
MeNa: A Memory Navigator for Modern Hardware

in a Scale-out Environment

Abstract—Scale-out infrastructure such as Cloud is built
upon a large network of multi-core processors. Performance,
power consumption, and capital cost of such infrastructure
depend on the overall system configuration including number of
processing cores, core frequency, memory hierarchy and
capacity, number of memory channels, and memory data rate.
Among these parameters, memory subsystem is known to be one
of the performance bottlenecks, contributing significantly to the
overall capital and operational cost of the server. Also, given the
rise of Big Data and analytics applications, this could potentially
pose an even bigger challenge to the performance of cloud
applications and cost of cloud infrastructure. Hence it is
important to understand the role of memory subsystem in cloud
infrastructure and in particular for this emerging class of
applications. Despite the increasing interest in recent years, little
work has been done in understanding memory requirements
trends and developing accurate and effective models to predict
performance and cost of memory subsystem. Currently there is
no well-defined methodology for selecting a memory
configuration that reduces execution time and power
consumption by considering the capital and operational cost of
cloud. In this paper, through a comprehensive real-system
empirical analysis of performance, we address these challenges
by first characterizing diverse types of scale-out applications
across a wide range of memory configuration parameters. The
characterization helps to accurately capture applications’
behavior and derive a model to predict their performance. Based
on the developed predictive model, we propose MeNa, which is a
methodology to maximize the performance/cost ratio of scale-out
applications running in cloud environment. MeNa navigates
memory and processor parameters to find the system
configuration for a given application and a given budget, to
maximum performance. Compared to brute force method, MeNa
achieves more than 90% accuracy for identifying the right
configuration parameters to maximize performance/cost ratio.
Moreover, we show how MeNa can be effectively leveraged for
server designers to find architectural insights or subscribers to
allocate just enough budget to maximize performance of their
applications in cloud.

Keywords—memory, performance modeling, cost optimization,
cloud

I. INTRODUCTION

Cloud computing technology offers significant economic
as well as social benefits [1]. Today, many enterprises are
adopting cloud to reduce their capital and operational cost
while meeting Quality of Service (QoS) goals [2]. At the same
time, cloud subscribers expect to gain the maximum
performance from the cloud resources, at the lowest cost. A
significant portion of cloud infrastructure’s system capital as

well as operational cost is directly related to memory
subsystem parameters [3], which also impacts performance of
subscribers’ application [4, 5, 6, 7].

Today, more applications are moving to the cloud.
Therefore, for cloud-scale servers, the increasing number of
cores and applications sharing off-chip memory makes its
bandwidth as well as capacity a critical shared resource. These
trends suggest that it is important to understand the role of
memory parameters such as capacity, number of channels, and
operating frequency on performance of emerging class of
applications in scale-out environment. The main contribution
of this study is setting out a roadmap for memory
configuration to maximize the performance cost ratio of cloud
infrastructure.

To the best of our knowledge there is no experimental
work in understanding the impact of various memory
parameters on the performance of emerging scale-out
applications. An empirical evaluation is important as it
provides the community with reliable and accurate outcomes,
which can be used to identify trends and guide optimization
decisions.

To this goal, we first analyze various applications
architectural characteristics. Based on the characterization
results we classify applications into four different classes
namely CPU intensive, IO intensive, Hybrid Memory-CPU
intensive, and Hybrid Memory-IO intensive. Based on this
information we build a database and use it to drive an
empirical performance model for each application class.
Furthermore, we utilize IBM/SoftLayer TCO (total cost of
ownership) calculator to drive a cost model for server platform
in a scale-out environment such as cloud. The developed cost
model takes into account the processor as well as memory
parameters.

Based on the proposed predictive model, we present a
novel methodology for selecting main memory parameters to
maximize the performance per cost ratio of a given application
in cloud. As the performance of memory subsystem depends
on processor configuration, our methodology also navigates
processor parameters as well as memory parameters (MeNa).
MeNa is a three-stage methodology. It utilizes a fully
connected Neural Network to classify a given application.
After the classification, in the second stage, MeNa calculates
the performance-cost sensitivity of application with respect to
the server’s parameters. In the third stage, MeNa solves a
bounded knapsack problem using dynamic programming to

Hosein Mohammadi Makrani, Houman Homayoun

Electrical and computer engineering department

George Mason University

Fairfax, USA

{hmohamm8, hhmoayou}@gmu.edu

find a configuration, which maximizes the performance per
cost ratio.

Utilizing MeNa and based on the characterization results
we make the following major observations:

1) Hybrid Memory-CPU intensive applications
performance benefit noticeably from increasing the number of
cores, low frequency core, low frequency memory, and large
number of memory channels. 2) IO intensive applications are
benefiting from small number of cores, high frequency cores,
low frequency memory, and small number of memory
channels. 3) Despite diverse range of frequency available in
the memory market, increasing the memory frequency does
not show to improve performance/cost ratio. 4) Increasing the
number of memory channels improves the performance/cost
ratio of hybrid Memory-CPU intensive applications. 5)
Increasing the number of sockets increases the
performance/cost of the system only if the number of cores per
socket increases accordingly. 6) Increasing the capital cost of
a server or a target budget set by a user does not always
enhance in the performance/cost ratio of applications.

The remainder of this paper is organized as follows:
Section 2 provides technical overview of the investigated
applications and the experimental setup. Characterization and
results are presented in Section 3. Section 4 presents our
performance and cost analysis. We propose our memory
navigator model (MeNa) in section 5. Section 6 presents
related works. Finally, section 7 concludes the work.

II. EXPERIMENTAL SETUP

In this section, we present our experimental methodology
and setup. We first present the studied applications and then
introduce the studied big data software stacks. We will then
describe our hardware platform and our experimental
methodology.

A. Workloads

Diversity of applications is important for characterizing
cloud platforms. Hence, we target three domains of
applications from Big Data, multi-threaded programs, and
CPU applications. For CPU and multithreaded applications we
use SPEC CPU2006 [9] and PARSEC [10] benchmark suites,

respectively. The studied big data applications are selected
from BigDataBench suite [8], presented in table 1.
BigDataBench has micro kernel applications as well as graph
analytics and machine learning applications.

B. Hardware Platform

To have a comprehensive analysis of memory subsystem
we used different SDRAM modules shown in table 2. All
modules are from the same vendor. To build a cost model, we
used IBM SoftLayer TCO Calculator, based on datacenter
SJC01 (Located in San Jose, CA). A list of some of available
processor types is presented in Table 3. For running the
workloads, and monitoring the main memory, CPU, and disk
behavior, we used a six-node server with detailed parameters
for each node presented in table 4.

Architectural Behavior. We used Intel Performance
Counter Monitor tool (PCM) [11] to understand memory and
processor behavior. The performance counter data are
collected for the entire run of each application. We collect OS-
level performance information with DSTAT tool—a profiling
tool for Linux based systems. Some of the metrics that we
used for study are memory footprint, memory bandwidth, L2,
and Last Level Cache (LLC) hits ratio, instruction per cycle
(IPC), and core C0 state residency.

Table 1. Big Data Workloads
Workload wordcount sort grep pagerank naïve bayes kmeans

Domain micro kernel micro kernel micro kernel websearch e-commerce machine learning

Input type text data text data data graph

Input size
1.1 T 178.8G 1.1 T 16.8G 30.6G 112.2G

Framework Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark

Suite BigDataBench BigDataBench BigDataBench BigDataBench BigDataBench BigDataBench

Table 2. Memory modules’ part numbers

DDR3 4 GB 8 GB 16 GB 32 GB

1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 ---

1600 MHz D51272K111S8 D1G72K111S D2G72K111 ---

1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32

Table 3. IBM\SoftLayer bare metal servers

Processor type #Socket #Core Core_freq DRAM capacity Disk bays Net speed Monthly charge

Xeon E3-1270 1 4 3.40 GHz 2 GB 2 2 Gbps 137 $

Xeon E5-2620 2 6 2.00 GHz 16 GB 12 10 Gbps 470 $

Xeon E5-2690 2 8 2.90 GHz 16 GB 12 10 Gbps 640 $

Xeon E7-4850 4 10 2.00 GHz 64 GB 6 10 Gbps 1602 $

Xeon E7-4890 4 15 2.80 GHz 128 GB 24 10 Gbps 2566 $

Table 4. Hardware Platform

Hardware Type Parameter Value

Motherboard Model Intel S2600CP2

CPU

Model Intel Xeon E5-2650 v2

Core 8

Threads 16

Base Frequency 2.6

Turbo Frequency 3.4

TDP 95

L1 Cache 32 * 2 KB

L2 Cache 256 KB

L3 Cache 20 MB

Memory Type
Support

DDR3
800/1000/1333/1600/1867

Maximum Memory
Bandwidth

59.7 GB/S

Max Memory
Channels supported

4

Disk
(SSD)

Model HyperX FURY

Capacity 480 GB

Speed 500 MB/S

Network Interface
Card

Model ST1000SPEXD4

Speed 1000 Mbps

III. CHARACTERIZATION AND RESULTS

In a cloud platform, architecture and configuration of the
server directly impacts its TCO and performance. The extent
of this impact depends on the sensitivity of a cloud application
to the architectural parameters and system configurations.
Hence, we need to evaluate the performance sensitivity of our
workloads to those parameters. Based on the level of
sensitivity, we will classify the studied workloads. We then
explore the relation between performance and TCO, and
architectural configurations for each application class. This
approach helps to formulize the relationship among
configuration of cloud’s platform, performance, and cost.

A. Memory Analysis

We use IPC as a measure of application’s performance.
We consider the variation of workload’s IPC, when we
navigate memory and processor parameters, as an indicator for
sensitivity of the application performance to those parameters.

1) Memory Sensitivity: Equation 1 expresses the memory
bandwidth of the system as a function of number of channels,
operating frequency and width.

Bandwidth = Channels × Frequency × Width (Eq. 1)

 According to this equation, the maximum bandwidth that
our platform supports is 59.7 GB/s (4 channel * 1.867 GHz *
8 Byte). Memory frequency is a characteristic of memory
module and channel is the configuration of memory modules
on the platform. The ability of using multiple channels
effectively is decided by the support of memory controller.
Because the focus of our study is on memory subsystem and
its configuration, it is important to evaluate the sensitivity of
our studied workloads to those parameters that are
configurable, namely memory frequency, channels, and
capacity. For our experiments, we used 3 sets of memory
modules with different frequencies. A total of 22 different
memory modules with a wide range of operating frequency,
number of channels and capacity were selected based on their
availability in the market for server class architectures. The
memory modules frequency varies from 1333 MHz to 1867
MHz, number of channels ranges from 1 to 4, and their
capacity is swept from 4 GB to 32 GB.

Table 5 (a) and (b) show IPC variation when increasing
memory frequency and memory channel, respectively, for a
subset of studied applications. The interesting observation is
that Spark-Sort workloads is not sensitive to memory
frequency. However it’s the most sensitive application to the
number of channels. Another interesting observation is that the
sensitivity of most applications to memory channel is more
than their sensitivity to memory frequency. Due to in-memory
nature of Spark framework, we expected Spark applications to
be more sensitive to memory frequency and the number of

available channels compared to Hadoop applications.
However, unexpectedly Hadoop applications are shown to be
more sensitive.

2) Bandwidth Sensitivity: Based on Equation 1 and the
parameters of the studied memory modules reported in table 4,
the minimum bandwidth that studied memory modules
supports is 10.6 GB/s and the maximum bandwidth is 59.7
GB/s. Given that the studied workloads have different memory
behavior and requirements, for off-chip memory bandwidth
study we classify applications into memory intensive and non-
intensive applications. The classification is done based on IPC
variation as a function of memory bandwidth reported earlier
in this section. Figure 1 (a) presents the average utilization of
off-chip bandwidth for each class of applications. According
to this observation, memory intensive workloads use almost
4x more bandwidth than non-intensive workloads. This figure
also shows that both memory intensive and non-intensive
workloads cannot fully utilize the maximum available
bandwidth. This implies the inefficiency of the modern server
platforms when utilizing memory bandwidth. Our observation
shows available memory bandwidth exceeds the needs of all
studied applications from various domains by approximately
10x and off-chip bandwidth is not a bottleneck for increasing
the number of cores.

Figure 1 (b) demonstrates the impact of core frequency on
the average bandwidth usage of memory intensive workloads
for two different memory configurations, one with maximum
and the other with minimum memory bandwidth. The first
configuration is a memory with one channel and memory
frequency of 1333 MHz and the second is a four-channel
memory and 1867 MHz frequency. Based on this figure, we
observe that when the core frequency is low we can see both
configurations can deliver required bandwidth for the
workloads. However, by increasing the frequency, the
bandwidth utilization of workloads is increasing. This is due
to the fact that increasing processor frequency increases the
number of memory request generates per unit of time. The
bandwidth utilization gap between the two memory
configurations increases when increasing the processor
frequency. To show the impact of bandwidth utilization on
performance, in Figure 1 (c) we report the speedup in terms of
relative execution time improvement comparing the two
memory configurations. Increasing the core frequency up to
1.8 GHz does not bring performance advantage when using a
higher bandwidth memory. However, it is only at frequency of
1.8 GHz and beyond where we observe a clear speedup gain
using a high bandwidth memory. Therefore, the speedup gain
when deciding memory configuration, is not only decided by
the application type (memory intensive or not), but also by the
maximum operating frequency of the core.

Figure 1 (d) depicts which parameters of memory

Table 5. Memory sensitivity analysis

(a). Relative IPC variation when increasing memory frequency from 1333 MHz to 1867 MHz

%IPC Variation 27 21 16 9 8 8 8 7 5 4

Workloads canneal facesim libquantum H-grep milc omnetpp H-sort gemsfdtd bwaves H-kmeans

(b). Relative IPC variation when increasing memory channel from 1 to 4

%IPC Variation 35 30 28 26 21 20 14 11 10 10 4

Workloads S-sort canneal facesim milc H-grep libquantum Omnetpp gemsfdtd astar H-kmeans mcf

(c). Relative IPC variation when increasing memory capacity from 4 GB to 64 GB

%IPC Variation 25 22 18 10 8 7 7 7 5 5

Workloads S-sort S-wordcount H-kmeans S-nbayes S-pagerank H-sort S-grep H-grep H-pagerank H-wordcount

configuration help gaining more speed up when the core
frequency is set to the highest; i.e. 2.6 GHz. The result shows
memory configuration doesn’t have any noticeable effect on
the performance of memory non-intensive workloads,
however memory frequency and number of channels impact
the performance of memory intensive applications. In
addition, the effect of memory frequency depends on the
number of channels. By increasing the number of channels the
influences of frequency on performance is reduced. We
observe that increasing the number of channels from 2 to 4
doesn’t improve the performance. This shows that the state-of-
the-art server class memory controllers need to improve their
management policy to effectively use 4 channels, otherwise 2
channels is sufficient for a wide range of applications studied
in this work. Memory controllers utilize a large fraction of the
chip transistor budget and reducing the number of channels
from 4 to 2 reduces the complexity of memory controller and
therefore the entire processor, without sacrificing applications
performance.

3) Memory Capacity Sensitivity: Based on our results (not
presented) we found that memory capacity and disk caching
does not play a significant role for SPEC and PARSEC
applications. However, for big data applications, due to their
large input size, this is important to be investigated. To
investigate the effect of memory capacity on the performance

of Big Data applications, we run all workloads with 7 different
memory capacities. During our experiments, Spark workloads
encountered an error when running on a 4GB memory
capacity due to lack of memory space for the Java heap.
Hence, experiments of Spark workloads are performed with at
least 8 GB of memory. Sensitivity of Spark and Hadoop
applications to the memory capacity has been presented in
Table 5 (c).

B. Micro Architectural Analysis

Figure 2 reports the micro architectural analysis results for
the two classes of studied applications. The first parameter to
study is CPU stall. It is well known that front-end stall directly
incurs performance loss. Frontend stalls are also responsible
for wasting power consumption. Figure 2 (d) shows stalled
cycle per instruction for the two studied classes. Stalled CPI of
memory sensitive workloads is almost 3 times more than non-
sensitive workloads. Memory sensitive workloads suffer more
from front-end stalls as the deep hierarchy of caches delays
instruction–fetch and increases fetch penalty. While in general
hardware prefetcher in modern multi-core processors are
effective to improve performance of applications by reducing
frequency of front-end stalls, for memory sensitive
applications a noticeable front-end stall is still observed which
indicates that a significant improvement is still needed for
prefetchers.

Figure 2 (a) demonstrates the L2 and L3 cache hit rates.
The main difference between memory intensive and non-
intensive workloads is in L2 and L3 hit rates. Memory
intensive applications show a very low L2 and L3 hit rate. As
an example, Canneal, which is one of the most memory
sensitive applications, has L2 and L3 hit rates of 0.02 and 0.03
respectively. However, for some applications, L3 can mask L2
misses. An example is Hadoop wordcount, with a 0.41 L2 hit
rate, where its L3 hit rate is 0.44, enough to prevents Hadoop
wordcount performance to suffer from low L2 hit rate.

0

0.2

0.4

0.6

0.8

L2 L3

intensive non-intensive

C
ac

h
e

h
it

 r
at

e

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3

N
o

rm
al

iz
ed

 I
P

C

Core frequency

intensive

non-intensive

0

0.5

1

1.5

2

2.5

3

3.5

intensive non-intensive

%
 B

ra
n

ch
 m

is
se

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

intensive non-intensive

S
ta

ll
ed

 C
P

I

0

0.5

1

1.5

2

2.5

0 1 2 3

S
p

ee
d

 U
p

Normalized Core Frequency

intensive
non-intensive

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

0.5 1 1.5 2 2.5

S
p
e
e
d
 U

p

Normalized Core Frequency

Mem. intensive
Mem. non-intensive

 (a) Cache hit rate (b) IPC (c) Branch misses (d) Stalled CPI (e) Speed up
Figure 2. Workloads’ micro architectural behavior

0
10
20
30
40
50
60
70
80
90

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

R
ea

d
W

ri
te

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark HadoopSpark

Wordcount Sort Grep Pagerank nBayes Kmeans

M
B

p
S

Figure 3. Disk access of Big Data applications

Figure 1. Bandwidth analysis

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 10 20 30 40 50 60 70

U
til

iz
a
tio

n

Available Bandwidth (GBpS)

Mem Intensive
Mem Non-intensive

2

2.5

3

3.5

4

4.5

5

5.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

B
a

n
d

w
id

th
 U

s
a

g
e

 (
G

B
\s

)

Core Frequency (GHz)

Avaialable BW 59.7 Available BW 10.6

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1
3
3
3
M

1
6
0
0
M

1
8
6
7
M

1
3
3
3
M

1
6
0
0
M

1
8
6
7
M

1
3

3
3

M

1
6
0
0
M

1
8

6
7

M

1CH 2CH 4CH

S
p
e
e
d
 U

p

Mem Intensive Mem Non-intensive

 (a) Bandwidth utilization (b) Bandwidth usage (d) Speed up by memory

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

S
p

e
e

d
 u

p

Core frequency (GHz)

Available BW 10.6 Avaialable BW 59.7

 (c) Speed up by CPU frequency

Figure 2 (b) shows the average normalized IPC of memory
intensive and non-intensive workloads for different core
frequencies. The results show that increasing the core
frequency reduces IPC of memory intensive applications. To
show the effect of IPC reduction on the performance of the
workloads in terms of execution time, we provide the average
speed up of workloads in Figure 2 (e). The execution time
results are normalized to the minimum execution time of each
application. The observation shows that memory non-intensive
workloads speed up gain scale linearly with core frequency as
their IPC impacted by only 2%, on average. For memory-
intensive workloads, the speed up curve falls below a linear
curve, and even saturates when increasing the frequency
beyond 2 GHz. As discussed earlier, increasing the bandwidth
can mitigate this slightly. Increasing the available bandwidth
from 10.6 GB to 59.7 only improves performance by 16%.
Therefore, this is not an effective solution as the bottleneck
exists in off chip memory access latency.

Based on Figure 3, we classify big data applications in two
group of CPU-intensive and Disk-intensive class. Our decision
criteria for this classification is based on the average Disk
bandwidth usage. This Figure shows Spark wordcount, Spark
grep, Spark PageRank, Hadoop Sort, Hadoop grep to be Disk-
intensive while others to be CPU-intensive.

Workload classification. As the main goal of this paper is
to study the combined impact of node architecture and cloud
workload characteristics as well as performance/cost analysis,
it is important to first classify those workloads. To this goal,
we have explored the micro architectural behavior of studied
workloads to classify those workloads and find more insights.
We divided workloads into two major groups of memory
intensive and memory non-intensive. Each group of memory
intensive and non-intensive applications will classify to two
more Hybrid groups of I/O intensive and CPU intensive. This
classification will help us later to accurately formulate the
relation of performance and application characteristics.

IV. PERFORMANCE COST ANALYSIS

In this section, we formulate performance and cost analysis
of different application classes in a scale-out environment. The
first part of this section is devoted to formulating the total cost
of ownership for different server configurations, using the cost
offered by IBM/SoftLayer. We then develop equations to
formulate the performance improvement of each application
class with respect to the baseline configuration. These
equations will be exploited by MeNa to select the most
performance/cost efficient memory and CPU configuration for
each class of application.

A. Cost model

In this part, we analyze the parameters that are influencing
the total cost of ownership (TCO) in a data center. Our goal is
to establish a relationship between performance of studied
applications reported in section 3, and the total cost of
ownership when running these applications. We utilize
EETCO [40] to drive a model for estimating TCO. The
following five main factors determine the TCO in a data
center:

• Datacenter Infrastructure Cost: the cost of acquisition of
the datacenter building (real estate and development of
building) and the power distribution and cooling equipment
acquisition cost. The cost of the infrastructure is amortized
over 10~20 years.

• Server Cost Expenses: the cost of acquiring the servers,
which depreciates within 3~4 years.

• Networking Equipment Cost Expenses: the cost of
acquiring the networking equipment, which depreciates within
4~5 years.

• Datacenter Operating Expenses: the cost of electricity
for servers, networking equipment and cooling.

• Maintenance and Staff Expenses: the cost for repairs and
the salaries of the personnel.

TCO = C infrastructure + C server + C network +

 C power + C maintenance (Eq. 2)

In the above equation, the first line represents the capital
expenses (CAPEX) and the second line represents the
operational expenses (OPEX). Given that the infrastructure,
network, power, and maintenance costs are decided by the
server configuration parameters, we can simplify Eq.2 with
TCO = Cserver (configuration) which indicates the total cost of
ownership is a function of server configuration parameters.

The server TCO per month is determined as follows:

C server = C processor + C memory + C Disk (Eq. 3)

In this work we do not consider configuring network and
disk for performance optimization. Therefore, to establish a
relationship between performances of applications as well as
the TCO, we are simply treating disk and network cost as
constant. We extracted TCO data for 32 available server
configurations in IBM\SoftLayer. We used regression
technique to derive cost equation based on available server
configurations. Table 6 shows the available configurations.

 The per-server costs includes configurable DRAM,
configurable processor and constant disk and network costs.
At the server level, we account for the number of socket, core
per socket, and core frequency. We then formulate each server
performance as the product of per-processor performance
(using data collected in our experiments) and the number of
processor in each server.

The equation for monthly charge per server based on the
server’s processing part configuration is as follows:

0
10
20
30
40
50
60
70
80
90

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

R
e

ad
W

ri
te

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark HadoopSpark

Wordcount Sort Grep Pagerank nBayes Kmeans

M
B

p
S

Figure 3. Disk access of Big Data applications

C processor = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛼 𝑁𝑠𝑜𝑐𝑘𝑒𝑡 + 𝛽 𝑁𝑐𝑜𝑟𝑒 +
 𝛾 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑐𝑜𝑟𝑒 (Eq. 4)

Table 7 shows the results of processor cost’s regression
equation. For the cost of memory, we derived two different
equations. The first, considers the effect of memory frequency
on the cost of each memory module. The maximum capacity
of each available memory module is 32 GB. This is the
maximum available DRAM module in the market.

C memory module = [(9 × Capacity) × (Mem. Frequency –
0.31)] – 5 × N channel (Eq. 5)

Beyond 32 GB, the memory capacity is estimated using
the following equation:

C memory subsystem = (1.81 × Capacity) + 364 (Eq. 6)

All above cost equations are the predicted charge that
subscriber must pay for renting a server on a cloud. This
includes the power, cooling, and maintenance related costs of
the server.

B. Performance model

 In section 3, we classified studied applications into 4
different classes. Based on our characterization and previous
analysis, a set of performance equations is derived for each
application class. These equations are developed using
regression technique on a database collected through a
comprehensive experiment presented in section 3. We
formulate those observations into regression-based equations
to express performance of an application as a function of
processor and memory configurations. Given the influence of
both processor configuration and memory configuration on
performance, we divide the performance gain equation into
two parts; a part showing the performance gained by processor
and another one showing the performance gained by the
memory subsystem. The base configuration, which was used
to account for performance gain is presented in table 8.

Table 9 shows the performance gain as a function of core
count. For each class, we derived two different equations as
the core frequency changes the behavior of applications.
Similarly, Table 10 shows the performance gain by changing
the core frequency.

Performance gain as a function of memory frequency and
number of channels for various classes of applications is
shown in table 11. We only provide the equation for CPU-
Memory intensive application class because other classes of
applications do not gain noticeable performance benefit by
increasing the memory frequency and the number of channels.

In addition, we derived the performance gain equation as a
function of DRAM capacity as follows (only for Big Data
applications, as the rest are not sensitive to DRAM capacity):

Performance capacity = 0.0018 capacity + 0.99
(Eq. 7)

The minimum capacity for Big Data application is also
determined by the following equation:

Minimum capacity = (footprint ×core) / 8 (Eq. 8)

In the next section, MeNa exploits these performance and
cost equations to calculate performance/cost for a given user
defined budget.

V. MEMORY NAVIGATOR (MENA)

In this section, we present our novel methodology for
selecting and configuring DRAM system-level parameters in
scale-out environment. Our methodology is based on the
comprehensive analysis provided in previous sections.

A. Methodology

Figure 4 shows an overview of the proposed memory
navigator. MeNa is a three-stage methodology, which
navigates memory and CPU parameters to find the best
performance/cost configuration for a given budget set by the
user. In addition to memory parameters MeNa also navigates
processor parameters as performance gain of memory
subsystem is influenced by the interaction of both, as shown
earlier in this paper.

The first stage of MeNa is to determine cloud applications
behavior. Using the microarchitectural analysis presented
earlier in section 3.2, MeNa classifies application into two
main classes; memory intensive and memory non-intensive.
Additionally, we divided applications to two more classes,
namely CPU and I/O intensive, for more accurate performance
estimate. Therefore, there are a total of four different classes
as follow: 1) Mem-CPU intensive 2) Mem-IO intensive 3)
CPU intensive 4) IO intensive. The classification is done on a
three layer fully connected neural network trained by our
training database. Figure 5 shows the first stage of MeNa. The
neural network has 6 inputs and 4 outputs. Each output neuron
stands for a class and it gives a probability between 0 and 1.

Table 6. Available server configuration on IBM\SoftLayer

#Socket
#Core per

socket

Core

frequency

Memory

frequency

#Memory

channel

1 - 4 2 - 16 2 - 3.6 GHz
1333, 1600,

1867 MHz
1 - 4

Table 7. Values of server cost’s formula

Parameter Intercept α β ϒ R2

Value -353.5 208.1 31.4 54.9 0.82

Table 8. Base server configuration

#Socket

#Core

per

socket

Core

frequency

Memory

frequency

#Memory

channel
Price

1 2 2 GHz 1333MHz 1 73$

Table 9. Performance gain by increasing core count

App. class Core frequency > 2.8 Core frequency ≤ 2.8

Mem-CPU Perf = 0.16 core + 0.67 Perf = 0.28 core + 0.42

CPU Perf = 0.28 core + 0.48 Perf = 0.3 core + 0.38

IO Perf = 0.1 core + 0.79 Perf = 0.14 core + 0.7

Mem-IO Perf = -0.02 core + 1.04 Perf = -0.01 core + 1.43

Table 10. Performance gain by increasing core frequency

App. class Core count > 8 Core count ≤ 8

Mem-CPU Perf = 0.04 freq + 0.96 Perf = 0.43 freq + 0.57

CPU Perf = 0.25 freq + 0.75 Perf = 0.3 freq + 0.7

IO Perf = 0.09 freq + 0.91 Perf = 0.26 freq + 0.74

Mem-IO Perf = 0.03 freq + 0.93 Perf = 0.03 freq + 0.95

Table 11. Performance gain by memory frequency and channel

 High core and frequency Low core and frequency

Memory
frequency

Perf = 0.08 freq + 0.92 Perf = 0.03 freq + 0.96

Channel Perf = 0.15 Ch + 0.89 Perf = 0.09 Ch + 0.97

Hence, a neuron with the highest value determines the class of
application.

To identify the cost to increase performance by changing
each server parameters, we define a quantity called
performance-cost sensitivity. For example, the performance-
cost sensitivity to the number of cores per processor is defined
as follow:

Sens (core) = ((∂ Performance)⁄(∂ core))/((∂ Cost)⁄(∂ core))
(Eq. 9)

The second stage is to calculate this quantity with respect
to the number of sockets per server, number of cores per
processor, core frequency, memory frequency, number of
memory channels, and the capacity of DRAM. The equations
for performance are provided in tables 9, 10, 11, as well as
equations 7, and 8. Cost equations are reported in equations 4,
5, and 6. This quantity helps MeNa to set a priority for each
parameter when allocating processor and memory resources.
In this step, MeNa sorts all sensitivity results and based on the
largest results it puts them into a FIFO. We refer to this as
Priority FIFO.

 In the third stage, MeNa determines the configuration to
maximize the performance/cost while satisfying the subscriber
budget. For this purpose, MeNa solves the following problem
known as bounded knapsack by using dynamic programming:

Maximize ∑ 𝑃𝑒𝑟𝑓𝑖 𝐶𝑜𝑛𝑓𝑖
𝑛
𝑖=1

Subject to ∑ 𝐶𝑜𝑠𝑡𝑖 𝐶𝑜𝑛𝑓𝑖
𝑛
𝑖=1 ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 and mini ≤ Confi ≤ maxi

Where Confi represents the number or the value of
parameter i, mini and maxi are the minimum and the
maximum available resource for parameter i. Also, Costi
present the cost corresponding to Confi (Calculated by the cost
model in section 4.1). Similarly, Perfi present the performance
improvement corresponding to Confi (Calculated by the
performance model provided in section 4.2).

The last step determines the final configuration and its
corresponding performance/cost ratio as well as the

corresponding cost using performance-cost equation.

B. Validation

To show how MeNa allows subscribers to intelligently
search all server configuration space for finding the best
parameters to maximize performance/cost while meeting the
user specified budget, we validate MeNa against an oracle
configuration identified through the brute force search. We
apply the brute force search as follow: First, we select an
application and set a budget. Then we find all configurations
that achieve cost equal or smaller than the target budget.
Finally, we run the application on those configurations and
calculate its performance gain compared to the base
configuration. By knowing the cost of each configuration, we
calculate performance/cost for each configuration. The best
configuration is referred as the oracle configuration. We then
use MeNa to find the best configuration for the same
application. Comparison between MeNa’s outcome and oracle
outcome shows that MeNa methodology can find the best
configuration with 9% performance/cost error rate on, average
for our training data sets. In the worst case, a 17% error is a
small price for avoiding an exhaustive brute-force search. The
standard deviation of errors is 4%. Table 12 shows the error
rate of MeNa compared to oracle configuration for three test
applications from our training data sets.

Figure 6 shows the average performance/cost error rate of
MeNa for various budgets. This result shows MeNa accuracy
is higher for Mem-CPU class (8% error rate) while it has the
lowest accuracy for I/O intensive class (12%). Moreover,
MeNa is more accurate for mid-range target budget (between

Table 12. MeNa Validation
Application Class Budget Configuration #core Core freq. #Socket Mem. Cap. Mem. Freq. #channel Perf./Cost Error

Spark Kmeans
Mem-CPU

intensive
500$

Oracle 12 2.6 1 16 1333 2 0.977268
3.5%

MeNa 13 2.8 1 12 1333 4 0.942737

Hadoop Sort
IO intensive

180$
Oracle 4 2.8 1 4 1333 1 0.885733

10%
MeNa 5 3 1 2 1333 1 0.796636

Hadoop

WordCount

CPU intensive

400$

Oracle 8 3 1 6 1333 1 1.010769

8.6% MeNa 10 2.8 1 8 1333 2 0.923691

Stage 1 Stage 2 Stage 3

Pseudocode for finding the best configuration using

dynamic programming

Extract all application’s

characteristics

(LLC hit rate, Stall CPI, IPC,

C0 residency, CPU utilization,

Memory footprint)

Classify application into one of

these class:

1- Memory-CPU intensive

2- Memory-IO intensive

3- CPU intensive

4- IO intensive

Input: Application

Calculate the performance-cost

sensitivity of application

respect to all server’s

parameters

(number of socket, core count,

core frequency, memory

frequency, memory channel,

memory capacity)

Input: Application class

1- Sort all performance-cost

Sensitivity

2- Put them in FIFO based on

the largest value

Solve bounded knapsack

problem:

Maximize performance/cost

subject to the available budget

and resources

Input: Priority FIFO, application type,

input data size

1- Select the best configuration

2- Calculate the performance/

cost

3- calculate the charge

procedure dp_optimizer(parameters, budget):

 table = [[0 for cost in range(budget + 1)] for j in xrange(len(parameters) + 1)]

 for j in xrange(1, len(parameters) + 1):

 item, wt, sens = parameters[j-1]

 for cost in xrange(1, budget + 1):

 if wt > cost:

 table[j][cost] = table[j-1][cost]

 else:

 table[j][cost] = max(table[j-1][cost], table[j-1][cost-wt] + sens)

 result = []

 cost = budget

 for j in range(len(parameters), 0, -1):

 was_added = table[j][cost] != table[j-1][cost]

 if was_added:

 item, wt, sens = parameters[j-1]

 result.append(parameters[j-1])

 cost -= wt

 return result

Figure 4. MeNa methodology overview

Figure 5. MeNa classifier (Neural Network)

500$ and 900$).

C. Evaluation

In this section, we evaluate MeNa with unknown
applications for various target budget. The selected
applications are: Hadoop Terasort, Hadoop Scan, Spark sort,
and Spark Nweight. Table 13 shows the features of each
application and the class identified by MeNa. Tables 14, 15,
16, and 17 show the configurations selected by MeNa for the
given budgets. We also report the performance/cost error rate
of each application for each target budget. The results show
that MeNa identifies a configuration with performance/cost of
on average 11% close to an oracle configuration.

The evaluation of MeNa can also be used to derive
architectural insights for server designers. For instance based
on MeNa results we can see CPU intensive applications to
demand large number of cores and low frequency processors
while I/O intensive applications to require low number of core
but high frequency processors. The result of I/O-Memory
intensive application shows a very high performance/cost ratio
since all options that can improve the performance are playing
against each other. As a memory intensive application, we
need large number of cores and high core frequency to take
advantage of a fast memory subsystem. As an I/O intensive
application, however, increasing the number of cores and core
frequency exacerbate the I/O accesses and impacts
application’s performance. These findings have been
corroborated by our characterization’s result presented earlier
in section 3. Another observation is that increasing the
memory frequency does not enhance performance/cost ratio
even for memory intensive applications. On the other hand,
increasing the number of memory channels improve the
performance/cost ratio of memory intensive applications.

The trend in figure 7 shows that, regardless of application
class, scale-out approach cannot always enhance the
performance/cost unless the scale-up solution is exploited. For
example, increasing the number of sockets, when the number
of cores is low, reduces performance/cost. However, when the
number of cores increases, performance/cost enhances by
increasing the number of sockets. This means that the unseen
cost that subscribers pay for a server such as for cooling,
maintenance, and network, forces them to get the maximum
utilization from their server. To show how memory frequency
and number of channels affect the performance/cost of
applications, we present the average results of our dataset for
different number of cores in figure 8. Figure 8 shows that
increasing the memory frequency has almost no impact on
improving the performance/cost ratio. On the other hand,
increasing the number of channel improves performance/cost

ratio. However the improvement will be diminished if the
number of cores is low. In fact, as long as the number of cores
is high, enough pressure is being put on the memory
subsystem, therefore results in enhancing the performance
when the number of memory channels increases.

Another interesting observation is that allocating higher
budget for an application does not necessary yield a better
performance/cost, shown in figure 9. This implies that there
needs to be a method to enable subscribers to provision a
rational budget for their application to get the max
performance/cost benefits. MeNa proved that it is an answer
for such urgent demand. MeNa methodology is architecture
independent and therefore it can still be utilized for future
technology.

VI. RELATED WORK

This section summarizes the relevant literature on
characterization and optimization of memory subsystem and
cloud platforms.

A. Cloud

Jackson et al. [12], Barker et al. [13], Vecchiola et al. [14],
and Farley [15] analyzed the HPC applications, latency-

Table 13. Applications’ features

Application
LLC

hit

L2

hit

C0

residency

CPU

util.

CPI

stall
IPC Class

S-Nweight 32 39 89.27 83 2.7 1.6
CPU-

Mem

H-Terasoer 44 41 74.88 75 0.26 2 CPU

H-Scan 69 59 29.23 37 0.42 0.72 IO

S-srt 40 35 51.28 48 0.43 0.8 IO-Mem

Table 14. Configurations selected for Spark Nweight
Budget 250$ 450$ 700$ 900$ 1100$ 1400$

#Core 7 13 13 6 12 16

Core_freq (GHz) 2.8 2.8 2.8 2.8 2.8 2.8

#Socket 1 1 2 4 4 4

Mem_cap (GB) 5 10 16 16 24 32

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 2 2 1 2 4

Perf/Cost 0.826133 0.765555 1.01344 0.792148 1.160709 1.53858

Error (%) 8.2 5.3 3.1 5.6 7.9 11.1

Table 15. Configurations selected for Hadoop Terasort
Budget 250$ 450$ 700$ 900$ 1100$ 1400$

#Core 7 6 6 6 12 16

Core_freq (GHz) 2.8 2.8 2.8 2.8 2.8 2.8

#Socket 1 2 3 4 4 4

Mem_cap (GB) 3.5 6 9 12 24 32

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 1 1 1 1 1

Perf/Cost 1.119605 1.093411 1.077358 1.069507 1.589477 1.840536

Error (%) 9.8 7.5 5.9 6 9.4 10.8

Table 16. Configurations selected for Hadoop Scan
Budget 250$ 450$ 700$ 900$ 1100$ 1400$

#Core 5 5 5 4 9 9

Core_freq (GHz) 3.6 3.6 3.6 3.6 3.6 3.6

#Socket 1 2 3 4 4 4

Mem_cap (GB) 2.5 5 7.5 8 18 18

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 1 1 1 1 1

Perf/Cost 1.046293 1.044781 1.044279 0.922948 1.449773 1.449773

Error (%) 14.6 14.8 12.2 13.5 15.4 17.2

Table 17. Configurations selected for Spark sort
Budget 250$ 450$ 700$ 900$ 1100$ 1400$

#Core 3 3 2 2 4 4

Core_freq (GHz) 3.6 3.6 3.6 3.6 3.6 3.6

#Socket 1 2 3 4 4 4

Mem_cap (GB) 3 6 6 8 16 16

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333

#channel 1 2 2 2 4 4

Perf/Cost 0.510734 0.455947 0.464989 0.445342 0.456145 0.364948

Error (%) 13.3 14.7 9.4 10.1 16 15.3

0

5

10

15

20

200 400 600 800 1000 1200 1400 1600

ER
R

O
R

 (%
)

BUDGET

Mem-CPU CPU IO Mem-IO

Figure 6. Average error for different class of applications and Budget

sensitive applications, scientific applications, and micro-
benchmark applications, respectively, on the cloud. Ferdman
et al. [16], Kanev [39], and Kozyrakis et al. [17] analyzed
cloud-scale workloads to provide infrastructure-level insights.
Yang et al. [18] compared public cloud providers from
performance and cost perspectives. Blem et al. [19] compared
two different ISAs for various cloud scale applications.
Guevara et al. [20] studied how heterogeneous platforms bring
energy-efficiency for cloud applications. None of these studies
have focused on the influence of memory subsystem and its
parameters on the performance, power and cost in cloud.

B. Memory

Dimitrov et al. [21] characterized the memory access
patterns of Hadoop and noSQL big data workloads. However,
their work hasn’t examined the impact of memory parameters
on the performance and power consumption of the system.
Clapp et al. [22] provides a performance model that considers
the effect of memory bandwidth and latency for big data, high
performance, and enterprise workloads. Alzuru et al. [23]
investigates how Hadoop workload demands hardware
resources such as high-end memory. Our observation appears
to contradict the conclusion of their work claiming that
optimal memory capacity for Hadoop workloads is 96 GB.
Zhu et al. [24] evaluates contemporary multi-channel DDR

SDRAM and Rambus DRAM systems in SMT architectures
and proposed a thread-aware DRAM optimization technique.
Basu et al. [25] focuses on page table and virtual memory
optimizations for big data workloads and Jia et al. [26]
characterized cache hierarchy for a Hadoop cluster. Moreover,
several studies have focused on memory characterization of
SPEC benchmark suites [27, 28, 29, 30]. Hajkazemi et al.
explored the performance of Wide I/O and LPDDR memories
[31] and proposed an adaptive bandwidth management for
HMC+DDR memory [32] without considering the cost of
memory configuration and big data applications.

C. Big Data

Pan et al. [33] selected four big data workloads from the
BigDataBench to study their I/O characteristics. Liang et al.
[34] characterize the performance of Hadoop and DataMPI
workloads using Amdahl’s second law. Beamer et al. [35]
analyzes the performance characteristics of three high
performance graph analytics. They found that graph
workloads fail to fully utilize the platform’s memory
bandwidth. A recent work [36] used Principle Component
Analysis to identify important characteristics of
BigDataBench workloads. Results of Jiang work [37] show
that Spark workloads have different behavior than Hadoop and
HPC benchmarks. Issa et al. [38] studied performance
characterization of Hadoop K-means iterations. Based on the
characterization results they propose a model to estimate the
performance of Hadoop K-means iterations. Malik et al.
characterized Hadoop on big-little cores and microservers
without extracting the performance model [41, 42, 43, 44].
Neshatpour et al. analyzed the performance of big data
applications on heterogeneous architecture [45] and
accelerated Hadoop applications’ performance using FPGA
[46, 47].

VII. CONCLUSION

Main memory performance is becoming an increasingly
important factor contributing to overall system performance
and the operational and capital costs. This particularly
becomes important for server-class architectures as more
applications are moving to the clouds. This suggests that it is
important to understand the role of memory configuration
parameters, such as capacity, number of channels, and
operating frequency, for performance and energy-optimization
of emerging class of applications in scale-out environment. In
response, this work addresses these challenges with a real-
system experimental setup. Our analysis reveals several
interesting trends and provides key system and architectural
insights on how memory configuration parameters must be
tuned across various classes of applications to achieve high
performance at low cost. To the best of our knowledge, this is
the first work that provides a methodology for improving the
performance/cost ratio of server class architectures in a scale-
out environment while considering the memory parameter as
well as processor parameters. We proposed a novel three-stage
methodology to navigate memory parameter referred as
MeNa. MeNa uses a fully connected Neural Network to
characterize and classify applications. Based on the
characterization results, we present experimentally derived
models for estimating and predicting the impact of memory

Figure 7. Average Performance/Cost correspond to the average

number of core and socket

Figure 8. Effect of memory parameters on Performance/Cost

0

0.2

0.4

0.6

0.8

1

1.2

1.4

200 400 600 800 1000 1200

P
er

fo
rm

a
n

ce
\C

o
st

Budget

Figure 9. Average Performance/Cost correspond to Budget

and processor parameters on capital and operational cost and
performance of applications. MeNa uses those models to
navigate memory and processor configuration parameters in
order to find the best configuration to maximize
performance/cost ratio for a given user defined budget. MeNa
utilizes dynamic programming to solve bounded knapsack
problem to achieve that goal. The validation results on our
extensive database show MeNa to have 91% accuracy on
average to estimate the performance/cost ratio compared to a
brute force approach. MeNa enables subscribers to provision a
rational budget for their application to get the max
performance/cost in cloud environment. MeNa also reveals
several interesting trends and provides key insights that can be
leveraged by server designers for various optimization goals.

REFERENCES

[1] A. Michael et al., “A view of cloud computing,” Communications of the
ACM 53, no. 4, pages 50-58, 2010.

[2] Luis Columbus, “Roundup of Cloud Computing Forecasts and Market
Estimates,” 2015. URL:
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-
cloud-computing-forecasts-and-market-estimates-2015/#6fbeb58e740c

[3] J. Gelas, “Server Buying Decisions: Memory,” URL:
http://www.anandtech.com/print/7479/server-buying-decisions-memory.

[4] S. Kshitij et al., “Optimizing datacenter power with memory system
levers for guaranteed quality-of-service,” In 21st PACT, pages 117-126,
2012.

[5] Gottscho et al, “X-Mem: A Cross-Platform and Extensible Memory
Characterization Tool for the Cloud,” variations 40, no. 41: 42.

[6] W. Bircher et al., “Complete system power estimation using processor
performance events,” IEEE Transactions on Computers 61, no. 4 pp.
563-577, 2012.

[7] X. Fan et al., “Power provisioning for a warehouse-sized computer,”
In ACM SIGARCH Computer Architecture News, vol. 35, no. 2, pages
13-23. ACM, 2007.

[8] L. Wang et al., “Bigdatabench: A big data benchmark suite from internet
services,” In IEEE 20th HPCA, pages 488-499, 2014.

[9] J. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News 34, no. 4, pages 1-17. 2006.

[10] Ch. Bienia et al., “The PARSEC benchmark suite: characterization and
architectural implications,” In PACT, pp. 72-81, 2008.

[11] Available at: https://software.intel.com/en-us/articles/intel-performance-
counter-monitor.

[12] K. Jackson et al., “Performance analysis of high performance computing
applications on the amazon web services cloud,” In CloudCom, pp. 159-
168, 2010.

[13] S. Barker et al., “Empirical evaluation of latency-sensitive application
performance in the cloud,” In SIGMM conference on Multimedia
systems, pp. 35-46, 2010.

[14] Ch. Vecchiola et al., “High-performance cloud computing: A view of
scientific applications,” In IEEE 10th I-SPAN, pages 4-16, 2009.

[15] B. Farley et al., “More for your money: exploiting performance
heterogeneity in public clouds,” In ACM Cloud Computing, p. 20. ACM,
2012.

[16] M. Ferdman et al., “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” In ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 37-48, 2012.

[17] Ch. Kozyrakis et al., “Server engineering insights for large-scale online
services,” IEEE micro 30, no. 4, pages 8-19, 2010.

[18] A. Li et al., “CloudCmp: comparing public cloud providers,” In 10th
ACM SIGCOMM conference on Internet measurement, pp. 1-14, 2010.

[19] E. Blem et al., “A detailed analysis of contemporary arm and x86
architectures,” UW-Madison Technical Report, 2013.

[20] M. Guevara et al., “Navigating heterogeneous processors with
market mechanisms,” In IEEE HPCA, pp. 95-106, 2013.

[21] M. Dimitrov et al., “Memory system characterization of big data
workloads,” In IEEE Big Data, pp. 15-22, 2013.

[22] R. Clapp et al., “Quantifying the Performance Impact of Memory
Latency and Bandwidth for Big Data Workloads,” In IISWC, pp. 213-
224, 2015.

[23] I. Alzuru et al., “Hadoop Characterization,”
In Trustcom/BigDataSE/ISPA,vol. 2, pages 96-103, 2015.

[24] Z. Zhu et al., “A performance comparison of DRAM memory system
optimizations for SMT processors” In 11th HPCA, pages 213-224, 2005.

[25] A. Basu et al., “Efficient virtual memory for big memory servers,”
In ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 237-
248, 2013.

[26] Zh. Jia et al., “Characterizing data analysis workloads in data centers,”
In IISWC, pp. 66-76, 2013.

[27] L. Barroso et al., “Memory system characterization of commercial
workloads” ACM SIGARCH Computer Architecture News 26, no. 3,
1998.

[28] A. Jaleel, “Memory characterization of workloads using instrumentation-driven

simulation–a pin-based memory characterization of the SPEC CPU2000 and SPEC

CPU2006 benchmark suites,” Intel Corporation, VSSAD, 2007.

[29] F. Zeng et al., “Memory performance characterization of spec cpu2006

benchmarks using tsim,” Physics Procedia 33, pp. 1029-1035, 2012.

[30] Y. Shao et al., “ISA-independent workload characterization and its implications for

specialized architectures” In ISPASS, pp. 245-255, 2013.

[31] M. Hajkazemi et al., “Wide I/O or LPDDR? Exploration and analysis of

performance, power and temperature trade-offs of emerging DRAM technologies

in embedded MPSoCs,” In ICCD, pp. 62-69, 2015.

[32] M. Hajkazemi et al., “Adaptive bandwidth management for performance-

temperature trade-offs in heterogeneous HMC+ DDRx memory,” In GLSVLSI, pp.

391-396, 2015.

[33] F. Pan et al., “I/O characterization of big data workloads in data centers,”

In Workshop on Big Data Benchmarks, Performance Optimization, and Emerging

Hardware (Springer International Publishing), pp. 85-97, 2014.

[34] F. Liang et al., “Performance characterization of hadoop and data mpi based on

amdahl's second law,” In NAS, pp. 207-215, 2014.

[35] S. Beamer et al., “Locality exists in graph processing: Workload characterization

on an Ivy Bridge server,” In IISWC, pp. 56-65, 2015.

[36] Zh. Jia et al., “Characterizing and subsetting big data workloads,” In IISWC, pp.

191-201, 2014.

[37] T. Jiang et al., “Understanding the behavior of in-memory computing workloads,”

In IISWC, pp. 22-30, 2014.

[38] J. Issa, “Performance characterization and analysis for Hadoop K-means

iteration,” Journal of Cloud Computing 5, no. 1, 2016.

[39] S. Kanev et al., “Profiling a warehouse-scale computer,” In ISCA, pp. 158-169,

2015.

[40] D. Hardy et al., “EETCO: A tool to estimate and explore the implications of

datacenter design choices on the tco and the environmental impact,” In Micro-44,

2011.

[41] M. Malik et al., “Big vs little core for energy-efficient Hadoop computing,” In

DATE, pp. 1480-1485, 2017.

[42] M. Malik et al., “Characterizing Hadoop applications on microservers for

performance and energy efficiency optimizations,” In ISPASS, pp. 153-154, 2016.

[43] M. Malik et al., “System and architecture level characterization of big data

applications on big and little core server architectures,” In IEEE Big Data, pp. 85-

94, 2015.

[44] M. Malik et al., “Big data on low power cores: Are low power embedded

processors a good fit for the big data workloads?,” In ICCD, pp. 379-382, 2015.

[45] K. Neshatpour et al., “Big data analytics on heterogeneous accelerator

architectures,” In CODES+ ISSS, pp. 1-3, 2016.

[46] K. Neshatpour et al., “Energy-efficient acceleration of big data analytics

applications using fpgas,” In IEEE Big Data, pp. 115-123, 2015.

[47] K. Neshatpour et al., “Accelerating big data analytics using fpgas,” In FCCM, pp.

164-164, 2015.

