Overall,
the effective size of cache (cache size – non-functional part)
decreases as the voltage is lowered. We can also observe from the
figure that decreasing the size of subblocks, increases the area
overhead of the FDM. Decreasing the size of subblocks also
reduces the size of cache non-functional part.

Increasing MGB, increases the number of non-functional
blocks only slightly while it significantly reduces the number of
non-functional lines. In fact increasing the MGB helps the FDM
configuration algorithm to find a global target block rather than
sacrificing a target line.

During the process of finding the FFT-Cache minimum
achievable operating voltage (Vdd-min), we limit the size of
cache non-functional part and the overhead of the FDM table as
described below. The number of target lines/blocks (i.e. the size
of non-functional cache part) determines the performance loss of
FFT-Cache. To limit the performance loss we assume the relative
size of non-functional part to be less than 25% of cache size. To
minimize the implementation overhead we assume the FDM size
to be less than 10% of cache size. This assumption requires the
subblock size to be 16 bits or higher (32 bits and 64 bits).

Based on these assumptions we find the minimum achievable
operating voltage. This has been highlighted in Figure 9 and 10.
Using FFT-Cache scheme the minimum operating voltage for L1
and L2 caches is 375mv. At this voltage the FDM overhead is 7%
and 6.6% for L1 and L2 respectively. To reach to such a low
voltage level, FFT-Cache has sacrificed only less than 25% of L1
cache blocks and almost 0% of L1 cache lines. For L2, FFT-
Cache has sacrificed less than 20% of block and less than 4% of
all L2 cache lines. In the next section we study the impact of FFT-
Cache on power and performance.

4.4 Results
A. Performance results

In Figure 11 we report the impact of FFT-Cache on
performance of SPEC2K benchmarks. The relative performance
degradation in terms of IPC (instruction per cycle) is reported for
a 64KB, 4-way set associative L1 FFT-Cache (Figure 11 (a)) and
2MB, 8-way set associative L2 FFT-Cache (Figure 11 (b). We
also report the performance degradation when the FFT-Cache
scheme is deployed simultaneously in L1 and L2 (Figure 11(c).
Furthermore, we report the breakdown of performance drop,
either due to increasing in cache access delay (from 2 to 3 cycles
for L1 and 20 to 22 cycles for L2) or reduction in cache effective
size.

The results are acquired for the minimum voltage configuration
(MGB=1, subblock size=16 for L1 and MGB=4, subblock
size=16 for L2). On average, performance drops by 2.2% for L1
cache and 1% for L2 cache. For L1 cache the additional delay of
accessing the cache is responsible for the majority of performance
loss. The impact of additional delay on performance is lower for
L2 cache mainly due to the large L2 cache access delay (2 cycles
delay overhead compared to 20 cycles baseline access delay). The
results also indicate that the performance degradation for both L1
and L2 varies significantly across different benchmarks. The
highest performance loss is observed in bzip2 and gzip
benchmarks (more than 5% IPC loss). In fact these are high IPC
benchmarks. In these benchmarks 1 cycle additional delay of L1
cache access in addition to reduction of L1 cache effective size by
20% is not tolerated. In many benchmark almost no performance
loss is reported. These benchmarks include facerec, galgel and
lucas. Our investigation indicated that while in these benchmarks
the miss rate increased slightly due to cache effective size

reduction, the nature of out-of-order execution helped the
benchmark to maintain performance.

For L2 cache the performance degradation is lower. The largest
performance drop is 8% and is for ammp benchmark. Finally a
3% performance loss is observed when FFT-Cache scheme is
deployed in both L1 and L2 caches.

(a)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

am
m

p

ap
pl

u

ap
si

ar

t

bzip
2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gal
gel

gap

gcc

gzip

lu
ca

s

m
cf

m
es

a

m
grid

par
se

r

per
lb

m
k

sw
im

tw
olf

vo
rte

x

vp
r

wupwis
e

Ave
ra

ge

L1 Performance degradation due to sacrifice line/blocks

L1 Performance degradation due to extra cycle

(b)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

am
m

p

ap
pl

u

ap
si

ar

t

bzip
2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gal
gel

gap

gcc

gzip

lu
ca

s

m
cf

m
es

a

m
grid

par
se

r

per
lb

m
k

sw
im

tw
olf

vo
rte

x

vp
r

wupwis
e

Ave
ra

ge

L2 Performance degradation due to sacrifice line/blocks

L2 Performance degradation due to extra cycle

(c)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

am
m

p

ap
pl

u

ap
si

ar

t

bzip
2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

gal
gel

gap

gcc

gzip

lu
ca

s

m
cf

m
es

a

m
grid

par
se

r

per
lb

m
k

sw
im

tw
olf

vo
rte

x

vp
r

wupwis
e

Ave
ra

ge

L1-L2 Performance degradation due to sacrifice line/blocks
L1-L2 Performance degradation due to extra cycle

Figure 11.Performance degradation of applying FFT-Cache
for (a) L1 (b) L2 and (c) L1 and L2 at the same time.

B. Power/Area Overhead Analysis

Figure 12 summarizes the overhead of our scheme for both L1
and L2 caches. The power overhead in this figure is for high-
power mode (nominal Vdd). We account for the overheads of
using 8T SRAM cells [10] for protecting the tag and defect map
arrays in low-power mode. To reduce the effect of leakage and
dynamic power consumption of FDM in high-power mode, we
assume clock gating and power gating is applied in the FDM
array. Therefore, the main source of dynamic power in nominal
Vdd relates to bypass MUXs. As it showed in this figure it is less
than 3% for L1, but is trivial for L2.

As evident in Figure 12, the defect map area is a major
component of area overhead for both L1 and L2. The total area
overhead for L1 is 13% and for L2 is less than 10%. Also, the

102

defect map is the major component of leakage power in both L1
and L2.

Based on our CACTI results in both nominal Vdd (660 mV)
and Vdd-min (375 mV), we achieve 66% dynamic and 48%
leakage power reduction in L1 cache and 80% dynamic and 42%
leakage power reduction in L2 cache.

Figure 12.Power and Area overheads of FFT-Cache.

C. Comparison with Recent Methods
In this section we present detailed comparison between our

scheme and four state-of-the-art works include Wilkerson et al.
[18], ZerehCache [29], 10T SRAM cell [13], and Ansari et al.
[30]. Table 2 summarizes this comparison based on the minimum
achievable Vdd, area and power overheads for both L1 and L2
caches, and normalized IPC. In this table, different techniques are
sorted based on the minimum achievable Vdd-min, when
targeting 99.9% yield.

Table 2.Comparison of different Fault-Tolerant Schemes

Scheme
Vdd-min

(mV)

L1 Cache L2 Cache
Norm.
IPC

Area
over.
(%)

Power
over.
(%)

Area
over.
(%)

Power
over.
(%)

6T cell 660 0 0 0 0 1.0

ZerehCache[29] 430 16 15 8 12 0.97

Wilkerson [18] 420 15 60 8 20 0.89

Ansari [30] 420 14 19 5 4 0.95

10T cell [13] 380 66 24 66 24 1.0

FFT-Cache 375 13 16 10 8 0.95

Overall, our proposed FFT-Cache achieves the lowest

operating voltage (375mv) and the highest power reduction
compared to all other techniques. The closest techniques to ours
are 10T cell, Ansari, and Wilkerson. 10T cell achieves almost
similar power reduction to FFT-Cache but incurs a 66% area
overhead. Wilkerson’s work has a significant power overhead and
also it suffers an 11% performance degradation. The Ansari
technique incurs slightly lower power and area overhead just for
L1 cache compared to FFT-Cache but it does not reduce operating
voltage below 420mw and thus achieves lower power reduction.
Overall, the flexible defect map of FFT-Cache along with high
configurability and high flexibility allow it to tolerate higher
failure rates compared to other similar techniques.

5. CONCLUSION
In this work, we proposed a fault-tolerant cache architecture,

FFT-Cache, which has a flexible defect map to configure its
architecture to achieve significant reduction in power
consumption through aggressive voltage scaling, while
maintaining high error reliability. FFT-Cache uses a portion of
faulty cache blocks as redundancy to tolerate other faulty cache
lines and blocks. This can be accomplished by using either block-
level or line-level replication in the same set or between two or
more sets. It has an efficient configuration algorithm that
categorizes the cache lines based on degree of conflict between
their blocks, to reduce the granularity of redundancy replacement.
Using our approach, the operational voltage is reduced down to
375mV in 90nm technology. This achieves 66% and 80%
dynamic power reduction for L1 and L2 caches, respectively. It
also reduces the leakage power of L1 and L2 caches by 48% and
42%, respectively. This significant power saving comes with a
small 5% performance loss and 13% area overhead.

6. ACKNOWLEDGMENTS
This research was partially supported by NSF Variability

Expedition Grant Number CCF-1029783.

7. REFERENCES
[1] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy.

A process-tolerant cache architecture for improved yield in
nanoscale technologies. IEEE Transactions on VLSI Systems,
13(1):27–38, Jan. 2005.

[2] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of
failure probability and statistical design of sram array for
yield enhancement in nanoscale cmos. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
pages 1859–1880, 2005.

[3] W. Wong, C. Koh, et al., "VOSCH: Voltage scaled cache
hierarchies," In Proc. of ICCD, pages 496-503, 2007.

[4] C. Zhang, F. Vahid, and W. Najjar. A highly configurable
cache for low energy embedded systems. ACM Trans. On
Embedded Computer System, 4(2):363-387, 2005.

[5] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computersystem modeling. IEEE
Transactions on Computers, 35(2):59–67, Feb. 2002.

[6] M. Guthaus, J. Ringenberg, et al. MiBench: A free,
commercially representative embedded benchmark suite. In
IEEE International Workshop on Workload
Characterization, pages 3-14, 2001.

[7] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi.
CACTI 6.5. HP Laboratories, Technical Report, 2009.

[8] L. Chang, D. Fried, et al. Stable sram cell design for the 32
nm node and beyond. In Proc. Symposium on VLSI
Technology, pages 128–129, June 2005.

[9] G. Chen, D. Blaauw, T. Mudge, D. Sylvester, and N. Kim.
Yield-driven near-threshold sram design. In Proc. of the
International Conference on Computer Aided Design
(ICCAD), pages 660–666, Nov. 2007.

[10] N. Verma and A. Chandrakasan. A 256 kb 65 nm 8t
subthreshold sram employing sense-amplifier redundancy.
IEEE Journal of Solid-State Circuits, 43(1):141–149, Jan.
2008.

103

[11] F. Moradi, D. Wisland, S. Aunet, H. Mahmoodi, and T. Cao.
65nm sub-threshold 11t-sram for ultra low voltage
applications. In Proc. Intl. Symposium on System-on-a-Chip,
pages 113–118, Sept. 2008.

[12] J. P. Kulkarni, K. Kim, and K. Roy. A 160 mv, fully
differential, robust Schmitt trigger based sub-threshold sram.
In Proc. of the International Symposium on Low Power
Electronics and Design, pages 171–176, 2007.

[13] B. Calhoun and A. Chandrakasan. A 256kb sub-threshold
sram in 65nm cmos. In Proc. of IEEE International Solid-
State Circuits Conference, pages 2592–2601, Feb. 2006.

[14] Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii, H.
Kawaguchi, and M. Yoshimoto. An area-conscious low-
voltage-oriented 8t-sram design under dvs environment.
IEEE Symposium on VLSI Circuits, pages 256–257,
June2007.

[15] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou.
Yield-aware cache architectures. In Proc. of the 39th Annual
International Symposium on Microarchitecture, pages 15–
25, 2006.

[16] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe.
Multi-bit Error Tolerant Caches Using Two-Dimensional
Error Coding. In Proc. of the 40thAnnual International
Symposium on Microarchitecture, 2007.

[17] P. Shirvani and E. McCluskey. PADded cache: a new fault-
tolerance technique for cache memories. In Proc. 17th IEEE
VLSI Test Symposium (VTS), 1999.

[18] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M.
Khellah, and S.-L. Lu. Trading off cache capacity for
reliability to enable low voltage operation. In Proc. of the
35th Annual International Symposium on Computer
Architecture, pages 203–214, 2008.

[19] A. Sasan, H. Homayoun, A.M. Eltawil, and F.J. Kurdahi. A
fault tolerant cache architecture for sub 500mV operation:
resizable data composer cache (RDC-cache). In Proc. of Int.
Conf. on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), pages 251-260, 2009.

[20] A. Sasan, H. Homayoun, A.M. Eltawil, and F.J. Kurdahi.
Inquisitive Defect Cache: A Means of Combating
Manufacturing Induced Process Variation. IEEE
Transactions on VLSI Systems, 18(12):1-13, Aug. 2010.

[21] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W.Wu, and S.-
L. Lu. Improving cache lifetime reliability at ultra-low

voltages. In Proc. of the 42nd Annual International
Symposium on Microarchitecture, 2009.

[22] A. Chakraborty, H. Homayoun, A. Khajeh, N. Dutt, A.M.
Eltawil, and F.J. Kurdahi. E < MC2: Less Energy through
Multi-Copy Cache. In Proc. of Int. Conf. on Compilers,
Architectures and Synthesis for Embedded Systems (CASES),
pages 237-246, 2010.

[23] C. Wilkerson, A.R. Alameldeen, Z. Chishti, W. Wu, D.
Somasekhar, and S. Lu. Reducing Cache Power with Low-
Cost, Multi-Bit Error-Correcting Codes. In Proc. of the 37th
annual international symposium on Computer architecture,
pages 83-93, June 2010.

[24] D. H. Yoon and M. Erez. Memory Mapped ECC: Low-Cost
Error Protection for Last Level Caches. In Proc. of the 36th
annual international symposium on Computer architecture,
2009.

[25] D. H. Yoon and M. Erez. Flexible Cache Error Protection
using an ECC FIFO. In Proc. of the Int’l Conf. High
Performance Computing, Networking, Storage, and Analysis
(SC’09), 2009.

[26] D. Roberts, N. S. Kim, and T. Mudge. On-chip cache device
scaling limits and effective fault repair techniques in future
nanoscale technology. In Proc of the 10th Euromicro
Conference on Digital System Design Architectures, Methods
and Tools (DSD), pages 570–578. 2007.

[27] C. K. Koh, W. F. Wong, Y. Chen, and H. Li. Tolerating
process variations in large, set associative caches: The buddy
cache. ACM Trans. on Architecture. and Code Optimization,
6(2):1–34, Jun 2009.

[28] C. K. Koh, W. F. Wong, Y. Chen, and H. Li. The Salvage
Cache: A fault-tolerant cache architecture for next-generation
memory technologies. In Proc. of IEEE international
conference on Computer design, 2009.

[29] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehcache:
Armoring cache architectures in high defect density
technologies. In Proc. of the 42nd Annual International
Symposium on Microarchitecture, 2009.

[30] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Enabling ultra
low voltage system operation by tolerating on-chip cache
failures. In Proc. of the International Symposium on Low
Power Electronics and Design, pages 307-310, Aug 2009.

104

