
Memory Requirements of Hadoop, Spark, and MPI Based Big

Data Applications on Commodity Server Class Architectures

Abstract—Emerging big data frameworks requires
computational resources and memory subsystems that can
naturally scale to manage massive amounts of diverse data.
Given the large size and heterogeneity of the data, it is currently
unclear whether big data frameworks such as Hadoop, Spark,
and MPI will require high performance and large capacity
memory to cope with this change and exactly what role main
memory subsystems will play; particularly in terms of energy
efficiency. The primary purpose of this study is to answer these
questions through empirical analysis of different memory
configurations available on commodity hardware and to assess
the impact of these configurations on the performance and power
of these well-established frameworks. Our results reveal that
while for Hadoop there is no major demand for high-end DRAM,
Spark and MPI iterative tasks (e.g. machine learning) are
benefiting from a high-end DRAM; in particular high frequency
and large numbers of channels. Among the configurable
parameters, our results indicate that increasing the number of
DRAM channels reduces DRAM power and improves the
energy-efficiency across all three frameworks.

I. INTRODUCTION

Three well-known parallel programming frameworks used
by big data community are Hadoop, Spark, and MPI. Hadoop
and Spark are two prominent frameworks for big data
analytics. Spark has been developed to overcome the
limitation of Hadoop on efficiently utilizing main memory.
MPI, a de facto industry standard for parallel programming on
distributed memory systems, is also used for big data
analytics.

While there are literatures on understanding the behavior
of big data applications by characterizing them, most of prior
works have focused on the CPU parameters such as core
counts, core frequency, cache parameters, and network
configuration or I/O implication with the assumption of the
demand for using the fastest and largest main memory in the
commodity hardware [1, 2]. However, none of the previous
works have studied the main memory subsystem parameters to
characterize big data applications and the underlying
frameworks.

The objective of this paper is to evaluate the effect of the
memory subsystem on the performance of big data
frameworks. To perform the memory subsystem analysis, we
have investigated two configurable memory parameters
including memory frequency and number of memory
channels, to determine how these parameters affect the

performance and power consumption of big data applications.
Our evaluation reveals that Hadoop applications do not

require a high bandwidth memory subsystem to enhance the
performance. Improving memory subsystem parameters
beyond 1333 MHz Frequency and a single channel does not
enhance Hadoop performance noticeably. On the other hand,
Spark and MPI applications can benefit from higher memory
frequency and number of channels if the application is
iterative such as machine learning algorithms. However,
increasing the number of memory channels beyond two
channels does not enhance the performance of those
applications. This is an indication for lack of efficient memory
allocation and management in both hardware (memory
controller) as well as software stack.

To the best of our knowledge this is the first work that
looks beyond just the memory capacity to understand Hadoop,
Spark and MPI based big data applications’ memory behavior
by analyzing the effect of memory frequency as well as
number of memory channels on the performance as well of
power consumption.

II. EXPERIMENTAL SETUP

In our study, we used Hadoop MapReduce version 2.7.1,
Spark version 2.1.0 in conjunction with Scala 2.11, and
MPICH2 version 3.2 installed on Linux Ubuntu 14.04. We
used BigDataBench [3] and HiBench [4] for the choice of big
data benchmarking. We selected a diverse set of applications
and frameworks to be representative of big data domain. More
details of these workloads are provided in Table 1 and 2.

For running the workloads and monitoring statistics, we
used a six-node standalone cluster (Xeon 2650 V2). To have a
comprehensive experiment we used different SDRAM
memory modules. All modules are provided from the same
vendor. We used Intel Performance Counter Monitor tool
(PCM) to understand hardware behavior. We collect OS-level
performance information with DSTAT tool.

III. RESULTS

In this section, we present a discussion on memory
analysis results to help better understanding the memory
requirements of big data frameworks.

1) Memory channels implication: The off-chip peak
memory bandwidth equation is shown in EQ. (1).

Hosein Mohammadi Makrani, Houman Homayoun
George Mason University

Fairfax, USA
{hmohamm8, hhmoayou}@gmu.edu

Table 1: Studied workloads
Workload wordcount sort grep terasort nweight bayes naïve bayes kmeans pagerank aggregation join scan

Input size 1.1 T 178.8G 1.1 T 178.8G 17.6G 30.6G 30.6G 112.2G 16.8G 10.8G 10.8G 10.8G

Framework
Hadoop,

Spark, MPI
Hadoop,

Spark, MPI
Hadoop,

Spark, MPI
Hadoop,

Spark
Spark

Hadoop,
Spark

Hadoop,
Spark, MPI

Hadoop,
Spark, MPI

Hadoop,
Spark

Hadoop Hadoop Hadoop

Suite BigDataBench BigDataBench BigDataBench HiBench HiBench HiBench BigDataBench BigDataBench HiBench HiBench HiBench HiBench

Bandwidth = Channels × Frequency × Width EQ. (1)

Our system supports four memory channels with the
maximum memory frequency of 1866MHz. The maximum
and minimum available memory bandwidth are 59.7 GB/S and
10.7 GB/S respectively. We observe in Figure 1 that
increasing the number of channels does not have significant
effect on the execution time (on average 9%), except for K-
means and Nweight in Spark, and for Image segmentation in
MPI framework (All of them are iterative tasks). The results
show that Spark and MPI based machine learning applications
are gaining performance from increased number of channels.

2) Memory frequency implication: Figure 2 shows the
effect of memory frequency on the execution time. Note that
increasing the frequency from 1333 MHz to 1866 MHz
translates to almost 40% increase in the bandwidth. Previous
section showed that 400% (4X) increase in the bandwidth
resulted by increasing the number of channels from 1 to 4 can
gain only 9% performance benefit. Like memory channel,
only iterative tasks on Spark and MPI take advantage from
high frequency memory.

 3) Power analysis: Figure 3 reports the DRAM power
consumption. The first observation is that by increasing the
frequency of DRAM by about 40% (1333 MHz to 1866
MHz), the power increases by almost 15%. It shows the static
power is the major component of DRAM power. However, the

DRAM power consumption is reduced when we increase the
number of channels. An interesting observation is that a
memory with 4 channels consumes 42% less power than a
memory with 1 channel. Because with more channels, the
memory controller can manage accesses more efficiently.

IV. CONCLUSION

This work performs a comprehensive analysis of memory
requirements of big data applications through an experimental
evaluation setup. We study diverse range of applications from
microkernels, graph analytics, machine learning, E-commerce,
social networks, search engines, and multimedia in Hadoop,
Spark, and MPI. This gives us several insights into
understanding the memory role for these important
frameworks. We observe that most of studied big data
applications in MapReduce based frameworks such as Hadoop
do not require a high-end memory. On the other hand MPI
applications, as well as iterative tasks in Spark (e.g. machine
learning) benefit from a high-end memory. Moreover, we
show that increasing the number of memory channels reduces
memory power noticeably across all studied applications and
improves the energy-efficiency.

REFERENCES

[1] M. Dimitrov et al., “Memory system characterization of big data
workloads,” in IEEE Conf. on big data, pp. 15-22, October 2013.

[2] I. Alzuru et al., “Hadoop Characterization,”
in Trustcom/BigDataSE/ISPA 2015, Vol. 2, pp. 96-103, August 2015.

[3] Lei et al. “Bigdatabench: A big data benchmark suite from internet
services,” in IEEE 20th HPCA, pp. 488-499, 2014.

[4] S. Huang et al., “The hibench benchmark suite: Characterization of the
mapreducebased data analysis,” in IEEE ICDE, pp. 41–51, 2010.

Table 2: MPI based Multimedia workloads from BigDataBench

Workload
BasicMPE

G
DBN

Speech
recognitio

n

Image
Segmentati

on
SIFT

Face
Detection

Input size
(huge)

24G
MNIST
dataset

59G 62G 62G 62G

0.8

0.9

1

1.1

1.2

1.3

1.4

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Aggre. Join Scan Kmeans Multimedia

N
o

rm
al

iz
ed

 e
xe

 t
im

e

Figure 1: Effect of memory channel on the execution time (Normalized to 4CH)

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

1
33

3
M

1
60

0
M

1
86

6
M

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Aggre. Join Scan Kmeans Multimedia

N
o

rm
al

iz
ed

 e
xe

 t
im

e

Figure 2: Effect of memory frequency on the execution time (Normalized to 1866M)

0

2

4

6

8

10

12

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

1
3

3
3

M
1

6
0

0
M

1
8

6
6

M

H a d o o p S p a r k M P I H a d o o p S p a r k M P I H a d o o p S p a r k M P I H a d o o p S p a r k S p a r k H a d o o p S p a r k H a d o o p S p a r k H a d o o p S p a r k M P I H a d o o pH a d o o pH a d o o pH a d o o p S p a r k M P I B . M P E G D B N S p . R e c .I m . S e g . S I F TF a . D e t c .

W o r d c o u n t S o r t G r e p T e r a s o r t N w e i g h t P a g e R a n k B a y e s n B a y e s A g g r e . J o i n S c a n K m e a n s M u l t i m e d i a

D
R

A
M

 p
o

w
er

 (
W

at
t)

2CH 1CH 4CH

Figure 3: DRAM power consumption

