
Reducing Leakage Power in Peripheral Circuits of L2 Caches

Houman Homayoun and Alex Veidenbaum
Dept. of Computer Science, UC Irvine

{hhomayou, alexv}@ics.uci.edu

Abstract

Leakage power has grown significantly and is a
major challenge in microprocessor design. Leakage
is the dominant power component in second-level
(L2) caches. This paper presents two architectural
techniques to utilize leakage reduction circuits in L2
caches. They primarily target the leakage in the
peripheral circuitry of an L2 cache and as such have
to be able to cope with longer delays. One technique
exploits the fact that processor activity decreases
significantly after an L2 cache miss occurs and saves
power during L2 miss service time. Two algorithms,
a static one and an adaptive one, are proposed for
deciding when to apply this leakage reduction
technique. Another technique attempts to keep the
peripheral circuits in a lower-power state most of the
time. The results for SPEC2K benchmarks show that
the first technique can achieve a 18 to 22% reduction
in L2 power consumption, on average (and up to
63%), depending on the decision algorithm. The
second technique can save 25%, on average (and up
to 80%). This comes with a negligible 1 to 2%
performance impact, on average, depending on the
technique used.

1. Introduction
Power dissipation is a major issue in designing new

processors. In particular, CMOS technology scaling
has significantly increased the leakage power
dissipation so that it accounts for an increasingly
large share of processor power dissipation [1,2,3]. A
modern L2 cache is very large, 2 to 4MB of data plus
tags, and occupies a large fraction of chip area and
dissipates a large fraction of the chip leakage power.
An L2 cache is typically accessed relatively
infrequently and actually dissipates most of the
power via leakage. The focus of this paper is,
therefore, the reduction of the L2 cache leakage
power dissipation.

To overcome this problem, a number of technology,
circuit, and architectural approaches have been

This work was supported in part by the National Science
Foundation under grants NSF CCF–0311738 and CNS–0220069.

proposed. Many of such techniques concentrated on
reducing the leakage of SRAM memory cells by
keeping them in a low-power state which retains data
but does not allow access such as body bias control,
reduced VDD, high Vth, etc. A number of
architectural techniques were proposed to utilize such
circuits by targeting SRAM cells, e.g. cache decay
[8] and drowsy cache [9]. Recent results have shown
that a considerable amount of leakage occurs in the
peripheral SRAM circuits, such as decoders, word-
line and output drivers, etc [19, 14]. In fact, an
SRAM memory cell design can be optimized for low
leakage currents without a significant impact on the
cell area or performance. Thus approaches that
concentrate on cell leakage power alone are
insufficient and it is very important to address
leakage in peripheral circuits.

Peripheral circuits use very large transistors and
thus leakage reduction techniques in these circuits
introduce significant additional delays. These delays
would significantly increase the L2 cache access time
if they are incurred on every access. These leakage
reduction techniques are thus not applied in high-
performance processors. They are typically used in
mobile applications where RAM is put into low-
power stand-by mode to reduce leakage current while
retaining data. For instance, the Row Decoding
scheme [14], reduced both the sub-threshold and gate
leakage in peripheral circuits while in sleep mode.

How to apply these techniques to L2 cache in high-
performance processors is a challenging problem
because transitions to and from the low-power mode
introduce additional delays. Thus an access issued to
an L2, which is in the stand-by mode, will take
significantly longer. The main issue is therefore how
to achieve power savings without loss of
performance.

The approach proposed in this paper uses
architectural techniques to drive the application of the
above-mentioned circuit techniques to reduce the
leakage power in the peripheral circuits of the L2
cache. It is assumed that the SRAM cell design is
already optimized for low leakage. Two techniques

1-4244-1258-7/07/$25.00 ©2007 IEEE 230

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

are proposed to decide when to transition from
normal to stand-by mode and back. It is shown that
this can be achieved without increased hardware
complexity or performance loss.

The first technique is based on the observation that
a processor may spend a large fraction of an
applications’ execution time waiting for memory and
unable to execute new instructions. This is a direct
result of a very long memory access time, which
today can reach 300 cycles in a uni-processor. Thus
an L2 cache miss leads directly to the processor
becoming idle. During such an idle time the L2 cache
may be put into the stand-by mode (idle mode or IM)
leading to significant reduction in its leakage power.
This also allows a very simple and local control for
transitioning the L2 to the stand-by mode triggered
by an L2 miss. and presents an opportunity to mask
the transition delays.

Maximum L2 power savings would be achieved if
an L2 cache is put into low-power mode for the entire
miss service time. However, as shown later in this
paper, this results in a significant performance
penalty. This is due to the fact that a processor still
has instructions it can execute after an L2 miss, some
of which require access to the disabled L2 cache. To
mitigate the impact on performance, we propose and
compare two novel algorithms for deciding when to
put the L2 cache in the low-power mode (stand-by
mode).

The first algorithm disables the L2 N cycles after a
cache miss occurs and enables it again M cycles
before the miss service completes. Both N and M are
significantly less than the L2 miss service time. We
refer to this algorithm as static (SA). The processor
can continue to execute instructions during the entire
miss service period in this case, with any accesses to
the disabled L2 cache buffered. Note that the tag
store can be left on to maintain cache coherence, this
will not have much of an effect on leakage power
savings.

The second algorithm, adaptive (AA), monitors the
issue logic and functional units of the processor after
an L2 cache miss. An L2 disable signal is asserted if
the issue logic has not issued any instructions and
functional units have not executed any instructions
for K consecutive cycles. This algorithm is more
complex than the first one as it requires continuous
monitoring of issue logic and functional units.
However, it may also allow low-power techniques to
be applied to other units of the processor (this is
beyond the scope of this paper). Experimental results
show that both SA and AA degrade performance at
the same level, around 1 percent, on average,
although SA requires simpler hardware. On the other

hand the leakage power saving with AA is slightly
higher, on average, than with SA.

While the idle mode (IM) technique described
above works well in many benchmarks, it does not
always deliver significant savings. For instance, in
benchmarks with very low L2 miss rates. A second
technique proposed in this paper uses the low-power
stand-by mode as default for the L2 cache and only
“wakes” it up on an access (referred to as stand-by
mode or SM technique). It then keeps the cache in the
normal state for L cycles before returning it to the
stand-by mode. Any access to the cache made during
these L cycles pays no wakeup penalty. This
approach has the potential to keep the L2 cache in
stand-by mode for long periods of time, thus saving
more power. On the other hand, it pays a wakeup
performance penalty on some accesses to the L2.

This paper motivates, describes and evaluates the
two techniques described above targeting the leakage
power in the peripheral circuitry of the L2 cache
SRAM. It is organized as follows. Sec. 2 shows the
L2 behavior and power dissipation details. Related
work is described in Sec. 3. Sec. 4 presents the
motivation for proposed architectural techniques.
Sec. 5 describes the two architectural techniques and
the circuits used to reduce leakage in SRAM. The
methodology and experimental results are presented
in Sec. 6.

2. Cache power dissipation
The effectiveness of the techniques proposed in this

paper depends on the L2 cache behavior. Table 2
shows miss rates and frequency of loads in SPEC2K
benchmarks for a 64–bit, 2GHz processor with a
memory latency of 300 cycles (described in Table 1).
High load frequencies and L2 miss rates observed
motivate the application of stand-by mode during L2
miss service time for power reduction.
The SPEC2K benchmarks were compiled with the -
O4 flag using the Compaq compiler targeted for the

Table 1. Processor organization
L1 I-cache 128KB, 64 byte/line, 2 cycles
L1 D-cache 128KB, 64 byte/line, 2 cycles, 2 R/W

ports
L2 cache 4MB, 8 way, 64 byte/line, 20 cycles
issue 4 way out of order
Branch predictor 64KB entry g-share,4K-entry BTB
Reorder buffer 96 entry
Instruction queue 64 entry (32 INT and 32 FP)
Register file 128 integer and 128 floating point
Load/store queue 32 entry load and 32 entry store
Arithmetic unit 4 integer, 4 floating point units
Complex unit 2 INT, 2 FP multiply/divide units
Pipeline 15 cycles (some stages are multi-cycles)

231

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

Table 2. Miss rates and load frequencies.

DL1
miss
rate

L2miss
rate

%
loads

DL1
miss
rate

L2
miss rate

%
loads

ammp 0.046 0.1872 0.22 lucas 0.097 0.6657 0.15
applu 0.056 0.6572 0.26 mcf 0.239 0.4284 0.34
apsi 0.027 0.2778 0.22 mesa 0.003 0.2674 0.26
art 0.414 0.0001 0.17 mgrid 0.036 0.4587 0.30
bzip2 0.017 0.0417 0.24 parser 0.020 0.0688 0.22
crafty 0.002 0.0087 0.28 perlbmk 0.005 0.4576 0.31
eon 0.000 1 0.26 sixtrack 0.012 0.0012 0.22
equake 0.017 0.6727 0.25 swim 0.089 0.6308 0.21
facerec 0.034 0.3121 0.21 twolf 0.054 0.0003 0.23
galgel 0.037 0.0057 0.22 vortex 0.003 0.2314 0.24
gap 0.007 0.5506 0.21 vpr 0.023 0.1476 0.30
gcc 0.046 0.0367 0.21 wupwise 0.012 0.674 0.17
gzip 0.007 0.0468 0.20 Average 0.052 0.313168 0.24

Alpha 21264 processor and executed with reference
data sets. The architecture was simulated using an
extensively modified version of SimpleScalar 4.0 [5].
The benchmarks were fast–forwarded for 3 billion
instructions, then fully simulated for 3 billion
instructions.
Figure 1 shows the leakage power breakdown of L2
cache components for a 4MB cache. The leakage and
dynamic power consumption of the cache were
obtained using Cacti5 [13] for a 65nm technology. It
is assumed that the SRAM cell leakage reduction
techniques have already been applied. Overall, the
peripheral circuits are leaking about 90% of total
leakage.

The reason is the use of large and more leaky
transistors in peripheral circuits, while high Vth and
less leaky transistors are used in memory cells. It is
also possible to use other leakage reduction
techniques in the SRAM cells, e.g. drowsy cache,
which is orthogonal to what is proposed in this paper.

global data
input drivers

25%

others
9%

local data
output
drivers

20%

global row
predecoder

7%local row
decoders

1%

global data
output
drivers
24%

global
address

input drivers
14%

Figure 1. Leakage power of L2 cache components

Figure 2. Leakage power as a fraction of total L2
power.

Figure 2 shows the L2 leakage power dissipation as
a fraction of the total cache power dissipation
(leakage + dynamic) for SPEC2K benchmarks. The
L2 cache leakage power dominates dynamic power,
with an average above 90% of the total.

The results in Figures 1 and 2 confirm both the
importance of targeting the leakage power. as well as
the importance of reducing leakage in peripheral
circuits.

3. Related work
CMOS scaling leads to significant leakage in the

MOSFET transistor [1,2,3]. Many approaches to
reducing leakage power have been investigated, at
technology, circuit, architecture and compiler/OS
levels.

3.1 Circuit-level leakage control
Four main circuit techniques have been proposed to

reduce the leakage power. Gated-Vdd turns off the
power by using a high threshold transistor. The
advantage of this technique is in reducing the leakage
power virtually completely. However, it doesn't
retain the state of the memory cell. Similarly, Vss can
also be gated (gated Vss).

Another technique is voltage scaling which reduces
the source voltage. As explained in [18] due to short-
channel effects in deep submicron processes,
applying voltage scaling reduces the leakage current
significantly. This yields a significant reduction in
leakage power dissipation, though not as effective as
Gated Vdd. This technique retains data. Voltage
scaling can be done dynamically and combined with
Frequency Scaling (DVFS) [15, 20]. DVFS is widely
used by microprocessor companies in existing
products, but incurs considerable delay and is not
used for fine-grained control.

ammp

art

equake gap

gcc

gzip

lucas

twolf

wupwise

galgel

applu

apsi
bzip2

eon
crafty

facerec

mcf

parser
mgrid

mesa
perlbmk

swim

sixtrack
vpr

vortex

Average

70%

75%

80%

85%

90%

95%

100%

232

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

The third technique, ABB-MTCMOS, increases
threshold voltage of a transistor dynamically. The
overhead of applying this technique in terms of
performance and power makes it inefficient. In
another technique it is proposed to reduce cell bias
voltage in standby state to reduce cell leakage [16].
This technique was shown to reduce cell leakage
more compared to source voltage scaling [14].

Device scaling leads to threshold voltage
fluctuation, which makes the cell bias control to
reduce the leakage difficult to achieve. In response,
[14] proposed a Replica Cell Biasing scheme in
which the cell bias is not affected by VDD and Vth of
peripheral transistor. [14] also proposed a circuit to
reduce leakage in the decoder and word-line driver. It
was shown that using RCB and the new row
decoding scheme, the gate and sub-threshold leakage
was reduced by 88% with only a 10% area overhead.

[12, 17] proposed a forward body biasing scheme
(FBB) in which the leakage power is suppressed in
the unselected part of cache by utilizing super Vt
devices. They also propose techniques to minimize
the associated FBB transition latency. They have
shown savings of 64% in cache cell leakage power.

3.2 Architectural techniques
A number of architecturally driven cache leakage

reduction techniques have been proposed. Powell et
al proposed applying gated-Vdd approach to gate the
power supply for cache lines that are not likely to be
accessed [6]. A similar idea referred to as gated Vss
is investigated in [7] in which the ground voltage is
being disconnected for such cache lines. Both of
these techniques result in the data loss in the gated
cache line. This leads to an increase in the cache miss
rate and loss of performance.

Kaxiras et al. proposed a cache decay technique
which reduces cache leakage by turning off cache
lines not likely to be reused [8]. Flautner et al.
proposed a drowsy cache which reduces the supply
voltage of the L1 cache line instead of gating it off
completely [9].The advantage of this technique is that
it preserves the cache line information but introduces
a delay in accessing drowsy lines. However, the
leakage power saving is slightly lower than the gated
Vdd and Vss techniques.

Nicolaescu et al [10] proposed a combination of
way caching technique and fast speculative address
generation to apply the drowsy cache line technique
to reduce both the L1 cache dynamic and leakage
power.

Bai et al optimized several components of on-chip
caches to reduce gate leakage power [11].

The research mentioned above primarily targeted
the leakage in the SRAM cells of a cache. Given the
results in Figure 1, cache peripheral circuits are even
more important to address in the L2 cache.

4. Architectural motivation
A load instruction missing in the L2 cache prevents

dependent instructions from being issued. The
dependent instructions fill up the reorder buffer
(ROB), the instruction queue (IQ), and/or the load
and store queues (LQ/SQ) while the miss is being
serviced. The load may take 200 to 300 cycles to be
serviced and will reach the top of one of the queues
during this time. It will cause the queue to fill up with
subsequent instructions and then stall the processor.
Only after the L2 cache miss is serviced will the stall
condition be removed.

Thus, the processor can become completely idle,
i.e. it is not issuing, executing, or committing any
instructions while waiting for the L2 miss to be
serviced. The IPC as measured during the L2 miss
service time for SPEC2K programs thus decreases
significantly compared to program average, as shown
in Figure 3. This idle time can be quite large as will
be shown in Section 5.

These results indicate that the L2 cache can be put
into a stand-by mode for a significant fraction of
execution time. However, doing so right after an L2
miss is not the best approach, as shown below.

Figure 4 shows the fraction of independent
instructions issued during an L2 miss service.
Independent instructions follow a load miss but do
not depend on it or any other miss which may occur
during the L2 miss and thus can be executed during
miss service. They may also access the L2 and would
be delayed if the L2 was in stand-by mode.

Figure 3. Instruction issue rates

In spite of a significant decrease in issue rate during
cache miss service, the percentage of independent
instructions is not negligible, particularly in applu,

ammp

equake gapgcc

gzip mesa

ammp
applu

apsi

art

bzip2

craftyeon

equake

facerec

galgel

gap

gcc

gzip

lucas

mcf

mesa

mgrid

parser

perlbmk

sixtrack

swim

twolf

vortex

vpr

wupwise

lucasmcf

applu
apsi

art
bzip2crafty

eon

facerec
galgel

mgrid
sixtrack

swim
parser

perlbmk
twolf

vpr

vortex

wupwise

Average

Average

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25
Issue Rate

average issue rate during
cache miss period

program average issue rate

233

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

lucas, mcf, swim and mgrid. Therefore, any
technique to reduce power during a cache miss period
has to carefully consider execution of dependent
instructions to avoid a performance penalty.

Figure 4. Independent instruction frequency

5. Proposed techniques
The techniques proposed in this paper aim to put

the L2 cache into the stand-by, low power mode. Let
us start with the circuit techniques used, which insert
appropriately sized sleep transistors for both Vdd and
Vss. In order to reduce the delay of going into and
out of stand-by mode, we divide the peripheral
circuits into local and global. The former are
primarily local output drivers in each SRAM sub-
array, which will be controlled locally with a local
SLP signal (lSLP) asserted when the sub-array is not
selected and thus incur a reasonably small delay.

Global peripheral circuits include pre-decoder and
global word-line drivers, input and output data
drivers, and address input driver. These large-
transistor circuits will be controlled by the global
SLP signal. A Sleep Transition Latency (STL) is
incurred by the pre-decoder/ global word-line driver
and other global peripheral circuits. Note that global

Figure 5. Circuits for leakage control

output driver transition can be allowed to take even
longer as it can be overlapped with data read.

The SRAM cell leakage is assumed to be controlled
by other techniques in both the baseline and our
enhanced architectures (CACTI-5 accounts for this).
Note that the local sleep signal can be used to
transition a sub-array of SRAM cells and their
corresponding sense amplifier to/from low-power
mode, but we do not assume its use.

The modified L2 cache architecture is shown in
Figure 5. It has a sleep input signal SLP to put its
global peripheral circuits into stand-by mode using
circuit techniques discussed above.

Our first architectural technique (IM) asserts the L2
SLP signal after an L2 cache miss and de-asserts it
again when the cache miss is serviced. The processor
is not disabled and can generate L2 accesses during
this time. Such load/store instructions are stored in
the

-Delayed Access Buffer
10 entries(10*8bits)

Access L2 when it get
enabled

SLP

Write Buffer

L2 Cache

Cell Array

Read Buffer

assert SLP signal, insert
forthcoming Loads and
stores into Delayed
Access Buffer

Figure 6. Modified L2 cache architecture.

delayed-access buffer. This buffer allows the
processor and the L1 cache to continue executing
while L1 misses are stored in this buffer. Our
evaluation showed that a 10-entry delayed-access
buffer is large enough to keep all loads instructions
waiting to access L2 during cache miss period.

The performance when L2 is disabled for its entire
miss service time relative to a baseline in which the
L2 is always enabled is shown in Figure 7. The IPC
degradation is 10%, on average, and between 25%
and 50% for some benchmarks: applu, lucas, mcf,
swim and mgrid. Disabling the L2 postpones the
issue of independent instructions and impacts the
performance significantly. Two algorithms are
proposed next to avoid this performance degradation.

ammp

applu

apsi

art

crafty

eon

equake

facerec

galgel

gzip

lucas

mcf

mesa

mgrid

perlbmk

sixtrack

swim

twolf

vortex

bzip2 parser

vpr

wupwise

Average

gap
gcc

0.001

0.01

0.1

1

10

100
Logarithmic Percentages (log %)

234

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

Figure 7. Performance degradation when L2 is
disabled for entire L2 miss service time.

Static algorithm (SA)
This algorithm puts the L2 in stand-by mode N

cycles after the cache miss occurs and enables it
again M cycles before the miss is expected to
compete. We refer to this algorithm as a static
algorithm (SA) as it deals with all L2 misses in the
same way.

The SA algorithm allows independent instructions
to utilize available resources in the ROB, IQ and
LQ/SQ and complete execution during the L2 miss
service. Our experimental evaluation showed that
choosing N=M=50 cycles minimizes the impact on
performance.
Adaptive algorithm (AA)

In this algorithm the issue logic and functional units
of the processor are monitored after an L2 miss. The
L2 is put into stand-by mode if the issue logic has not
issued any instructions and functional units have not
executed any instructions for K consecutive cycles.
The algorithm attempts to predict that there are no
more instructions that will access the L2.It was
experimentally determined that K=10 cycles is a
good power/performance trade-off.

The IM technique puts the L2 cache into the stand-
by mode only during part of the L2 miss service time.
The SM technique attempts to maximize the time L2
cache spends in the stand-by mode by starting the L2
cache in stand-by mode and “waking it up” on an L1
cache miss. While it is possible to put the L2 back
into stand-by as soon as the access is finished, it is
likely to be inefficient in terms of performance. The
approach we propose keeps the L2 cache on for J
cycles after it was turned on and allows other L1
misses to access L2 without a performance penalty. A
larger J thus leads to lower performance degradation
but also lower energy savings.

Figure 8 shows the fraction of total execution time
that L2 cache was kept active by different techniques
(SM_200 is for J=200 cycles). Not unexpectedly, the
short turn-on period leads to a larger fraction of time

% Time L2 Turned ON

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SM_200 SM_500 SM_750 SM_1000 SM_1500 IM/SA IM/AA

INT

FP

Figure 8. Fraction of execution time L2 is active.

the L2 can be in low-power state. But at the same
time it may decrease the IPC.

For J=500 or less, the average idle time for L2 in
f.p. codes is higher than for the IM technique with
either SA or AA algorithms. It is always better in
integer codes.

IPC Degradation

0%

1%

2%

3%

4%

5%

6%

7%

8%

SM_200 SM_500 SM_750 SM_1000 SM_1500 IM/SA IM/AA

INT

FP

Figure 9. Decrease in IPC.

Figure 9 shows the corresponding IPC decrease.
While large for SM with small values of J, it becomes
comparable or better at J=1500. For one benchmark
(art) the IPC loss is 40% for J=200.

6. Power reduction
This section presents the results for power

reduction, energy-delay product, and IPC degradation
for individual benchmarks. First, let us describe
power and timing assumptions used.

As shown in Section 2, the global peripheral
circuits controlled by the selected circuit techniques
account for 70% of all the leakage power, according
to CACTI-5. The power reduction using some of the
same leakage control circuits reported in [16, 14] was
88%. In addition, local peripheral circuits account for
another 20%. These are the values used to obtain
power savings shown in Figure 10.

Total dynamic power was computed as
N*Eaccess/Texec, where N is the total number of

ammp

applu

apsi equake

gcc

lucas

mcf

mgrid

perlbmk

swim

vpr

wupwise

Average

twolf
vortex

sixtrack

mesa parsergzipgap
facerec

galgeleon
craftyart

bzip2
0

10

20

30

40

50

60
Percentage (%)

235

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

accesses (obtained from simulation), Eaccess is the
single access energy from CACTI-5 and Texec is the
total execution time. Leakage power computations
are similar, but leakage energy is dissipated on every
cycle.

The time delay for transition to/from stand-by
mode, STL, used in this work is 10 processor cycles
(5ns). The simulator accounts for this delay as
required by each technique/algorithm.

Figure 10 shows a) the leakage power savings for
both techniques, b) the energy-delay product
reduction, and c) IPC degradation associated with
both techniques. On average, the SM technique
reduces leakage power and the energy-delay product
slightly more than IM. Performance-wise, the IM
technique does better, on average.

The IM results for two algorithms show that the SA
and AA degrade performance equally, by about 1%.
However, the worst performance loss occurs under
AA, in mcf, by 16%.

So far an 88% leakage reduction was assumed
when using circuit techniques from [14,16]. Other
circuit techniques report different savings, e.g. [12]
reports a 64% reduction (in the cell array). We
evaluated the savings assuming a 65% leakage
reduction in individual circuits. The result was that

total power was reduced somewhat proportionally.

That is, 25% lower circuit leakage savings (from 88
to 65%) result in approximately 25% lower total
power savings.

7. Conclusions
This paper presented two architectural techniques

to reduce leakage in the L2 peripheral circuits. The
first (IM) achieves 18 or 22% average leakage power
reduction, depending on the detection algorithm used,
with a 1% average IPC reduction. The second
technique (SM) achieves a 25% average savings with
a 2% average IPC reduction.

The L2 hardware complexity using the IM
technique is minimal: a 10-entry delayed-access
buffer. The AA requires counters to monitor the
functional units and issue logic after an L2 miss to
detect when units become idle. There is also an area
overhead in L2 SRAM due to the leakage reduction
circuits used (for instance, [14] reported a 10% area
increase).

The two techniques benefit different benchmarks,
which indicates a possibility adaptively selecting the
best technique. This is subject of our ongoing
research.

Performance Degradation

%

4%

8%

12%

16%

20%

am
m
p

ap
pl
u

ap
si ar

t

bz
ip
2

cr
af
ty

eo
n

eq
ua

ke

fa
ce

re
c

ga
lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m
cf

m
es

a

m
gr
id

pa
rs
er

pe
rlb

m
k

si
xt
ra
ck

sw
im

tw
ol
f

vo
rte

x
vp

r

w
up

w
is
e

A
ve

IM/SA

IM/AA

SM

(c)

Total Energy-Delay Reduction

%

20%

40%

60%

80%

100%

am
m
p

ap
pl
u

ap
si ar

t

bz
ip
2

cr
af
ty

eo
n

eq
ua

ke

fa
ce

re
c

ga
lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m
cf

m
es

a

m
gr
id

pa
rs
er

pe
rlb

m
k

si
xt
ra
ck

sw
im

tw
ol
f

vo
rte

x
vp

r

w
up

w
is
e

Av
e

IM/SA

IM/AA

SM

(b)

Leakage Power Savings

0%

20%

40%

60%

80%

100%

am
m
p

ap
pl
u

ap
si ar

t

bz
ip
2

cr
af
ty

eo
n

eq
ua

ke

fa
ce

re
c

ga
lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m
cf

m
es

a

m
gr
id

pa
rs
er

pe
rlb

m
k

si
xt
ra
ck

sw
im

tw
ol
f

vo
rte

x
vp

r

w
up

w
is
e

Av
e

IM/SA

IM/AA

SM

(a)

Figure 10. (a) leakage power saving (b) total energy-delay reduction (c) IPC degradation.

236

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

8. References
[1] T. Skotnicki et al,.The end of CMOS scaling: toward

the introduction of new materials and structural
changes to improve MOSFET performance. IEEE
Circuits and Devices Magazine, Jan.-Feb. 2005, Vol.
21, Issue: 1.

[2] S. Borkar et al,. Platform 2015: Intel® Processor and
platform evolution for the next decade. Intel
Technology Magazine, March 2005.

[3] M. Bohr. Nanotechnology goals and challenges for
electronic applications. IEEE Transactions on Nano-
technology, Vol 1, No. 1, p.56, March 2002.

[4] F. Hamzaoglu et al,. Analysis of Dual-VT SRAM cells
with Full-Swing Single-Ended Bit Line Sensing for
On-Chip Cache. IEEE Trans. on VLSI Systems, vol.
10, April 2002, pp. 91-95.

 [5] SimpleScalar4 tutorial, Simp[leScalar LLC.
http://www.simplescalar.com/tutorial.html.

 [6] M.D. Powell et al,. Gated Vdd: A circuit technique to
reduce leakage in deep-submicron cache memories. in
Proc. IEEE ISLPED, 2000 .

[7] Y. Li et al,. State-preserving vs. non-state-preserving
leakage control in caches. in Proc. IEEE DATE, 2004.

[8] S. Kaxiras et al,. Cache decay: exploiting generational
behavior to reduce cache leakage power. in ISCA,
2001.

[9] K. Flautner et al,. Drowsy caches: simple techniques for
reducing leakage power. in Proc. IEEE ISCA, 2002.

[10] D. Nicolaescu et al,. Fast Speculative Address Genera-
tion and Way Caching for Reducing L1 Data Cache
Energy. Proc. IEEE ICCD, 2006.

[11] R. Bai et al,. Total leakage optimization strategies for
multi-level caches in Proc. ACM Great Lakes
symposium on VLSI, 2005.

[12] C. H. Kim et al,. A forward body-biased low-leakage
SRAM cache: device, circuit and architecture
considerations. IEEE Trans. on VLSI Systems, vol. 13,
no. 3, Mar. 2005, pp. 349-357.

[13] Cacti5, http://quid.hpl.hp.com:9082/cacti/.
[14] Y. Takeyama et al,. A Low Leakage SRAM Macro

with Replica Cell Biasing Scheme. IEEE Journal Of
Solid- State Circuits, Vol. 41, No. 4, April 2006.

[15] D. Marculescu. On the use of microarchitecture-driven
dynamic voltage scaling. In Workshop on Complexity-
Effective Design, June 2000.

[16] K. Nii et al., A 90-nm low-power 32 KByte embedded
SRAM with gate leakage suppression circuit for
mobile applications, IEEE J. Solid-State Circuits, vol.
39, no. 4, pp. 684-693, Apr. 2004.

[17] A. Agarawal et al., DRG-Cache: A Data Retention
Gated-Ground Cache for Low Power, DAC 2002. pp.
473-478.

[18] K. Flautner et al,. Automatic performance setting for
dynamic voltage scaling. in Journal of Wireless
Networks, pages 260–271, 2001.

[19] Bharadwaj S. Amrutur et al,. Speed and power scaling
of SRAMs, IEEE Journal of Solid State Circuits. Feb
2000, vol. 35, no. 2.

[20] Pentium M processor on 90 nm process with 2-MB L2
cache. Intel Corp. .Jan. 2005.
www.intel.com/design/mobile/datashts/302189.htm

237

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

