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Abstract—Scale-out infrastructure such as Cloud is built 
upon a large network of multi-core processors. Performance, 
power consumption, and capital cost of such infrastructure 
depend on the overall system configuration including number of 
processing cores, core frequency, memory hierarchy and 
capacity, number of memory channels, and memory data rate. 
Among these parameters, memory subsystem is known to be one 
of the performance bottlenecks, contributing significantly to the 
overall capital and operational cost of the server. Also, given the 
rise of Big Data and analytics applications, this could potentially 
pose an even bigger challenge to the performance of cloud 
applications and cost of cloud infrastructure.  Hence it is 
important to understand the role of memory subsystem in cloud 
infrastructure and in particular for this emerging class of 
applications. Despite the increasing interest in recent years, little 
work has been done in understanding memory requirements 
trends and developing accurate and effective models to predict 
performance and cost of memory subsystem. Currently there is 
no well-defined methodology for selecting a memory 
configuration that reduces execution time and power 
consumption by considering the capital and operational cost of 
cloud. In this paper, through a comprehensive real-system 
empirical analysis of performance, we address these challenges 
by first characterizing diverse types of scale-out applications 
across a wide range of memory configuration parameters. The 
characterization helps to accurately capture applications’ 
behavior and derive a model to predict their performance. Based 
on the developed predictive model, we propose MeNa, which is a 
methodology to maximize the performance/cost ratio of scale-out 
applications running in cloud environment. MeNa navigates 
memory and processor parameters to find the system 
configuration for a given application and a given budget, to 
maximum performance. Compared to brute force method, MeNa 
achieves more than 90% accuracy for identifying the right 
configuration parameters to maximize performance/cost ratio. 
Moreover, we show how MeNa can be effectively leveraged for 
server designers to find architectural insights or subscribers to 
allocate just enough budget to maximize performance of their 
applications in cloud.  

Keywords—memory, performance modeling, cost optimization, 
cloud 

I. INTRODUCTION 

Cloud computing technology offers significant economic 
as well as social benefits [1]. Today, many enterprises are 
adopting cloud to reduce their capital and operational cost 
while meeting Quality of Service (QoS) goals [2]. At the same 
time, cloud subscribers expect to gain the maximum 
performance from the cloud resources, at the lowest cost. A 
significant portion of cloud infrastructure’s system capital as 

well as operational cost is directly related to memory 
subsystem parameters [3], which also impacts performance of 
subscribers’ application [4, 5, 6, 7].  

Today, more applications are moving to the cloud. 
Therefore, for cloud-scale servers, the increasing number of 
cores and applications sharing off-chip memory makes its 
bandwidth as well as capacity a critical shared resource. These 
trends suggest that it is important to understand the role of 
memory parameters such as capacity, number of channels, and 
operating frequency on performance of emerging class of 
applications in scale-out environment. The main contribution 
of this study is setting out a roadmap for memory 
configuration to maximize the performance cost ratio of cloud 
infrastructure. 

To the best of our knowledge there is no experimental 
work in understanding the impact of various memory 
parameters on the performance of emerging scale-out 
applications. An empirical evaluation is important as it 
provides the community with reliable and accurate outcomes, 
which can be used to identify trends and guide optimization 
decisions. 

To this goal, we first analyze various applications 
architectural characteristics. Based on the characterization 
results we classify applications into four different classes 
namely CPU intensive, IO intensive, Hybrid Memory-CPU 
intensive, and Hybrid Memory-IO intensive. Based on this 
information we build a database and use it to drive an 
empirical performance model for each application class. 
Furthermore, we utilize IBM/SoftLayer TCO (total cost of 
ownership) calculator to drive a cost model for server platform 
in a scale-out environment such as cloud. The developed cost 
model takes into account the processor as well as memory 
parameters.  

Based on the proposed predictive model, we present a 
novel methodology for selecting main memory parameters to 
maximize the performance per cost ratio of a given application 
in cloud. As the performance of memory subsystem depends 
on processor configuration, our methodology also navigates 
processor parameters as well as memory parameters (MeNa). 
MeNa is a three-stage methodology. It utilizes a fully 
connected Neural Network to classify a given application. 
After the classification, in the second stage, MeNa calculates 
the performance-cost sensitivity of application with respect to 
the server’s parameters. In the third stage, MeNa solves a 
bounded knapsack problem using dynamic programming to 
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find a configuration, which maximizes the performance per 
cost ratio.  

Utilizing MeNa and based on the characterization results 
we make the following major observations: 

1) Hybrid Memory-CPU intensive applications 
performance benefit noticeably from increasing the number of 
cores, low frequency core, low frequency memory, and large 
number of memory channels. 2) IO intensive applications are 
benefiting from small number of cores, high frequency cores, 
low frequency memory, and small number of memory 
channels. 3) Despite diverse range of frequency available in 
the memory market, increasing the memory frequency does 
not show to improve performance/cost ratio. 4) Increasing the 
number of memory channels improves the performance/cost 
ratio of hybrid Memory-CPU intensive applications. 5) 
Increasing the number of sockets increases the 
performance/cost of the system only if the number of cores per 
socket increases accordingly. 6) Increasing the capital cost of 
a server or a target budget set by a user does not always 
enhance in the performance/cost ratio of applications. 

The remainder of this paper is organized as follows: 
Section 2 provides technical overview of the investigated 
applications and the experimental setup. Characterization and 
results are presented in Section 3. Section 4 presents our 
performance and cost analysis. We propose our memory 
navigator model (MeNa) in section 5. Section 6 presents 
related works. Finally, section 7 concludes the work.  

II. EXPERIMENTAL SETUP 

In this section, we present our experimental methodology 
and setup. We first present the studied applications and then 
introduce the studied big data software stacks. We will then 
describe our hardware platform and our experimental 
methodology.  

A. Workloads 

Diversity of applications is important for characterizing 
cloud platforms. Hence, we target three domains of 
applications from Big Data, multi-threaded programs, and 
CPU applications. For CPU and multithreaded applications we 
use SPEC CPU2006 [9] and PARSEC [10] benchmark suites, 

respectively. The studied big data applications are selected 
from BigDataBench suite [8], presented in table 1. 
BigDataBench has micro kernel applications as well as graph 
analytics and machine learning applications.  

B. Hardware Platform 

To have a comprehensive analysis of memory subsystem 
we used different SDRAM modules shown in table 2. All 
modules are from the same vendor. To build a cost model, we 
used IBM SoftLayer TCO Calculator, based on datacenter 
SJC01 (Located in San Jose, CA). A list of some of available 
processor types is presented in Table 3. For running the 
workloads, and monitoring the main memory, CPU, and disk 
behavior, we used a six-node server with detailed parameters 
for each node presented in table 4.  

Architectural Behavior. We used Intel Performance 
Counter Monitor tool (PCM) [11] to understand memory and 
processor behavior. The performance counter data are 
collected for the entire run of each application. We collect OS-
level performance information with DSTAT tool—a profiling 
tool for Linux based systems. Some of the metrics that we 
used for study are memory footprint, memory bandwidth, L2, 
and Last Level Cache (LLC) hits ratio, instruction per cycle 
(IPC), and core C0 state residency.  

Table 1. Big Data Workloads 
Workload wordcount sort grep pagerank naïve bayes kmeans 

Domain micro kernel micro kernel micro kernel websearch e-commerce machine learning 

Input type text data text data data graph 

Input size 
1.1 T 178.8G 1.1 T 16.8G 30.6G 112.2G 

Framework Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark Hadoop, Spark 

Suite BigDataBench BigDataBench BigDataBench BigDataBench BigDataBench BigDataBench 

 
Table 2. Memory modules’ part numbers 

DDR3 4 GB 8 GB 16 GB 32 GB 

1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 --- 

1600 MHz D51272K111S8 D1G72K111S D2G72K111 --- 

1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32 

Table 3. IBM\SoftLayer bare metal servers 

Processor type #Socket #Core Core_freq DRAM capacity Disk bays Net speed Monthly charge 

Xeon E3-1270 1 4 3.40 GHz 2 GB 2 2 Gbps 137 $ 

Xeon E5-2620 2 6 2.00 GHz 16 GB 12 10 Gbps 470 $ 

Xeon E5-2690 2 8 2.90 GHz 16 GB 12 10 Gbps 640 $ 

Xeon E7-4850 4 10 2.00 GHz 64 GB 6 10 Gbps 1602 $ 

Xeon E7-4890  4 15 2.80 GHz 128 GB 24 10 Gbps 2566 $ 

 

 
Table 4. Hardware Platform 

Hardware Type Parameter Value 

Motherboard Model Intel S2600CP2 

CPU 

Model Intel Xeon E5-2650 v2 

# Core 8 

# Threads 16 

Base Frequency 2.6 

Turbo Frequency 3.4 

TDP 95 

L1 Cache 32 * 2 KB 

L2 Cache 256 KB 

L3 Cache 20 MB 

Memory Type 
Support 

DDR3 
800/1000/1333/1600/1867 

Maximum Memory 
Bandwidth 

59.7 GB/S 

Max Memory 
Channels supported 

4 

Disk 
(SSD) 

Model HyperX FURY 

Capacity 480 GB 

Speed 500 MB/S 

Network Interface 
Card 

Model ST1000SPEXD4 

Speed 1000 Mbps 

 



III. CHARACTERIZATION AND RESULTS 

In a cloud platform, architecture and configuration of the 
server directly impacts its TCO and performance. The extent 
of this impact depends on the sensitivity of a cloud application 
to the architectural parameters and system configurations. 
Hence, we need to evaluate the performance sensitivity of our 
workloads to those parameters. Based on the level of 
sensitivity, we will classify the studied workloads. We then 
explore the relation between performance and TCO, and 
architectural configurations for each application class. This 
approach helps to formulize the relationship among 
configuration of cloud’s platform, performance, and cost.  

A. Memory Analysis 

We use IPC as a measure of application’s performance. 
We consider the variation of workload’s IPC, when we 
navigate memory and processor parameters, as an indicator for 
sensitivity of the application performance to those parameters.  

1) Memory Sensitivity: Equation 1 expresses the memory 
bandwidth of the system as a function of number of channels, 
operating frequency and width.  

Bandwidth = Channels × Frequency × Width          (Eq. 1) 

 According to this equation, the maximum bandwidth that 
our platform supports is 59.7 GB/s (4 channel * 1.867 GHz * 
8 Byte). Memory frequency is a characteristic of memory 
module and channel is the configuration of memory modules 
on the platform. The ability of using multiple channels 
effectively is decided by the support of memory controller. 
Because the focus of our study is on memory subsystem and 
its configuration, it is important to evaluate the sensitivity of 
our studied workloads to those parameters that are 
configurable, namely memory frequency, channels, and 
capacity. For our experiments, we used 3 sets of memory 
modules with different frequencies. A total of 22 different 
memory modules with a wide range of operating frequency, 
number of channels and capacity were selected based on their 
availability in the market for server class architectures. The 
memory modules frequency varies from 1333 MHz to 1867 
MHz, number of channels ranges from 1 to 4, and their 
capacity is swept from 4 GB to 32 GB.  

Table 5 (a) and (b) show IPC variation when increasing 
memory frequency and memory channel, respectively, for a 
subset of studied applications. The interesting observation is 
that Spark-Sort workloads is not sensitive to memory 
frequency. However it’s the most sensitive application to the 
number of channels. Another interesting observation is that the 
sensitivity of most applications to memory channel is more 
than their sensitivity to memory frequency. Due to in-memory 
nature of Spark framework, we expected Spark applications to 
be more sensitive to memory frequency and the number of 

available channels compared to Hadoop applications. 
However, unexpectedly Hadoop applications are shown to be 
more sensitive.   

2) Bandwidth Sensitivity: Based on Equation 1 and the 
parameters of the studied memory modules reported in table 4, 
the minimum bandwidth that studied memory modules 
supports is 10.6 GB/s and the maximum bandwidth is 59.7 
GB/s. Given that the studied workloads have different memory 
behavior and requirements, for off-chip memory bandwidth 
study we classify applications into memory intensive and non-
intensive applications. The classification is done based on IPC 
variation as a function of memory bandwidth reported earlier 
in this section. Figure 1 (a) presents the average utilization of 
off-chip bandwidth for each class of applications.  According 
to this observation, memory intensive workloads use almost 
4x more bandwidth than non-intensive workloads. This figure 
also shows that both memory intensive and non-intensive 
workloads cannot fully utilize the maximum available 
bandwidth. This implies the inefficiency of the modern server 
platforms when utilizing memory bandwidth. Our observation 
shows available memory bandwidth exceeds the needs of all 
studied applications from various domains by approximately 
10x and off-chip bandwidth is not a bottleneck for increasing 
the number of cores.  

Figure 1 (b) demonstrates the impact of core frequency on 
the average bandwidth usage of memory intensive workloads 
for two different memory configurations, one with maximum 
and the other with minimum memory bandwidth. The first 
configuration is a memory with one channel and memory 
frequency of 1333 MHz and the second is a four-channel 
memory and 1867 MHz frequency. Based on this figure, we 
observe that when the core frequency is low we can see both 
configurations can deliver required bandwidth for the 
workloads. However, by increasing the frequency, the 
bandwidth utilization of workloads is increasing. This is due 
to the fact that increasing processor frequency increases the 
number of memory request generates per unit of time. The 
bandwidth utilization gap between the two memory 
configurations increases when increasing the processor 
frequency.  To show the impact of bandwidth utilization on 
performance, in Figure 1 (c) we report the speedup in terms of 
relative execution time improvement comparing the two 
memory configurations. Increasing the core frequency up to 
1.8 GHz does not bring performance advantage when using a 
higher bandwidth memory. However, it is only at frequency of 
1.8 GHz and beyond where we observe a clear speedup gain 
using a high bandwidth memory. Therefore, the speedup gain 
when deciding memory configuration, is not only decided by 
the application type (memory intensive or not), but also by the 
maximum operating frequency of the core.    

Figure 1 (d) depicts which parameters of memory 

Table 5. Memory sensitivity analysis 

(a). Relative IPC variation when increasing memory frequency from 1333 MHz to 1867 MHz 

%IPC Variation 27 21 16 9 8 8 8 7 5 4 

Workloads canneal facesim libquantum H-grep milc omnetpp H-sort gemsfdtd bwaves H-kmeans 

(b). Relative IPC variation when increasing memory channel from 1 to 4 

%IPC Variation 35 30 28 26 21 20 14 11 10 10 4 

Workloads S-sort canneal facesim milc H-grep libquantum Omnetpp gemsfdtd astar H-kmeans mcf 

(c). Relative IPC variation when increasing memory capacity from 4 GB to 64 GB 

%IPC Variation 25 22 18 10 8 7 7 7 5 5 

Workloads S-sort S-wordcount H-kmeans S-nbayes S-pagerank H-sort S-grep H-grep H-pagerank H-wordcount 

 

 



configuration help gaining more speed up when the core 
frequency is set to the highest; i.e. 2.6 GHz. The result shows 
memory configuration doesn’t have any noticeable effect on 
the performance of memory non-intensive workloads, 
however memory frequency and number of channels impact 
the performance of memory intensive applications. In 
addition, the effect of memory frequency depends on the 
number of channels. By increasing the number of channels the 
influences of frequency on performance is reduced. We 
observe that increasing the number of channels from 2 to 4 
doesn’t improve the performance. This shows that the state-of-
the-art server class memory controllers need to improve their 
management policy to effectively use 4 channels, otherwise 2 
channels is sufficient for a wide range of applications studied 
in this work. Memory controllers utilize a large fraction of the 
chip transistor budget and reducing the number of channels 
from 4 to 2 reduces the complexity of memory controller and 
therefore the entire processor, without sacrificing applications 
performance.        

3) Memory Capacity Sensitivity: Based on our results (not 
presented) we found that memory capacity and disk caching 
does not play a significant role for SPEC and PARSEC 
applications. However, for big data applications, due to their 
large input size, this is important to be investigated.  To 
investigate the effect of memory capacity on the performance 

of Big Data applications, we run all workloads with 7 different 
memory capacities. During our experiments, Spark workloads 
encountered an error when running on a 4GB memory 
capacity due to lack of memory space for the Java heap. 
Hence, experiments of Spark workloads are performed with at 
least 8 GB of memory. Sensitivity of Spark and Hadoop 
applications to the memory capacity has been presented in 
Table 5 (c).  

B. Micro Architectural Analysis 

Figure 2 reports the micro architectural analysis results for 
the two classes of studied applications. The first parameter to 
study is CPU stall. It is well known that front-end stall directly 
incurs performance loss. Frontend stalls are also responsible 
for wasting power consumption. Figure 2 (d) shows stalled 
cycle per instruction for the two studied classes. Stalled CPI of 
memory sensitive workloads is almost 3 times more than non-
sensitive workloads.  Memory sensitive workloads suffer more 
from front-end stalls as the deep hierarchy of caches delays 
instruction–fetch and increases fetch penalty. While in general 
hardware prefetcher in modern multi-core processors are 
effective to improve performance of applications by reducing 
frequency of front-end stalls, for memory sensitive 
applications a noticeable front-end stall is still observed which 
indicates that a significant improvement is still needed for 
prefetchers.    

Figure 2 (a) demonstrates the L2 and L3 cache hit rates. 
The main difference between memory intensive and non-
intensive workloads is in L2 and L3 hit rates. Memory 
intensive applications show a very low L2 and L3 hit rate. As 
an example, Canneal, which is one of the most memory 
sensitive applications, has L2 and L3 hit rates of 0.02 and 0.03 
respectively. However, for some applications, L3 can mask L2 
misses. An example is Hadoop wordcount, with a 0.41 L2 hit 
rate, where its L3 hit rate is 0.44, enough to prevents Hadoop 
wordcount performance to suffer from low L2 hit rate.  
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Figure 1. Bandwidth analysis 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 10 20 30 40 50 60 70

U
til

iz
a
tio

n

Available Bandwidth (GBpS)

Mem Intensive
Mem Non-intensive

2

2.5

3

3.5

4

4.5

5

5.5

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

B
a

n
d

w
id

th
 U

s
a

g
e

 (
G

B
\s

)

Core Frequency (GHz)

Avaialable BW 59.7 Available BW 10.6

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1
3
3
3
M

1
6
0
0
M

1
8
6
7
M

1
3
3
3
M

1
6
0
0
M

1
8
6
7
M

1
3

3
3

M

1
6
0
0
M

1
8

6
7

M

1CH 2CH 4CH

S
p
e
e
d
 U

p

Mem Intensive Mem Non-intensive

     (a) Bandwidth utilization   (b) Bandwidth usage    (d) Speed up by memory 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

S
p

e
e

d
 u

p

Core frequency (GHz)

Available BW 10.6 Avaialable BW 59.7
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Figure 2 (b) shows the average normalized IPC of memory 
intensive and non-intensive workloads for different core 
frequencies. The results show that increasing the core 
frequency reduces IPC of memory intensive applications. To 
show the effect of IPC reduction on the performance of the 
workloads in terms of execution time, we provide the average 
speed up of workloads in Figure 2 (e). The execution time 
results are normalized to the minimum execution time of each 
application. The observation shows that memory non-intensive 
workloads speed up gain scale linearly with core frequency as 
their IPC impacted by only 2%, on average. For memory-
intensive workloads, the speed up curve falls below a linear 
curve, and even saturates when increasing the frequency 
beyond 2 GHz. As discussed earlier, increasing the bandwidth 
can mitigate this slightly. Increasing the available bandwidth 
from 10.6 GB to 59.7 only improves performance by 16%. 
Therefore, this is not an effective solution as the bottleneck 
exists in off chip memory access latency.  

Based on Figure 3, we classify big data applications in two 
group of CPU-intensive and Disk-intensive class. Our decision 
criteria for this classification is based on the average Disk 
bandwidth usage. This Figure shows Spark wordcount, Spark 
grep, Spark PageRank, Hadoop Sort, Hadoop grep to be Disk-
intensive while others to be CPU-intensive.  

Workload classification. As the main goal of this paper is 
to study the combined impact of node architecture and cloud 
workload characteristics as well as performance/cost analysis, 
it is important to first classify those workloads. To this goal, 
we have explored the micro architectural behavior of studied 
workloads to classify those workloads and find more insights. 
We divided workloads into two major groups of memory 
intensive and memory non-intensive. Each group of memory 
intensive and non-intensive applications will classify to two 
more Hybrid groups of I/O intensive and CPU intensive. This 
classification will help us later to accurately formulate the 
relation of performance and application characteristics.     

IV. PERFORMANCE COST ANALYSIS 

In this section, we formulate performance and cost analysis 
of different application classes in a scale-out environment. The 
first part of this section is devoted to formulating the total cost 
of ownership for different server configurations, using the cost 
offered by IBM/SoftLayer. We then develop equations to 
formulate the performance improvement of each application 
class with respect to the baseline configuration. These 
equations will be exploited by MeNa to select the most 
performance/cost efficient memory and CPU configuration for 
each class of application.  

A. Cost model 

In this part, we analyze the parameters that are influencing 
the total cost of ownership (TCO) in a data center. Our goal is 
to establish a relationship between performance of studied 
applications reported in section 3, and the total cost of 
ownership when running these applications. We utilize 
EETCO [40] to drive a model for estimating TCO. The 
following five main factors determine the TCO in a data 
center: 

• Datacenter Infrastructure Cost: the cost of acquisition of 
the datacenter building (real estate and development of 
building) and the power distribution and cooling equipment 
acquisition cost. The cost of the infrastructure is amortized 
over 10~20 years.  

• Server Cost Expenses: the cost of acquiring the servers, 
which depreciates within 3~4 years. 

• Networking Equipment Cost Expenses: the cost of 
acquiring the networking equipment, which depreciates within 
4~5 years. 

• Datacenter Operating Expenses: the cost of electricity 
for servers, networking equipment and cooling. 

• Maintenance and Staff Expenses: the cost for repairs and 
the salaries of the personnel. 

TCO = C infrastructure + C server + C network + 

            C power + C maintenance                                        (Eq. 2) 

In the above equation, the first line represents the capital 
expenses (CAPEX) and the second line represents the 
operational expenses (OPEX). Given that the infrastructure, 
network, power, and maintenance costs are decided by the 
server configuration parameters, we can simplify Eq.2 with 
TCO = Cserver (configuration) which indicates the total cost of 
ownership is a function of server configuration parameters.  

The server TCO per month is determined as follows: 

C server = C processor + C memory + C Disk                         (Eq. 3) 

In this work we do not consider configuring network and 
disk for performance optimization. Therefore, to establish a 
relationship between performances of applications as well as 
the TCO, we are simply treating disk and network cost as 
constant.  We extracted TCO data for 32 available server 
configurations in IBM\SoftLayer. We used regression 
technique to derive cost equation based on available server 
configurations. Table 6 shows the available configurations.  

 The per-server costs includes configurable DRAM, 
configurable processor and constant disk and network costs. 
At the server level, we account for the number of socket, core 
per socket, and core frequency. We then formulate each server 
performance as the product of per-processor performance 
(using data collected in our experiments) and the number of 
processor in each server. 

The equation for monthly charge per server based on the 
server’s processing part configuration is as follows: 
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C processor = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝛼 𝑁𝑠𝑜𝑐𝑘𝑒𝑡 +  𝛽 𝑁𝑐𝑜𝑟𝑒 +
 𝛾 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑐𝑜𝑟𝑒                                                            (Eq. 4) 

Table 7 shows the results of processor cost’s regression 
equation. For the cost of memory, we derived two different 
equations. The first, considers the effect of memory frequency 
on the cost of each memory module. The maximum capacity 
of each available memory module is 32 GB. This is the 
maximum available DRAM module in the market.  

C memory module = [(9 × Capacity) × (Mem. Frequency – 
0.31)] – 5 × N channel                                                 (Eq. 5) 

Beyond 32 GB, the memory capacity is estimated using 
the following equation: 

C memory subsystem = (1.81 × Capacity) + 364    (Eq. 6) 

All above cost equations are the predicted charge that 
subscriber must pay for renting a server on a cloud. This 
includes the power, cooling, and maintenance related costs of 
the server.  

B. Performance model 

      In section 3, we classified studied applications into 4 
different classes. Based on our characterization and previous 
analysis, a set of performance equations is derived for each 
application class. These equations are developed using 
regression technique on a database collected through a 
comprehensive experiment presented in section 3. We 
formulate those observations into regression-based equations 
to express performance of an application as a function of 
processor and memory configurations. Given the influence of 
both processor configuration and memory configuration on 
performance, we divide the performance gain equation into 
two parts; a part showing the performance gained by processor 
and another one showing the performance gained by the 
memory subsystem. The base configuration, which was used 
to account for performance gain is presented in table 8. 

Table 9 shows the performance gain as a function of core 
count. For each class, we derived two different equations as 
the core frequency changes the behavior of applications. 
Similarly, Table 10 shows the performance gain by changing 
the core frequency.    

Performance gain as a function of memory frequency and 
number of channels for various classes of applications is 
shown in table 11. We only provide the equation for CPU-
Memory intensive application class because other classes of 
applications do not gain noticeable performance benefit by 
increasing the memory frequency and the number of channels.  

In addition, we derived the performance gain equation as a 
function of DRAM capacity as follows (only for Big Data 
applications, as the rest are not sensitive to DRAM capacity):    

Performance capacity = 0.0018 capacity + 0.99               
(Eq. 7) 

The minimum capacity for Big Data application is also 
determined by the following equation: 

Minimum capacity = (footprint ×core) / 8                 (Eq. 8) 

In the next section, MeNa exploits these performance and 
cost equations to calculate performance/cost for a given user 
defined budget.  

V. MEMORY NAVIGATOR (MENA) 

In this section, we present our novel methodology for 
selecting and configuring DRAM system-level parameters in 
scale-out environment. Our methodology is based on the 
comprehensive analysis provided in previous sections.  

A. Methodology 

Figure 4 shows an overview of the proposed memory 
navigator. MeNa is a three-stage methodology, which 
navigates memory and CPU parameters to find the best 
performance/cost configuration for a given budget set by the 
user. In addition to memory parameters MeNa also navigates 
processor parameters as performance gain of memory 
subsystem is influenced by the interaction of both, as shown 
earlier in this paper.  

The first stage of MeNa is to determine cloud applications 
behavior. Using the microarchitectural analysis presented 
earlier in section 3.2, MeNa classifies application into two 
main classes; memory intensive and memory non-intensive. 
Additionally, we divided applications to two more classes, 
namely CPU and I/O intensive, for more accurate performance 
estimate. Therefore, there are a total of four different classes 
as follow: 1) Mem-CPU intensive 2) Mem-IO intensive 3) 
CPU intensive 4) IO intensive. The classification is done on a 
three layer fully connected neural network trained by our 
training database. Figure 5 shows the first stage of MeNa. The 
neural network has 6 inputs and 4 outputs. Each output neuron 
stands for a class and it gives a probability between 0 and 1. 

Table 6. Available server configuration on IBM\SoftLayer 

#Socket 
#Core per 

socket 

Core 

frequency 

Memory 

frequency 

#Memory 

channel 

1 - 4 2 - 16 2 - 3.6 GHz 
1333, 1600, 

1867 MHz 
1 - 4 

Table 7. Values of server cost’s formula 

Parameter Intercept α β ϒ R2 

Value -353.5 208.1 31.4 54.9 0.82 

Table 8. Base server configuration 

#Socket 

#Core 

per 

socket 

Core 

frequency 

Memory 

frequency 

#Memory 

channel 
Price 

1 2  2 GHz 1333MHz 1 73$ 

Table 9. Performance gain by increasing core count 

App. class Core frequency > 2.8 Core frequency ≤ 2.8 

Mem-CPU Perf = 0.16 core + 0.67 Perf = 0.28 core + 0.42 

CPU Perf = 0.28 core + 0.48 Perf = 0.3 core + 0.38 

IO Perf = 0.1 core + 0.79 Perf = 0.14 core + 0.7 

Mem-IO Perf = -0.02 core + 1.04 Perf = -0.01 core + 1.43 

Table 10. Performance gain by increasing core frequency 

App. class Core count > 8 Core count ≤ 8 

Mem-CPU Perf = 0.04 freq + 0.96 Perf = 0.43 freq + 0.57 

CPU Perf = 0.25 freq + 0.75 Perf = 0.3 freq + 0.7 

IO Perf = 0.09 freq + 0.91 Perf = 0.26 freq + 0.74 

Mem-IO Perf = 0.03 freq + 0.93 Perf = 0.03 freq + 0.95 

Table 11. Performance gain by memory frequency and channel 

 High core and frequency Low core and frequency 

Memory 
frequency 

Perf = 0.08 freq + 0.92 Perf = 0.03 freq + 0.96 

Channel Perf = 0.15 Ch + 0.89 Perf = 0.09 Ch + 0.97 

 

 



Hence, a neuron with the highest value determines the class of 
application.     

To identify the cost to increase performance by changing 
each server parameters, we define a quantity called 
performance-cost sensitivity. For example, the performance-
cost sensitivity to the number of cores per processor is defined 
as follow:  

Sens (core) = ((∂ Performance)⁄(∂ core))/((∂ Cost)⁄(∂ core))                    
(Eq. 9) 

The second stage is to calculate this quantity with respect 
to the number of sockets per server, number of cores per 
processor, core frequency, memory frequency, number of 
memory channels, and the capacity of DRAM. The equations 
for performance are provided in tables 9, 10, 11, as well as 
equations 7, and 8. Cost equations are reported in equations 4, 
5, and 6. This quantity helps MeNa to set a priority for each 
parameter when allocating processor and memory resources. 
In this step, MeNa sorts all sensitivity results and based on the 
largest results it puts them into a FIFO. We refer to this as 
Priority FIFO.  

 In the third stage, MeNa determines the configuration to 
maximize the performance/cost while satisfying the subscriber 
budget. For this purpose, MeNa solves the following problem 
known as bounded knapsack by using dynamic programming: 

Maximize ∑ 𝑃𝑒𝑟𝑓𝑖  𝐶𝑜𝑛𝑓𝑖
𝑛
𝑖=1  

Subject to ∑ 𝐶𝑜𝑠𝑡𝑖  𝐶𝑜𝑛𝑓𝑖
𝑛
𝑖=1  ≤ 𝐵𝑢𝑑𝑔𝑒𝑡 and mini ≤ Confi ≤ maxi 

Where Confi represents the number or the value of 
parameter i, mini and maxi are the minimum and the 
maximum available resource for parameter i. Also, Costi 
present the cost corresponding to Confi (Calculated by the cost 
model in section 4.1). Similarly, Perfi present the performance 
improvement corresponding to Confi (Calculated by the 
performance model provided in section 4.2).  

The last step determines the final configuration and its 
corresponding performance/cost ratio as well as the 

corresponding cost using performance-cost equation.  

B. Validation 

To show how MeNa allows subscribers to intelligently 
search all server configuration space for finding the best 
parameters to maximize performance/cost while meeting the 
user specified budget, we validate MeNa against an oracle 
configuration identified through the brute force search. We 
apply the brute force search as follow: First, we select an 
application and set a budget. Then we find all configurations 
that achieve cost equal or smaller than the target budget. 
Finally, we run the application on those configurations and 
calculate its performance gain compared to the base 
configuration. By knowing the cost of each configuration, we 
calculate performance/cost for each configuration. The best 
configuration is referred as the oracle configuration. We then 
use MeNa to find the best configuration for the same 
application. Comparison between MeNa’s outcome and oracle 
outcome shows that MeNa methodology can find the best 
configuration with 9% performance/cost error rate on, average 
for our training data sets. In the worst case, a 17% error is a 
small price for avoiding an exhaustive brute-force search. The 
standard deviation of errors is 4%. Table 12 shows the error 
rate of MeNa compared to oracle configuration for three test 
applications from our training data sets.  

Figure 6 shows the average performance/cost error rate of 
MeNa for various budgets. This result shows MeNa accuracy 
is higher for Mem-CPU class (8% error rate) while it has the 
lowest accuracy for I/O intensive class (12%). Moreover, 
MeNa is more accurate for mid-range target budget (between 

Table 12. MeNa Validation 
Application Class Budget Configuration #core Core freq. #Socket Mem. Cap. Mem. Freq. #channel Perf./Cost Error 

Spark Kmeans 
Mem-CPU 

intensive 
500$ 

Oracle 12 2.6 1 16 1333 2 0.977268 
3.5% 

MeNa 13 2.8 1 12 1333 4 0.942737 

Hadoop Sort 
IO intensive 

180$ 
Oracle 4 2.8 1 4 1333 1 0.885733 

10% 
MeNa 5 3 1 2 1333 1 0.796636 

Hadoop 

WordCount 

CPU intensive 

400$ 

Oracle 8 3 1 6 1333 1 1.010769 

8.6% MeNa 10 2.8 1 8 1333 2 0.923691 

 

Stage 1 Stage 2 Stage 3

Pseudocode for finding the best configuration using 

dynamic programming 

Extract all application’s 

characteristics

(LLC hit rate, Stall CPI, IPC, 

C0 residency, CPU utilization, 

Memory footprint)

Classify application into one of 

these class:

1- Memory-CPU intensive

2- Memory-IO intensive

3- CPU intensive

4- IO intensive

Input: Application

Calculate the performance-cost 

sensitivity of application 

respect to all server’s 

parameters

(number of socket, core count, 

core frequency, memory 

frequency, memory channel, 

memory capacity) 

Input: Application class

1- Sort all performance-cost 

Sensitivity 

2- Put them in FIFO based on 

the largest value

Solve bounded knapsack 

problem:

Maximize performance/cost 

subject to the available budget 

and resources 

Input: Priority FIFO, application type, 

input data size

1- Select the best configuration 

2- Calculate the performance/

cost

3- calculate the charge

procedure dp_optimizer(parameters, budget):

    table = [[0 for cost in range(budget + 1)] for j in xrange(len(parameters) + 1)]

 

    for j in xrange(1, len(parameters) + 1):

        item, wt, sens = parameters[j-1]

        for cost in xrange(1, budget + 1):

            if wt > cost:

                table[j][cost] = table[j-1][cost]

            else:

                table[j][cost] = max(table[j-1][cost], table[j-1][cost-wt] + sens)

 

    result = []

    cost = budget

    for j in range(len(parameters), 0, -1):

        was_added = table[j][cost] != table[j-1][cost]

 

        if was_added:

            item, wt, sens = parameters[j-1]

            result.append(parameters[j-1])

            cost -= wt

 

    return result  

Figure 4. MeNa methodology overview 

 

Figure 5. MeNa classifier (Neural Network) 

 



500$ and 900$).              

C. Evaluation 

In this section, we evaluate MeNa with unknown 
applications for various target budget. The selected 
applications are: Hadoop Terasort, Hadoop Scan, Spark sort, 
and Spark Nweight. Table 13 shows the features of each 
application and the class identified by MeNa. Tables 14, 15, 
16, and 17 show the configurations selected by MeNa for the 
given budgets. We also report the performance/cost error rate 
of each application for each target budget. The results show 
that MeNa identifies a configuration with performance/cost of 
on average 11% close to an oracle configuration.  

The evaluation of MeNa can also be used to derive 
architectural insights for server designers. For instance based 
on MeNa results we can see CPU intensive applications to 
demand large number of cores and low frequency processors 
while I/O intensive applications to require low number of core 
but high frequency processors. The result of I/O-Memory 
intensive application shows a very high performance/cost ratio 
since all options that can improve the performance are playing 
against each other. As a memory intensive application, we 
need large number of cores and high core frequency to take 
advantage of a fast memory subsystem. As an I/O intensive 
application, however, increasing the number of cores and core 
frequency exacerbate the I/O accesses and impacts 
application’s performance. These findings have been 
corroborated by our characterization’s result presented earlier 
in section 3. Another observation is that increasing the 
memory frequency does not enhance performance/cost ratio 
even for memory intensive applications. On the other hand, 
increasing the number of memory channels improve the 
performance/cost ratio of memory intensive applications.  

The trend in figure 7 shows that, regardless of application 
class, scale-out approach cannot always enhance the 
performance/cost unless the scale-up solution is exploited. For 
example, increasing the number of sockets, when the number 
of cores is low, reduces performance/cost. However, when the 
number of cores increases, performance/cost enhances by 
increasing the number of sockets. This means that the unseen 
cost that subscribers pay for a server such as for cooling, 
maintenance, and network, forces them to get the maximum 
utilization from their server. To show how memory frequency 
and number of channels affect the performance/cost of 
applications, we present the average results of our dataset for 
different number of cores in figure 8.  Figure 8 shows that 
increasing the memory frequency has almost no impact on 
improving the performance/cost ratio. On the other hand, 
increasing the number of channel improves performance/cost 

ratio. However the improvement will be diminished if the 
number of cores is low. In fact, as long as the number of cores 
is high, enough pressure is being put on the memory 
subsystem, therefore results in enhancing the performance 
when the number of memory channels increases. 

Another interesting observation is that allocating higher 
budget for an application does not necessary yield a better 
performance/cost, shown in figure 9. This implies that there 
needs to be a method to enable subscribers to provision a 
rational budget for their application to get the max 
performance/cost benefits. MeNa proved that it is an answer 
for such urgent demand. MeNa methodology is architecture 
independent and therefore it can still be utilized for future 
technology.  

VI. RELATED WORK   

This section summarizes the relevant literature on 
characterization and optimization of memory subsystem and 
cloud platforms.  

A. Cloud  

Jackson et al. [12], Barker et al. [13], Vecchiola et al. [14], 
and Farley [15] analyzed the HPC applications, latency-

Table 13. Applications’ features 

Application 
LLC 

hit 

L2 

hit 

C0 

residency 

CPU 

util. 

CPI 

stall 
IPC Class 

S-Nweight 32 39 89.27 83 2.7 1.6 
CPU-

Mem 

H-Terasoer 44 41 74.88 75 0.26 2 CPU 

H-Scan 69 59 29.23 37 0.42 0.72 IO 

S-srt 40 35 51.28 48 0.43 0.8 IO-Mem 

 

Table 14. Configurations selected for Spark Nweight  
Budget 250$ 450$ 700$ 900$ 1100$ 1400$ 

#Core 7 13 13 6 12 16 

Core_freq (GHz) 2.8 2.8 2.8 2.8 2.8 2.8 

#Socket 1 1 2 4 4 4 

Mem_cap (GB) 5 10 16 16 24 32 

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333 

#channel 1 2 2 1 2 4 

Perf/Cost 0.826133 0.765555 1.01344 0.792148 1.160709 1.53858 

Error (%) 8.2 5.3 3.1 5.6 7.9 11.1 

 

Table 15. Configurations selected for Hadoop Terasort 
Budget 250$ 450$ 700$ 900$ 1100$ 1400$ 

#Core 7 6 6 6 12 16 

Core_freq (GHz) 2.8 2.8 2.8 2.8 2.8 2.8 

#Socket 1 2 3 4 4 4 

Mem_cap (GB) 3.5 6 9 12 24 32 

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333 

#channel 1 1 1 1 1 1 

Perf/Cost 1.119605 1.093411 1.077358 1.069507 1.589477 1.840536 

Error (%) 9.8 7.5 5.9 6 9.4 10.8 

 

Table 16. Configurations selected for Hadoop Scan 
Budget 250$ 450$ 700$ 900$ 1100$ 1400$ 

#Core 5 5 5 4 9 9 

Core_freq (GHz) 3.6 3.6 3.6 3.6 3.6 3.6 

#Socket 1 2 3 4 4 4 

Mem_cap (GB) 2.5 5 7.5 8 18 18 

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333 

#channel 1 1 1 1 1 1 

Perf/Cost 1.046293 1.044781 1.044279 0.922948 1.449773 1.449773 

Error (%) 14.6 14.8 12.2 13.5 15.4 17.2 

 

Table 17. Configurations selected for Spark sort 
Budget 250$ 450$ 700$ 900$ 1100$ 1400$ 

#Core 3 3 2 2 4 4 

Core_freq (GHz) 3.6 3.6 3.6 3.6 3.6 3.6 

#Socket 1 2 3 4 4 4 

Mem_cap (GB) 3 6 6 8 16 16 

Mem-freq (MHz) 1333 1333 1333 1333 1333 1333 

#channel 1 2 2 2 4 4 

Perf/Cost 0.510734 0.455947 0.464989 0.445342 0.456145 0.364948 

Error (%) 13.3 14.7 9.4 10.1 16 15.3 
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sensitive applications, scientific applications, and micro-
benchmark applications, respectively, on the cloud. Ferdman 
et al. [16], Kanev [39], and Kozyrakis et al. [17] analyzed 
cloud-scale workloads to provide infrastructure-level insights. 
Yang et al. [18] compared public cloud providers from 
performance and cost perspectives. Blem et al. [19] compared 
two different ISAs for various cloud scale applications. 
Guevara et al. [20] studied how heterogeneous platforms bring 
energy-efficiency for cloud applications. None of these studies 
have focused on the influence of memory subsystem and its 
parameters on the performance, power and cost in cloud.  

B. Memory  

Dimitrov et al. [21] characterized the memory access 
patterns of Hadoop and noSQL big data workloads. However, 
their work hasn’t examined the impact of memory parameters 
on the performance and power consumption of the system. 
Clapp et al. [22] provides a performance model that considers 
the effect of memory bandwidth and latency for big data, high 
performance, and enterprise workloads. Alzuru et al. [23] 
investigates how Hadoop workload demands hardware 
resources such as high-end memory. Our observation appears 
to contradict the conclusion of their work claiming that 
optimal memory capacity for Hadoop workloads is 96 GB. 
Zhu et al. [24] evaluates contemporary multi-channel DDR 

SDRAM and Rambus DRAM systems in SMT architectures 
and proposed a thread-aware DRAM optimization technique. 
Basu et al. [25] focuses on page table and virtual memory 
optimizations for big data workloads and Jia et al. [26] 
characterized cache hierarchy for a Hadoop cluster. Moreover, 
several studies have focused on memory characterization of 
SPEC benchmark suites [27, 28, 29, 30]. Hajkazemi et al. 
explored the performance of Wide I/O and LPDDR memories 
[31] and proposed an adaptive bandwidth management for 
HMC+DDR memory [32] without considering the cost of 
memory configuration and big data applications. 

C. Big Data  

Pan et al. [33] selected four big data workloads from the 
BigDataBench to study their I/O characteristics. Liang et al. 
[34] characterize the performance of Hadoop and DataMPI 
workloads using Amdahl’s second law. Beamer et al. [35] 
analyzes the performance characteristics of three high 
performance graph analytics. They found that graph 
workloads fail to fully utilize the platform’s memory 
bandwidth. A recent work [36] used Principle Component 
Analysis to identify important characteristics of 
BigDataBench workloads. Results of Jiang work [37] show 
that Spark workloads have different behavior than Hadoop and 
HPC benchmarks. Issa et al. [38] studied performance 
characterization of Hadoop K-means iterations. Based on the 
characterization results they propose a model to estimate the 
performance of Hadoop K-means iterations. Malik et al. 
characterized Hadoop on big-little cores and microservers 
without extracting the performance model [41, 42, 43, 44]. 
Neshatpour et al. analyzed the performance of big data 
applications on heterogeneous architecture [45] and 
accelerated Hadoop applications’ performance using FPGA 
[46, 47]. 

VII. CONCLUSION 

Main memory performance is becoming an increasingly 
important factor contributing to overall system performance 
and the operational and capital costs. This particularly 
becomes important for server-class architectures as more 
applications are moving to the clouds. This suggests that it is 
important to understand the role of memory configuration 
parameters, such as capacity, number of channels, and 
operating frequency, for performance and energy-optimization 
of emerging class of applications in scale-out environment. In 
response, this work addresses these challenges with a real-
system experimental setup. Our analysis reveals several 
interesting trends and provides key system and architectural 
insights on how memory configuration parameters must be 
tuned across various classes of applications to achieve high 
performance at low cost. To the best of our knowledge, this is 
the first work that provides a methodology for improving the 
performance/cost ratio of server class architectures in a scale-
out environment while considering the memory parameter as 
well as processor parameters. We proposed a novel three-stage 
methodology to navigate memory parameter referred as 
MeNa. MeNa uses a fully connected Neural Network to 
characterize and classify applications. Based on the 
characterization results, we present experimentally derived 
models for estimating and predicting the impact of memory 
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and processor parameters on capital and operational cost and 
performance of applications. MeNa uses those models to 
navigate memory and processor configuration parameters in 
order to find the best configuration to maximize 
performance/cost ratio for a given user defined budget. MeNa 
utilizes dynamic programming to solve bounded knapsack 
problem to achieve that goal. The validation results on our 
extensive database show MeNa to have 91% accuracy on 
average to estimate the performance/cost ratio compared to a 
brute force approach. MeNa enables subscribers to provision a 
rational budget for their application to get the max 
performance/cost in cloud environment. MeNa also reveals 
several interesting trends and provides key insights that can be 
leveraged by server designers for various optimization goals. 
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