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Abstract—In this paper, we investigate the strength of six dif-
ferent SAT solvers in attacking various obfuscation schemes. Our
investigation revealed that Glucose and Lingeling SAT solvers
are generally suited for attacking small-to-midsize obfuscated
circuits, while the MapleGlucose, if the system is not memory
bound, is best suited for attacking mid-to-difficult obfuscation
methods. Our experimental result indicates that when dealing
with extremely large circuits and very difficult obfuscation
problems, the SAT solver may be memory bound, and Lingeling,
for having the most memory efficient implementation, is the best
suited solver for such problems. Additionally, our investigation
revealed that SAT solver execution times may vary widely across
different SAT solvers. Hence, when testing the hardness of an
obfuscation methods, although the increase in difficulty could be
verified by one SAT solver, the pace of increase in difficulty is
dependent on the choice of a SAT solver.
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I. INTRODUCTION

Cost of building a new semiconductor fab was estimated to
be US $5.0 billion in 2015, with large recurring maintenance
costs [1][2], and sharply increases as technology migrates to
smaller nodes. Due to the high cost of building, operating,
managing, and maintaining state-of-the-art silicon manufactur-
ing facilities, many major U.S. high-tech companies have been
always fabless or went fabless in recent years. To reduce the
fabrication cost, and for economic feasibility, most of the man-
ufacturing and fabrication is pushed offshore [1]. However,
many offshore fabrication fabs are untrusted, which has raised
concern over potential attackers that include the manufacturers,
with an intimate knowledge of the fabrication process, the
ability to modify and expand the design prior to production,
and an unavoidable access to the fabricated chips during
testing. Hence, fabrication in untrusted fabs has introduced
multiple forms of security threats from supply chain including
that of overproduction, Trojan insertion, Reverse Engineering
(RE), Intellectual Property (IP) theft, and counterfeiting [2].

One of the solutions explored by researchers to resist such
hardware security threats is through the application of logic
obfuscation. Logic obfuscation is the process of hiding the
functionality of an IP by building ambiguity or by implement-
ing post manufacturing means of control and programmability
into its netlist. Gate camouflaging and circuit locking are
two of the widely explored obfuscation mechanisms [3][4][5].
A camouflaged gate is a gate that after RE (by means
of delayering and lithography) could be mapped to any of
possible set of gates or may look like one logic gate, however
functionally perform as a different gate. On the other hand,
in locking solutions, the functionality of a circuit is locked
using a number of key inputs such that only when the correct
key is applied, the circuit resumes its expected functionality.
Otherwise, the correct function is hidden between many of

the 2K (K being the number of keys) different possibilities
of the circuit. The claim raised by such obfuscation scheme
was that to break the obfuscation, the adversaries need to try
a large number of inputs and key combinations to extract
the correct key, and the difficulty of this process increases
exponentially with the number of keys. Hence, if enough gates
are obfuscated, the adversary needs a considerable amount of
time (claimed as years to decades) to deobfuscate the circuit.

The validity and strength of logic obfuscation to defend
the IP against adversaries in the manufacturing supply chain
was seriously challenged as researchers demonstrated that
the satisfiability (SAT) solvers could break the obfuscation
in a matter of minutes as opposed to the promised claim
of years and decades [6][7]. This redirected the attention of
the researchers to find harder obfuscation schemes that are
more resilient to SAT attacks. SARLock and Anti-SAT [8][9]
obfuscation methods were proposed for this purpose, however
further research proved that these obfuscation techniques are
prone to a removal using Signal Probability Skew (SPS)
attacks [10], leaving the problem of finding a SAT and SPS
resilient obfuscation unresolved.

Today, many off-the-shelf SAT solvers with various capa-
bilities are freely and openly available, and each year many
new and more capable solutions are being developed. Some
of the most efficient and most powerful SAT solvers are the
winners of the International SAT competition [11], where
solvers participating in the competition are required to test the
performance of the proposed SAT solvers on a large number of
SAT problems in various categories. Different SAT solutions
have offered widely varying performance dealing with various
SAT problems, illustrating that the choice of a SAT solver
and its underlying features could have a significant impact on
the solver’s success and also on the time it takes to solve
a specific problem. In addition, different SAT solvers require
various amounts of memory resources, and assuming powerful
SAT solvers may perform extremely poorly or fail to find the
solution for larger benchmarks, even if they may outperform
other SAT solvers for solving a large number of small SAT
problems. In this work, we investigate the limitations and ca-
pabilities of different classes of SAT solvers when specifically
dealing with the problem of circuit obfuscation.

The contribution of this work to the hardware security
community is as follows: (1) to the best of our knowledge,
this work is the first attempt in benchmarking the capabili-
ties of SAT solvers when specifically dealing with hardware
obfuscation problem. It provides insights on capabilities and
limitation of different classes of SAT solvers, helping the re-
searchers in choosing the most able SAT solver for evaluating
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the effectiveness and hardness of their proposed obfuscation
solutions and prevents researchers from generalizing the fail-
ing result of a poor choice of SAT solver solution, to all
SAT solvers; (2) this work captures and summarizes the best
approach for converting various obfuscation schemes into SAT
solvable problems and compares the hardness of several of the
previously proposed obfuscation techniques across different
classes of solvers.

II. PREPARING OBFUSCATED NETLISTS FOR SAT ATTACK

A. Converting Obfuscated Gates to Key-Programmable Gates
A SAT solver takes a Boolean function in Conjunctive

Normal Form (CNF) as input and finds a valid assignment for
input variables to satisfy the function. To attack an obfuscated
netlist using a SAT solver, a working copy of the chip and
its obfuscated netlist is required. The adversary can acquire
the working chip after it is unlocked by the manufacturer and
shipped to the market and could gain access to the obfuscated
netlist by means of RE. In case of supply chain adversary, the
obfuscated netlist is readily available to the attacker. Then, the
obfuscated netlist should be transformed into a circuit SAT
problem. This process is explained next:

Let us refer to the functional black-box copy of the ob-
fuscated circuit as CF . The CF is used to find the correct
output for any given input. When using K keys, random
assignment of key could create at most 2K instances of a
circuit. Similar argument applies to camouflaged cells, where
each of K camouflaged gates could assume one of the M
different possibilities (for simplicity, let us consider M = 2).
Let us denote obfuscation scheme obtained by means of using
K keys or obfuscated gates by K-obfuscation. A circuit C
with NX inputs that is subjected to K-camouflaging could
be represented with an equivalent CK circuit with NX + K
inputs. Let us denote the circuit C with input X and output
Y by C(X,Y ) and its K-obfuscated netlist by C(X,K, Y ).
If the correct set of keys K̂ = (k0, k1, ..., kK−1) is applied to
the obfuscated circuit, for every input the obfuscated circuit
reduces to the original circuit C(X, K̂, YK) , C(X,Y ).

For a SAT attack the key signals in C(X,K, Y ) should be
available as input. Hence, obfuscation cells should be repre-
sented as Key-Programmable Gate (KPG), where insertion of
the correct key converts them to the correct gate. The cells
used for obfuscation could be divided into two categories: (1)
key-controlled gates [12][13] in which the key is an input
signal (e.g. XOR, MUX based obfuscation). (2) keyless-gates
[14][15] where functionality is hidden in the ambiguous struc-
ture or by use of internal memory elements (e.g. camouflaged
gates and LUTs). When using key-controlled gates, the key
is stored in an internal memory or a burned fuse. Hence, in
a reverse-engineered netlist the key inputs could be identified
by tracking their connectivity to memory/fuse elements. To
prepare the C(X,K, Y ) netlist, the memory/fuse element is
removed and key inputs are connected to input port(s).

When using keyless-gates, the gate has to be transformed to
a key-programmable gate before invoking a SAT attack. For
a L-input LUT, the number of functional possibilities is 22

L

.
To build a KPG for a LUT, the circuit illustrated in Fig. 1 is
deployed. The inputs to the LUT are connected to the select

lines of the S-MUX and keys are the select lines of B-MUXes.
Then, each key is connected to an input port adding 2L keys
to the C(X,K, Y ).
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Fig. 1: Converting a
LUT to a KPG

A camouflaged cell relies on hid-
ing the gate functionality by keeping
the structure of several gates similar.
Even in the best camouflaging cells, the
number of gate possibilities is limited
and it could be treated similarly to
programmable cells, where the camou-
flaged cell is replaced by a MUX and
each of the gate possibilities is fed to
a different input of the MUX, while
using the select lines of the MUX as
key inputs that are routed to the input pins of the C(X,K, Y ).

B. Converting an Obfuscated Circuit Into a SAT Problem

Before invoking the SAT solver, every key input combina-
tion is considered as a candidate key. Let’s denote the Set
of Candidate Keys by SCK. If we can find an input xd,
and two distinct key values K1 and K2 in SCK such that
C(xd,K1, Y1) 6= C(xd,K2, Y2), the input xd is denoted as
a Discriminating Input (DI) [6]. This is because the selected
input has the ability to prune the SCK and find at least one
incorrect key that is removable from SCK. In addition each
time a new DI is found, the SCK search space for function
FDI should be updated. This could be achieved by forcing
the FDI to check each pair of new keys K1 and K2 against
all previously founds DIs. A Complete-DI-set is a set of DI
inputs that reduces the SCK to the Set of Valid Keys (SVK).
SCK reduces to SVK when we no longer can find a DI using
the updated FDI . At this point if a key is valid across the
Complete-DI-Set, it is the correct key for all other inputs [6].

In this paper, as suggested in Fig. 2.b, a reverse-engineered
netlist, where all obfuscated cells are replaced with KPG cells,
is denoted by Key-Programmable Circuit (KPC). To build the
FDI , two copies of the KPC are used, their non-key inputs (X)
are tied together, and their outputs are XORed. This circuit
produces logic 1 when the output of two instantiated KPCs
for the same input X but different keys K1 and K2 are
different. This circuit, as suggested in Fig. 2.c is denoted as
Key-Differentiating Circuit (KDC).

The candidate keys in the SCK are capable of producing the
correct output for all DIs that have previously been discovered
and tested on the KPC circuit. In order to test the keys for
one DI, the circuit in Fig. 2.d is instantiated. In this figure,
FC is the working copy of the chip, and its output is used for
testing the correctness of both KPCs for a given DI and two
key values. This circuit is denoted as DI-Validation Circuit
(DIVC). To test the keys for all DIs, as illustrated in Fig.
2.e, the DIVC circuit is duplicated D times, with D being
the number of current DIs tested, and the output of all DIVC
circuits ANDed together. The resulting circuit is a validation
circuit for SCK set denoted as SCKVC.

If two keys K1 and K2 produce the correct output for all
previously tested DIs (SCKVC evaluates to true), but produce
different results for a new input Xtest, then Xtest is a DI that
further prunes the SCK. This, as illustrated in Fig. 2.f, could
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Fig. 2: (a) Transforming an obfuscated circuit to (b) Key-Programmable Circuit and (c) Key-Differentiating Circuit. (d) DIVC circuit for validating that two
input keys produce the correct output with respect to a previously discovered DI. (e) SCKVC circuit for validating that both input keys are in SCK set and
produce the correct output for all previously discovered DIs. (f) SATC circuit for finding a new DI.

be tested by using an AND gate at the output of SCKVC
and KDC circuits. The resulting circuit forms a SAT solvable
circuit denoted by SATC. When SATC evaluates to true, the
KDC has tested a pair of keys K1 and K2 that produce two
different results for an input Xtest, and SCKVC circuit has
confirmed that both K1 and K2 belong to SCK set. Hence, the
input Xtest is yet another DI. Each time a new DI is found, the
SCKVC should be updated by adding yet another DIVC circuit
for testing the newly discovered DI. This process is continued
until SAT solver no longer finds a solution to the final SAT
circuit. In this case, any key remaining in the SCK set is a
correct key for the circuit. On the SAT solver side, every time
the SAT solver is executed, it learns a new set of conflict
clauses. It is essential to store the learned clauses and use
them in the next invocation of the SAT solver to prevent SAT
solver from re-learning these clauses. Hence, as illustrated in
Fig. 2.f a Learned-Clause Avoidance Circuit (LCAC) is added
to the SATC to check for the occurrence of learned conflict
clauses.

III. SAT ATTACK

The SAT attack, as illustrated in Algorithm 1, follows
the SATC construction process explained in section II-B. In
the first iteration, the SCKVC circuit does not contain any
logic, since there is no previously tested DI. Hence, it is set
to 1 (true). The KDC circuit is simply built based on its
definition by using the equation in Fig. 2.c. The SATC circuit
is constructed by using an ANDing the KDC and SCKVC
circuits. SATF function is a call to SAT solver. Considering
the to-be-assigned variables in SATC circuit are X, K1 and K2,
the SAT solvers return an assignment to these variables and
a list of conflict clauses (CC) learned during SAT execution.
SATF return UNSAT if no such assignment exists. The while
loop is controlled by the return status of the SAT solver. In
every pass through the while loop, a new DI is found. Hence,
the SATC circuit should be modified (lines 7-10). The parts
of SATC circuit that is updated are the SCKVC and LCAC.
After finding each DI, an additional DIVC is added to SCKVC
to validate the keys generated in the next invocation of SAT
solver with respect to the newly found DI. In addition, the
newly learned CCs are added to LCAC. The CF is a call to
the functional circuit that returns the correct output for each
newly found DI. Finally, the SATC circuit is formulated at
line 10 for the next invocation of SAT solver.

The while loop is executed until no other DI is found. At
this point, any key in the SCK set is a correct key. To obtain a
correct key, the DIVC circuit is modified to take a single key

Algorithm 1 SAT Attack on Obfuscated Circuits
1: KDC = C(X,K1, Y1) ∧ C(X,K2, Y2) ∧ (Y1 6= Y2);
2: SCKV C = 1;
3: SATC = KDC ∧ SCKV C
4: LCAC = 1
5: while ((XDI , K1, K2, CC)← SATF (SATC) = T ) do
6: Yf ← CF (XDI);
7: DIV C = C(XDI , K1, Yf ) ∧ C(XDI , K2, Yf );
8: SCKV C = SCKV C ∧DIV C;
9: LCAC = LCAC ∧ CC

10: SATC = KDC ∧ SCKV C ∧ LCAC;
11: end while
12: KeyGenCircuit = SCKV C ∧ (K1 = K2)
13: Key ← SATF (KeyGenCircuit)

denoted as KeyGenCircuit. Hence, KeyGenCircuit has input
K, and its output is valid if K satisfy all previous constraints
imposed by previously found DIs. A simple call to a SAT
solver at this point returns a correct key assignment. If the SAT
solver does not return a valid key, it means the obfuscation,
locking, or camouflaging technique is invalid. Note that the
SAT attack in each iteration, as explained in Algorithm 1
and illustrated in Fig. 3, reduces the SCK by constraining the
SATC with new clauses added to the SCKVC and LCAC. But
it does not explicitly check to find the keys in SCK.

Clause added Clause added Clause added Clause added

Set of Correct Keys (SCK) Set of Invalid Keys (SIK)

Fig. 3: SCK set reduces in each pass through the while loop in Algorithm 1
as a new DI is discovered and is added to SATC circuit.

IV. BENCHMARKING SAT SOLVERS’ STRENGTHS IN
DEFEATING OBFUSCATION SCHEMES

We study the strength of six classes of SAT solvers in
defeating 5 previously proposed obfuscation schemes. Our
SAT solvers, obfuscation schemes, and the benchmarking
platform is described next:

A. SAT Solvers Used in This Work
MiniSat [16]: is developed as a modifiable SAT solver with

conflict-driven backtracking, watched literals and dynamic
variable ordering. Most of the later SAT solvers are a modified
version of this solver. It could be used as a baseline for
evaluating the effectiveness of added features in other solvers
for obfuscated circuit benchmarks.

Glucose [17]: is an extension of MiniSat code with a
special focus on removing useless clauses as soon as possible
and a new restart scheme. It uses the idea of Literal Block



Distance (LBD) to estimate the quality of learned clauses.
Other SAT solvers incorporated its restart policies. This solver
adapts itself according to four predefined outlier benchmark
characteristics, but in none of the tested benchmarks, default
strategy has changed.

Lingeling [18]: is based on the idea of interleaving search
and pre-processing. It uses various techniques to reduce the
search space. Binary and ternary clauses are stored separately
from large clauses. Large clauses are kept using literal stacks
and references to them are simplified from pointers to stack
position. Binary and ternary clauses are kept in occurrence
lists. Occurrence lists are defined using stacks and are refer-
enced by stack position. It also uses a modified version of
restart mechanism used in Glucose. Number of variables and
clauses are also monitored during execution and the number
of learned clauses is controlled using their variance.

Maple(MiniSat/Glucose) [19]: uses a new branching heuris-
tic in place of Variable State Independent Decaying Sum
(VSIDS) called Learning Branching Heuristic (LRB). Two
variants of MapleSat are MapleMiniSat and MapleGlucose,
respectively based on MiniSat and Glucose. MapleGlucose
uses LRB for 2500 seconds of the execution, and then switches
to VSIDS. In MapleMiniSat, VSIDS is replaced with LRB.

CryptoMiniSat [20]: is a SAT solver that compiled from
SatELite, PrecoSat, Glucose and MiniSat features. It has
special mechanisms for XOR clause handling and separates
watch lists for binary clauses. It can detect distinct sub-
problems in clause list and try to solve them with sub-solvers.

B. Studied Obfuscation Techniques
A random obfuscation scheme was proposed by Roy et al.

in [12]. In this scheme, which is one of the earliest work
on obfuscation, the XOR/XNOR gates are randomly inserted
in the netlist. We refer to this obfuscation as rnd. A major
weakness of this scheme was the ability of an attacker to
sensitize the circuit, by application of carefully selected inputs,
and to propagate the obfuscation keys to the primary outputs of
the circuit. Rajendran et al. [21] proposed a more sophisticated
obfuscation mechanism to avoid such sensitization attacks
by preventing insertion of isolated and mutable key-gates.
We refer to this scheme as dac12. An important metric in
logic obfuscation is increasing the output corruption when
a wrong key is used. Rajendran et al. [22] proposed an
obfuscation method that uses fault propagation analysis to
maximize Hamming distance between correct and incorrect
outputs when attacker applies a wrong key. They proposed
two variants of their obfuscation technique based on using
XOR and MUX gates. We refer to these obfuscation schemes
as toc13xor and toc13mux. Wires with low controllability are
susceptible to Trojan insertion. To obfuscate the degree of
controllability of wires in a netlist, in [23] Dupuis et al. tried to
minimize the wires with low controllability. This was achieved
by inserting AND/OR gates attempting to balance the signal
probabilities. We refer to this obfuscation method as iolts14.

C. Benchmarking Platform
For benchmarking of selected SAT solvers, we used a farm

of 20 Dell Latitude-7010 desktops equipped with Intel Core-
i5 processor and 8GB of RAM. For fair comparison, and

to reduce the impact of of the operating system background
processes, we dedicated one machine to each SAT solver at
a time, and installed Ubuntu Server 16.04.3 LTS operating
system in shell mode. We used the ISCAS-85 and MCNC
benchmark suites in our study and obfuscated each bench-
mark with {1%, 2%, 3%, 5%, 10% & 25%} area overhead. To
account for run-to-run variation in performance, we ran the
SAT solver 15 times for each obfuscated benchmark.

V. RESULTS

Fig. 4 illustrates the difficulty of defeating each obfusca-
tion method across all SAT solvers. To generate this graph,
the execution times for finding the keys to all obfuscated
benchmarks are added together at each obfuscation overhead
percentage point. The figure illustrates that the complexity
of benchmarks obfuscated by dac12 is considerably higher
than that for all other investigated obfuscation schemes. We
should also note that the time needed for obfuscating a
design using the dac12 methodology is considerably longer
than the time required by earlier obfuscation methods. The
simulation results confirm that increasing the controllability
of internal signals, as done in iolts14, or increasing the output
corruption, as implemented in toc13, significantly reduces the
strength of obfuscation scheme against SAT attacks. Hence,
obfuscation schemes that produce the lowest possible output
corruption, or reduce the controllability of internal signals
pose a harder problem for SAT solvers. However, please note
that the aforementioned options for making the obfuscation
problem harder for SAT solvers is completely against the
reasons why these obfuscation schemes were introduced in
the first place (high corruption for higher protection, and high
controllability for Trojan prevention).
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Fig. 4: The difficulty of investigated obfuscation solutions across all SAT
solvers. The execution time reported is the sum of the execution times of
all SAT solvers for finding the key at each reported obfuscation overhead
percentage point.

For the rest of this section, we separate the discussion
of dac12 and the other investigated benchmarks as, depend-
ing on the percentage area overhead used for obfuscation,
they represent two groups of low-to-mid and mid-to-high
complexity SAT problems. Note that we have not used the
SAT-hard obfuscation schemes such as SARLock [8] for two
reasons. First, they are prone to a simpler SPS attack for
detection and removal of key-forming-cones. Second, to study
the effectiveness of SAT solvers, we deliberately chose to work
with medium to semi-difficult problems that are still solvable
by SAT solvers in a reasonable time, so that the execution time
of SAT solvers is a measure of their efficiency. Otherwise, if
the operation of SAT solvers is reduced to brute-force attacks
by working on a non-SAT or extreme SAT-hard problems,
the execution time of all SAT solvers will be similar, as they



will run until they are timed out, or they exhaustively try all
possible inputs, thus reducing the SAT solver to a brute-force
depth first search solver.
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Fig. 5 (left) illustrates the ability of SAT solvers in defeating
the obfuscation scheme across all low-complexity obfuscation
schemes (all obfuscation methods except dac12). As illustrated
in this figure, the relationship between execution time and area
overhead is exponential. However, note that the execution time
grows at a very different pace for different SAT solvers, lead-
ing to a significant difference in runtime at higher obfuscation
percentages. This is illustrated in Fig. 5 (right), where the
runtime of SAT solvers under study, benchmarked at 25%, is
plotted. As shown in this figure, MapleGlucose, although not
the best SAT solver at smaller percentages, outperforms all
other solvers by a considerable margin for high percentages,
to the point that its runtime is about 3x smaller than that
of CryptoMiniSat. Fig. 6 illustrates the ability of investigated
SAT solvers to find the key for the netlists obfuscated using
dac12. As the obfuscation complexity increases, the runtime
of SAT solvers widely varies. In this experiment, a 24-
hour limit was imposed on the SAT solvers to break the
obfuscated benchmarks. MapleGlucose outperformed all other
SAT solvers in this experiment.
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Fig. 6: The execution time of SAT solvers for finding the correct key for all
dac12 obfuscated benchmarks as a measure of solver strength for mid-to-high
complexity problems.

Fig. 7 illustrates the peak of the memory usage for each
SAT solver across all benchmarks and at each obfuscation
area overhead percentage point. As illustrated in this figure,
Lingeling has the lowest memory requirements across all SAT
solvers. Hence, it is the most efficient solver in a memory
constrained environment, or when the size and percentage
of obfuscation considerably increases. As illustrated in Fig.
5, Lingeling is also the fastest solver at small obfuscation
percentages. At the same time, the CryptoMiniSat is the most
memory demanding solver across all obfuscation overheads.

In our study, on average, dac12 produced the hardest ob-
fuscation problems for all investigated SAT solvers. However,
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Fig. 7: Memory usage of each SAT solver across all benchmarks for each
obfuscation percentage point as a measure of solver efficiency.

when it comes to individual benchmarks, we found a few
exceptions to this finding, which prevented us from gener-
alizing the result. For example, as illustrated in Fig. 8, the
total execution time of all SAT solvers for finding keys to
benchmarks C2670 and C3540 (being a part of the ISCAS-
85 benchmark suite) is compared. The toc13xor obfuscation
in circuit C3540 produces a much harder problem for SAT
solvers across different obfuscation overheads when compared
to dac12, whereas in C2670 the behavior is reversed. Hence,
the netlist characteristic (number of inputs, number of gates,
connectivity, topology, number of outputs) plays a significant
role in the strength of the applied obfuscation, suggesting the
use of hybrid obfuscation methods to defend various netlists.
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Fig. 8: Execution time for deobfuscating c2670 and c3540 which are are
obfuscated with toc13xor and dac12.

VI. DISCUSSION AND TAKEAWAYS

When it comes to finding keys for a k-obfuscated circuit,
the choice of the best SAT solver depends on the netlist char-
acteristics (number of inputs, number of gates, connectivity,
topology, number of outputs) and the level of difficulty of
implemented obfuscation methods and the available resources
of the system executing the SAT solver.

Across the studied solvers, Lingeling provides acceptable
performance for small k-obfuscation problems and has the
lowest overall memory demand. Our study reveals that Lin-
geling is best suited for attacking small to midsize obfuscation
problems, considering its shorter execution time for these
problems, or for attacking extremely large obfuscated circuits,
due to its memory efficiency in cases when other solvers
become memory-bounded and thus useless. The memory effi-
ciency of Lingeling is the result of a special implementation of
data references for 64-bit machines with a specialized memory
allocator and garbage collector.

MapleGlucose, a variation of MapleSat, although not as effi-
cient as Lingeling at small to midsize k-obfuscation problems,
still provides the acceptably-good performance. However, in
terms of runtime, it significantly outperforms other solvers
for large and more difficult k-obfuscation problems. Our
investigation revealed that the hybrid branching heuristic used



in MapleGlucose proved to be its most useful feature for
reducing the solver’s execution time. The secondary feature
that was observed to be helpful in reducing the MapleGlucose
execution time is using the restart policies in Glucose solver.
MapleGlucose, however, may not be suited for extremely large
problems, as it may fail to execute in a memory-bounded
environment, as its memory demands grow faster than for
Lingeling.

Our study revealed that the CryptoMiniSat has the worst
performance for k-obfuscation, both in terms of execution
time, and memory efficiency. CryptoMiniSat incorporates
many interesting features and has proven to be powerful,
especially for problems that could be partitioned and solved
by separate solvers, but the added features do not help with the
efficiency of the solver to deal with k-obfuscation problems.

We experimentally observed that, although different SAT
solvers’ execution times for a given k-obfuscation problems
widely vary, their runtime tracks the obfuscation problems’
difficulty. Meaning, if a problem is made more challenging
for one solver, it becomes more challenging for all solvers.
However, such relationship is not linear. This was especially
observed in dealing with the dac12 obfuscation method. Mean-
ing, if a k-obfuscation problem is hardened and SAT solver’s
execution time is doubled, the problem may cause a much
higher or much lower increase in the execution time for
another solver. Hence, the results of one solver for a given
k-obfuscation cannot be generalized across all SAT solvers.

Across various k-obfuscation methods studied in this paper,
dac12 proved to be generally the most difficult. The learned
conflict clauses for a dac12 k-obfuscated circuit are usually
less constraining as they rely on a larger number of literals.
This provides us with a hint to design harder obfuscation prob-
lems by exploiting the SAT solver’s clause learning behavior
and enforcing mechanisms to increase the number of literals in
the learned conflict clauses. Such a defense not only reduces
the solver’s ability to quickly prune the search space but also
increases the memory requirements of the solver for keeping
longer clauses. This leads to a faster increase in the size of less
effective learned clauses and could degrade the solver in two
different ways: (1) The solver memory requirement is pushed
towards the system memory bound, (2) the solver’s ability to
shrink the size of learned clauses based on identification of
shorter and more effective (more pruning) clauses is reduced.

VII. CONCLUSION

Our investigation revealed that the Glucose and Lingeling
solvers are best suited for small to midsize k-obfuscation prob-
lems, while MapleGlucose provides the best execution time for
large k-obfuscation problems. When dealing with extremely
large k-obfuscation problems, Lingeling again becomes the
best choice due to its efficient and less memory demanding
database implementation. In terms of testing the hardness of k-
obfuscation methods, especially for mid-to-hard size problems,
we observed that the increase in the k-obfuscation difficulty
affects the runtime of each solver quite differently. Hence,
although the increase in difficulty could be verified by one SAT
solver, a pace of the increase in difficulty is dependent on the
choice of a SAT solver and the results from one solver cannot

be generalized. Finally, from a defender’s perspective, the
results of this benchmarking study suggest that targeting the
clause-learning process by means of k-obfuscation, to increase
the size of each learned conflict clause, directly affects the
effectiveness of SAT solvers in pruning the search space and
is a possible promising area for further investigation.
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