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Abstract

Leakage power has grown significantly and is a 
major challenge in microprocessor design. Leakage 
is the dominant power component in second-level 
(L2) caches. This paper presents two architectural 
techniques to utilize leakage reduction circuits in L2 
caches. They primarily target the leakage in the 
peripheral circuitry of an L2 cache and as such have 
to be able to cope with longer delays. One technique 
exploits the fact that processor activity decreases 
significantly after an L2 cache miss occurs and saves 
power during L2 miss service time. Two algorithms, 
a static one and an adaptive one, are proposed for 
deciding when to apply this leakage reduction 
technique. Another technique attempts to keep the 
peripheral circuits in a lower-power state most of the 
time. The results for SPEC2K benchmarks show that 
the first technique can achieve a 18 to 22% reduction 
in L2 power consumption, on average (and up to 
63%), depending on the decision algorithm. The 
second technique can save 25%, on average (and up 
to 80%). This comes with a negligible 1 to 2% 
performance impact, on average, depending on the 
technique used.

1. Introduction
Power dissipation is a major issue in designing new 

processors. In particular, CMOS technology scaling 
has significantly increased the leakage power 
dissipation so that it accounts for an increasingly 
large share of processor power dissipation [1,2,3]. A 
modern L2 cache is very large, 2 to 4MB of data plus 
tags, and occupies a large fraction of chip area and 
dissipates a large fraction of the chip leakage power. 
An L2 cache is typically accessed relatively 
infrequently and actually dissipates most of the 
power via leakage. The focus of this paper is, 
therefore, the reduction of the L2 cache leakage 
power dissipation.

To overcome this problem, a number of technology, 
circuit, and architectural approaches have been 
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proposed. Many of such techniques concentrated on 
reducing the leakage of SRAM memory cells by 
keeping them in a low-power state which retains data 
but does not allow access such as body bias control, 
reduced VDD, high Vth, etc. A number of 
architectural techniques were proposed to utilize such 
circuits by targeting SRAM cells, e.g. cache decay 
[8] and drowsy cache [9]. Recent results have shown 
that a considerable amount of leakage occurs in the 
peripheral SRAM circuits, such as decoders, word-
line and output drivers, etc [19, 14]. In fact, an 
SRAM memory cell design can be optimized for low 
leakage currents without a significant impact on the 
cell area or performance. Thus approaches that 
concentrate on cell leakage power alone are 
insufficient and it is very important to address 
leakage in peripheral circuits. 

Peripheral circuits use very large transistors and 
thus leakage reduction techniques in these circuits 
introduce significant additional delays. These delays 
would significantly increase the L2 cache access time 
if they are incurred on every access. These leakage 
reduction techniques are thus not applied in high-
performance processors. They are typically used in 
mobile applications where RAM is put into low-
power stand-by mode to reduce leakage current while 
retaining data. For instance, the Row Decoding 
scheme [14], reduced both the sub-threshold and gate 
leakage in peripheral circuits while in sleep mode.

How to apply these techniques to L2 cache in high-
performance processors is a challenging problem 
because transitions to and from the low-power mode 
introduce additional delays. Thus an access issued to 
an L2, which is in the stand-by mode, will take 
significantly longer. The main issue is therefore how 
to achieve power savings without loss of 
performance. 

The approach proposed in this paper uses 
architectural techniques to drive the application of the 
above-mentioned circuit techniques to reduce the 
leakage power in the peripheral circuits of the L2 
cache. It is assumed that the SRAM cell design is 
already optimized for low leakage. Two techniques 
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are proposed to decide when to transition from 
normal to stand-by mode and back. It is shown that 
this can be achieved without increased hardware 
complexity or performance loss.

The first technique is based on the observation that 
a processor may spend a large fraction of an 
applications’ execution time waiting for memory and 
unable to execute new instructions. This is a direct 
result of a very long memory access time, which 
today can reach 300 cycles in a uni-processor. Thus 
an L2 cache miss leads directly to the processor 
becoming idle. During such an idle time the L2 cache 
may be put into the stand-by mode (idle mode or IM) 
leading to significant reduction in its leakage power. 
This also allows a very simple and local control for 
transitioning the L2 to the stand-by mode triggered 
by an L2 miss. and presents an opportunity to mask 
the transition delays.

Maximum L2 power savings would be achieved if 
an L2 cache is put into low-power mode for the entire 
miss service time. However, as shown later in this 
paper, this results in a significant performance 
penalty. This is due to the fact that a processor still 
has instructions it can execute after an L2 miss, some 
of which require access to the disabled L2 cache. To 
mitigate the impact on performance, we propose and 
compare two novel algorithms for deciding when to 
put the L2 cache in the low-power mode (stand-by 
mode). 

The first algorithm disables the L2 N cycles after a 
cache miss occurs and enables it again M cycles 
before the miss service completes. Both N and M are 
significantly less than the L2 miss service time. We 
refer to this algorithm as static (SA). The processor 
can continue to execute instructions during the entire 
miss service period in this case, with any accesses to 
the disabled L2 cache buffered. Note that the tag 
store can be left on to maintain cache coherence, this 
will not have much of an effect on leakage power 
savings.

The second algorithm, adaptive (AA), monitors the 
issue logic and functional units of the processor after 
an L2 cache miss. An L2 disable signal is asserted if 
the issue logic has not issued any instructions and 
functional units have not executed any instructions 
for K consecutive cycles. This algorithm is more 
complex than the first one as it requires continuous 
monitoring of issue logic and functional units. 
However, it may also allow low-power techniques to 
be applied to other units of the processor (this is 
beyond the scope of this paper). Experimental results 
show that both SA and AA degrade performance at 
the same level, around 1 percent, on average, 
although SA requires simpler hardware. On the other 

hand the leakage power saving with AA is slightly 
higher, on average, than with SA. 

While the idle mode (IM) technique described 
above works well in many benchmarks, it does not 
always deliver significant savings. For instance, in 
benchmarks with very low L2 miss rates. A second 
technique proposed in this paper uses the low-power 
stand-by mode as default for the L2 cache and only 
“wakes” it up on an access (referred to as stand-by 
mode or SM technique). It then keeps the cache in the 
normal state for L cycles before returning it to the 
stand-by mode. Any access to the cache made during 
these L cycles pays no wakeup penalty. This 
approach has the potential to keep the L2 cache in 
stand-by mode for long periods of time, thus saving 
more power. On the other hand, it pays a wakeup 
performance penalty on some accesses to the L2.  

This paper motivates, describes and evaluates the 
two techniques described above targeting the leakage 
power in the peripheral circuitry of the L2 cache 
SRAM. It is organized as follows. Sec. 2 shows the 
L2 behavior and power dissipation details. Related 
work is described in Sec. 3. Sec. 4 presents the 
motivation for proposed architectural techniques. 
Sec. 5 describes the two architectural techniques and 
the circuits used to reduce leakage in SRAM. The 
methodology and experimental results are presented 
in Sec. 6.

2. Cache power dissipation
The effectiveness of the techniques proposed in this 

paper depends on the L2 cache behavior. Table 2
shows miss rates and frequency of loads in SPEC2K 
benchmarks for a 64–bit, 2GHz processor with a 
memory latency of 300 cycles (described in Table 1). 
High load frequencies and L2 miss rates observed 
motivate the application of stand-by mode during L2 
miss service time for power reduction.
The SPEC2K benchmarks were compiled with the -
O4 flag using the Compaq compiler targeted for the 

Table 1. Processor organization
L1 I-cache 128KB, 64 byte/line, 2 cycles
L1 D-cache 128KB, 64 byte/line, 2 cycles, 2 R/W 

ports
L2 cache 4MB, 8 way, 64 byte/line, 20 cycles
issue 4 way out of order
Branch predictor 64KB entry g-share,4K-entry BTB
Reorder buffer 96 entry
Instruction queue 64 entry (32 INT and 32 FP)
Register file 128 integer and 128 floating point
Load/store queue 32 entry load and 32 entry store
Arithmetic unit 4 integer, 4 floating point units
Complex unit 2 INT, 2 FP multiply/divide units
Pipeline 15 cycles (some stages are multi-cycles)
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Table 2. Miss rates and load frequencies.

DL1 
miss 
rate

L2miss 
rate

% 
loads

DL1 
miss 
rate

L2
miss rate

% 
loads

ammp 0.046 0.1872 0.22 lucas 0.097 0.6657 0.15
applu 0.056 0.6572 0.26 mcf 0.239 0.4284 0.34
apsi 0.027 0.2778 0.22 mesa 0.003 0.2674 0.26
art 0.414 0.0001 0.17 mgrid 0.036 0.4587 0.30
bzip2 0.017 0.0417 0.24 parser 0.020 0.0688 0.22
crafty 0.002 0.0087 0.28 perlbmk 0.005 0.4576 0.31
eon 0.000 1 0.26 sixtrack 0.012 0.0012 0.22
equake 0.017 0.6727 0.25 swim 0.089 0.6308 0.21
facerec 0.034 0.3121 0.21 twolf 0.054 0.0003 0.23
galgel 0.037 0.0057 0.22 vortex 0.003 0.2314 0.24
gap 0.007 0.5506 0.21 vpr 0.023 0.1476 0.30
gcc 0.046 0.0367 0.21 wupwise 0.012 0.674 0.17
gzip 0.007 0.0468 0.20 Average 0.052 0.313168 0.24

Alpha 21264 processor and executed with reference 
data sets. The architecture was simulated using an 
extensively modified version of SimpleScalar 4.0 [5]. 
The benchmarks were fast–forwarded for 3 billion 
instructions, then fully simulated for 3 billion 
instructions.
Figure 1 shows the leakage power breakdown of L2 
cache components for a 4MB cache. The leakage and 
dynamic power consumption of the cache were 
obtained using Cacti5 [13] for a 65nm technology. It 
is assumed that the SRAM cell leakage reduction
techniques have already been applied. Overall, the 
peripheral circuits are leaking about 90% of total 
leakage. 

The reason is the use of large and more leaky 
transistors in peripheral circuits, while high Vth and 
less leaky transistors are used in memory cells. It is 
also possible to use other leakage reduction 
techniques in the SRAM cells, e.g. drowsy cache, 
which is orthogonal to what is proposed in this paper. 

global data 
input drivers

25%

others
9%

local data 
output 
drivers

20%

global row 
predecoder

7%local row 
decoders

1%

global data 
output 
drivers
24%

global 
address 

input drivers
14%

Figure 1. Leakage power of L2 cache components

Figure 2. Leakage power as a fraction of total L2 
power.

Figure 2 shows the L2 leakage power dissipation as 
a fraction of the total cache power dissipation 
(leakage + dynamic) for SPEC2K benchmarks. The 
L2 cache leakage power dominates dynamic power, 
with an average above 90% of the total. 

The results in Figures 1 and 2 confirm both the 
importance of targeting the leakage power. as well as 
the importance of reducing leakage in peripheral 
circuits.

3. Related work
CMOS scaling leads to significant leakage in the 

MOSFET transistor [1,2,3]. Many approaches to 
reducing leakage power have been investigated, at 
technology, circuit, architecture and compiler/OS 
levels. 

3.1 Circuit-level leakage control
Four main circuit techniques have been proposed to 

reduce the leakage power. Gated-Vdd turns off the 
power by using a high threshold transistor. The 
advantage of this technique is in reducing the leakage 
power virtually completely. However, it doesn't 
retain the state of the memory cell. Similarly, Vss can 
also be gated (gated Vss).

Another technique is voltage scaling which reduces 
the source voltage. As explained in [18] due to short-
channel effects in deep submicron processes, 
applying voltage scaling reduces the leakage current 
significantly. This yields a significant reduction in 
leakage power dissipation, though not as effective as 
Gated Vdd. This technique retains data. Voltage 
scaling can be done dynamically and combined with 
Frequency Scaling (DVFS) [15, 20]. DVFS is widely 
used by microprocessor companies in existing 
products, but incurs considerable delay and is not 
used for fine-grained control.
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The third technique, ABB-MTCMOS, increases 
threshold voltage of a transistor dynamically. The 
overhead of applying this technique in terms of 
performance and power makes it inefficient. In 
another technique it is proposed to reduce cell bias 
voltage in standby state to reduce cell leakage [16]. 
This technique was shown to reduce cell leakage 
more compared to source voltage scaling [14]. 

Device scaling leads to threshold voltage 
fluctuation, which makes the cell bias control to 
reduce the leakage difficult to achieve. In response, 
[14] proposed a Replica Cell Biasing scheme in 
which the cell bias is not affected by VDD and Vth of 
peripheral transistor. [14] also proposed a circuit to 
reduce leakage in the decoder and word-line driver. It 
was shown that using RCB and the new row 
decoding scheme, the gate and sub-threshold leakage 
was reduced by 88% with only a 10% area overhead. 

[12, 17] proposed a forward body biasing scheme 
(FBB) in which the leakage power is suppressed in 
the unselected part of cache by utilizing super Vt 
devices. They also propose techniques to minimize 
the associated FBB transition latency. They have 
shown savings of 64% in cache cell leakage power.

3.2 Architectural techniques
A number of architecturally driven cache leakage 

reduction techniques have been proposed. Powell et 
al proposed applying gated-Vdd approach to gate the 
power supply for cache lines that are not likely to be 
accessed [6]. A similar idea referred to as gated Vss
is investigated in [7] in which the ground voltage is 
being disconnected for such cache lines. Both of 
these techniques result in the data loss in the gated 
cache line. This leads to an increase in the cache miss 
rate and loss of performance. 

Kaxiras et al. proposed a cache decay technique 
which reduces cache leakage by turning off cache 
lines not likely to be reused [8]. Flautner et al. 
proposed a drowsy cache which reduces the supply 
voltage of the L1 cache line instead of gating it off 
completely [9].The advantage of this technique is that 
it preserves the cache line information but introduces 
a delay in accessing drowsy lines. However, the 
leakage power saving is slightly lower than the gated 
Vdd and Vss techniques.

Nicolaescu et al [10] proposed a combination of 
way caching technique and fast speculative address 
generation to apply the drowsy cache line technique 
to reduce both the L1 cache dynamic and leakage 
power. 

Bai et al optimized several components of on-chip 
caches to reduce gate leakage power [11]. 

The research mentioned above primarily targeted 
the leakage in the SRAM cells of a cache. Given the 
results in Figure 1, cache peripheral circuits are even 
more important to address in the L2 cache.

4. Architectural motivation
A load instruction missing in the L2 cache prevents 

dependent instructions from being issued. The 
dependent instructions fill up the reorder buffer 
(ROB), the instruction queue (IQ), and/or the load 
and store queues (LQ/SQ) while the miss is being 
serviced. The load may take 200 to 300 cycles to be 
serviced and will reach the top of one of the queues 
during this time. It will cause the queue to fill up with 
subsequent instructions and then stall the processor. 
Only after the L2 cache miss is serviced will the stall 
condition be removed. 

Thus, the processor can become completely idle, 
i.e. it is not issuing, executing, or committing any 
instructions while waiting for the L2 miss to be 
serviced. The IPC as measured during the L2 miss 
service time for SPEC2K programs thus decreases 
significantly compared to program average, as shown 
in Figure 3.  This idle time can be quite large as will 
be shown in Section 5. 

These results indicate that the L2 cache can be put 
into a stand-by mode for a significant fraction of 
execution time. However, doing so right after an L2 
miss is not the best approach, as shown below.

Figure 4 shows the fraction of independent 
instructions issued during an L2 miss service. 
Independent instructions follow a load miss but do 
not depend on it or any other miss which may occur 
during the L2 miss and thus can be executed during 
miss service. They may also access the L2 and would 
be delayed if the L2 was in stand-by mode. 

Figure 3.  Instruction issue rates

In spite of a significant decrease in issue rate during 
cache miss service, the percentage of independent 
instructions is not negligible, particularly in applu, 
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lucas, mcf, swim and mgrid. Therefore, any 
technique to reduce power during a cache miss period 
has to carefully consider execution of dependent 
instructions to avoid a performance penalty.

Figure 4. Independent instruction frequency

5. Proposed techniques
The techniques proposed in this paper aim to put 

the L2 cache into the stand-by, low power mode. Let 
us start with the circuit techniques used, which insert 
appropriately sized sleep transistors for both Vdd and 
Vss. In order to reduce the delay of going into and 
out of stand-by mode, we divide the peripheral 
circuits into local and global. The former are 
primarily local output drivers in each SRAM sub-
array, which will be controlled locally with a local 
SLP signal (lSLP) asserted when the sub-array is not 
selected and thus incur a reasonably small delay.

Global peripheral circuits include pre-decoder and 
global word-line drivers, input and output data 
drivers, and address input driver. These large-
transistor circuits will be controlled by the global 
SLP signal. A Sleep Transition Latency (STL) is 
incurred by the pre-decoder/ global word-line driver 
and other global peripheral circuits. Note that global 

Figure 5. Circuits for leakage control

output driver transition can be allowed to take even 
longer as it can be overlapped with data read. 

The SRAM cell leakage is assumed to be controlled 
by other techniques in both the baseline and our 
enhanced architectures (CACTI-5 accounts for this). 
Note that the local sleep signal can be used to 
transition a sub-array of SRAM cells and their 
corresponding sense amplifier to/from low-power 
mode, but we do not assume its use.

The modified L2 cache architecture is shown in 
Figure 5. It has a sleep input signal SLP to put its 
global peripheral circuits into stand-by mode using 
circuit techniques discussed above.

Our first architectural technique (IM) asserts the L2 
SLP signal after an L2 cache miss and de-asserts it 
again when the cache miss is serviced. The processor 
is not disabled and can generate L2 accesses during 
this time. Such load/store instructions are stored in 
the

-Delayed Access Buffer
10 entries(10*8bits)

Access L2 when it get 
enabled

SLP

Write Buffer

L2 Cache

Cell Array

Read Buffer

assert SLP signal, insert 
forthcoming Loads and 
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Access Buffer 

Figure 6. Modified L2 cache architecture.

delayed-access buffer. This buffer allows the 
processor and the L1 cache to continue executing 
while L1 misses are stored in this buffer. Our 
evaluation showed that a 10-entry delayed-access
buffer is large enough to keep all loads instructions 
waiting to access L2 during cache miss period. 

The performance when L2 is disabled for its entire 
miss service time relative to a baseline in which the 
L2 is always enabled is shown in Figure 7. The IPC 
degradation is 10%, on average, and between 25% 
and 50% for some benchmarks: applu, lucas, mcf, 
swim and mgrid. Disabling the L2 postpones the 
issue of independent instructions and impacts the 
performance significantly. Two algorithms are 
proposed next to avoid this performance degradation. 
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Figure 7. Performance degradation when L2 is 
disabled for entire L2 miss service time.

Static algorithm (SA)
This algorithm puts the L2 in stand-by mode N 

cycles after the cache miss occurs and enables it 
again M cycles before the miss is expected to 
compete. We refer to this algorithm as a static 
algorithm (SA) as it deals with all L2 misses in the 
same way. 

The SA algorithm allows independent instructions 
to utilize available resources in the ROB, IQ and 
LQ/SQ and complete execution during the L2 miss 
service. Our experimental evaluation showed that 
choosing N=M=50 cycles minimizes the impact on 
performance. 
Adaptive algorithm (AA)

In this algorithm the issue logic and functional units 
of the processor are monitored after an L2 miss. The 
L2 is put into stand-by mode if the issue logic has not 
issued any instructions and functional units have not 
executed any instructions for K consecutive cycles. 
The algorithm attempts to predict that there are no 
more instructions that will access the L2.It was 
experimentally determined that K=10 cycles is a 
good power/performance trade-off.

The IM technique puts the L2 cache into the stand-
by mode only during part of the L2 miss service time. 
The SM technique attempts to maximize the time L2 
cache spends in the stand-by mode by starting the L2 
cache in stand-by mode and “waking it up” on an L1 
cache miss. While it is possible to put the L2 back 
into stand-by as soon as the access is finished, it is 
likely to be inefficient in terms of performance. The 
approach we propose keeps the L2 cache on for J 
cycles after it was turned on and allows other L1 
misses to access L2 without a performance penalty. A 
larger J thus leads to lower performance degradation 
but also lower energy savings.

Figure 8 shows the fraction of total execution time 
that L2 cache was kept active by different techniques 
(SM_200 is for J=200 cycles). Not unexpectedly, the 
short turn-on period leads to a larger fraction of time 
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Figure 8.  Fraction of execution time L2 is active.

the L2 can be in low-power state. But at the same 
time it may decrease the IPC.

For J=500 or less, the average idle time for L2 in 
f.p. codes is higher than for the IM technique with 
either SA or  AA algorithms. It is always better in 
integer codes. 
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Figure 9 shows the corresponding IPC decrease. 
While large for SM with small values of J, it becomes 
comparable or better at J=1500. For one benchmark 
(art) the IPC loss is 40% for J=200. 

6. Power reduction
This section presents the results for power 

reduction, energy-delay product, and IPC degradation 
for individual benchmarks. First, let us describe 
power and timing assumptions used.

As shown in Section 2, the global peripheral 
circuits controlled by the selected circuit techniques 
account for 70% of all the leakage power, according 
to CACTI-5. The power reduction using some of the 
same leakage control circuits reported in [16, 14] was 
88%. In addition, local peripheral circuits account for 
another 20%. These are the values used to obtain 
power savings shown in Figure 10.

Total dynamic power was computed as 
N*Eaccess/Texec, where N is the total number of 
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accesses (obtained from simulation), Eaccess is the 
single access energy from CACTI-5 and Texec is the 
total execution time. Leakage power computations 
are similar, but leakage energy is dissipated on every 
cycle. 

The time delay for transition to/from stand-by 
mode, STL, used in this work is 10 processor cycles 
(5ns). The simulator accounts for this delay as 
required by each technique/algorithm.

Figure 10 shows a) the leakage power savings for 
both techniques, b) the energy-delay product 
reduction, and c) IPC degradation associated with 
both techniques. On average, the SM technique 
reduces leakage power and the energy-delay product 
slightly more than IM. Performance-wise, the IM 
technique does better, on average.

The IM results for two algorithms show that the SA 
and AA degrade performance equally, by about 1%. 
However, the worst performance loss occurs under 
AA, in mcf, by 16%. 

So far an 88% leakage reduction was assumed 
when using circuit techniques from [14,16]. Other 
circuit techniques report different savings, e.g. [12] 
reports a 64% reduction (in the cell array). We 
evaluated the savings assuming a 65% leakage 
reduction in individual circuits. The result was that 

total power was reduced somewhat proportionally. 

That is, 25% lower circuit leakage savings (from 88
to 65%) result in approximately 25% lower total 
power savings. 

7. Conclusions
This paper presented two architectural techniques 

to reduce leakage in the L2 peripheral circuits. The 
first (IM) achieves 18 or 22% average leakage power 
reduction, depending on the detection algorithm used, 
with a 1% average IPC reduction. The second 
technique (SM) achieves a 25% average savings with 
a 2% average IPC reduction.

The L2 hardware complexity using the IM 
technique is minimal: a 10-entry delayed-access 
buffer. The AA requires counters to monitor the 
functional units and issue logic after an L2 miss to 
detect when units become idle. There is also an area 
overhead in L2 SRAM due to the leakage reduction 
circuits used (for instance, [14] reported a 10% area 
increase). 

The two techniques benefit different benchmarks, 
which indicates a possibility adaptively selecting the 
best technique. This is subject of our ongoing 
research.
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Figure 10.  (a) leakage power saving (b) total energy-delay reduction (c) IPC degradation.
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