
Published in 18th International Symposium on High Performance Computer Architecture, February, 2012

Dynamically Heterogeneous Cores Through 3D Resource Pooling

Houman Homayoun Vasileios Kontorinis Amirali Shayan Ta-Wei Lin Dean M. Tullsen

University of California San Diego

Abstract

This paper describes an architecture for a dynamically
heterogeneous processor architecture leveraging 3D stack-
ing technology. Unlike prior work in the 2D plane, the ex-
tra dimension makes it possible to share resources at a fine
granularity between vertically stacked cores. As a result,
each core can grow or shrink resources, as needed by the
code running on the core.

This architecture, therefore, enables runtime customiza-
tion of cores at a fine granularity and enables efficient exe-
cution at both high and low levels of thread parallelism.

This architecture achieves performance gains from 9-
41%, depending on the number of executing threads, and
gains significant advantage in energy efficiency of up to
43%.

1. Introduction
Prior research [17, 19] has shown that heterogeneous

multicore architectures provide significant advantages in
enabling energy-efficient or area-efficient computing. It
allows each thread to run on a core that matches its re-
source needs more closely than a single one-size-fits-all
core. However, that approach still constrains the ability to
optimally map executing threads to cores because it relies
on static heterogeneity, fixed at design time.

Other research attempts to provide dynamic heterogene-
ity, but each face a fundamental problem. Either the
pipeline is tightly constructed and the resources we might
want to share are too far away to be effectively shared, or the
shared resources are clustered and the pipeline is inefficient.
As a result, most provide resource sharing or aggregation at
a very coarse granularity – Core Fusion [13] and TFlex [16]
allow architects to double or quadruple the size of cores, for
example, but do not allow a core to borrow renaming regis-
ters from another core if that is all that is needed to acceler-
ate execution. Thus, the heterogeneity is constrained to nar-
row cores or wide cores, and does not allow customization
to the specific needs of the running thread. The WiDGET
architecture [36] can only share execution units, and thus
enables only modest pipeline inflation. The conjoined core
architecture [18] shares resources between adjacent cores,

but sharing is limited by the topology of the core design to
only those structures around the periphery of the pipeline.

This work demonstrates that 3D stacked processor archi-
tectures eliminate the fundamental barrier to dynamic het-
erogeneity. Because of the extra design dimension, we can
design a tight, optimized pipeline, yet still cluster, or pool,
resources we might like to share between multiple cores.

3D die stacking makes it possible to create chip mul-
tiprocessors using multiple layers of active silicon bonded
with low-latency, high-bandwidth, and very dense vertical
interconnects. 3D die stacking technology provides very
fast communication, as low as a few picoseconds [21], be-
tween processing elements residing on different layers of
the chip. Tightly integrating dies in the third dimension has
already been shown to have several advantages. First, it en-
ables the integration of heterogeneous components such as
logic and DRAM memory [21], or analog and digital cir-
cuits [21], fabricated in different technologies (for instance
integration of a 65nm and a 130nm design). Second, it in-
creases the routability [28]. Third, it substantially reduces
wire length, which translates to lowered communication la-
tency and reduced power consumption [21, 23, 28].

The dynamically heterogeneous 3D processors we pro-
pose in this paper provide several key benefits. First, they
enable software to run on hardware optimized for the ex-
ecution characteristics of the running code, even for soft-
ware the original processor designers did not envision. Sec-
ond, they enable us to design the processor with compact,
lightweight cores without significantly sacrificing general-
purpose performance. Modern cores are typically highly
over-provisioned [18] to guarantee good general-purpose
performance – if we have the ability to borrow the specific
resources a thread needs, the basic core need not be over-
provisioned in any dimension. Third, the processor pro-
vides true general-purpose performance, not only adapting
to the needs of a variety of applications, but also to both
high thread-level parallelism (enabling many area-efficient
cores) and low thread-level parallelism (enabling one or a
few heavyweight cores).

With a 3D architecture, we can dynamically pool re-
sources that are potential performance bottlenecks for pos-
sible sharing with neighboring cores. The StageNet archi-
tecture [7] attempts to pool pipeline stage resources for re-



liability advantages. In that case, the limits of 2D layout
mean that by pooling resources, the pipeline must be laid
out inefficiently, resulting in very large increases in pipeline
depth. Even Core Fusion experiences significant increases
in pipeline depth due to communication delays in the front
of the pipeline. With 3D integration, we can design the
pipeline traditionally in the 2D plane, yet have poolable re-
sources (registers, instruction queue, reorder buffer, cache
space, load and store queues, etc.) connected along the third
dimension on other layers. In this way, one core can borrow
resources from another core or cores, possibly also giving
up non-bottleneck resources the other cores need. This pa-
per focuses on the sharing of instruction window resources.

This architecture raises a number of performance, en-
ergy, thermal, design, and resource allocation issues. This
paper represents a first attempt to begin to understand the
various options and trade-offs.

This paper is organized as follows. Section 2 describes
our 3D architecture assumptions, both for the baseline
multicore and our dynamically heterogeneous architecture.
Section 3 shows that both medium-end and high-end cores
have applications that benefit from increased resources, mo-
tivating the architecture. Section 4 details the specific cir-
cuits that enable resource pooling. Section 5 describes our
runtime hardware reallocation policies. Section 6 describes
our experimental methodology, including our 3D models.
Section 7 gives our performance, fairness, temperature, and
energy results. Section 8 describes related work.

2. Baseline Architecture
In this section, we discuss the baseline chip multi-

processor architecture and derive a reasonable floorplan
for the 3D CMP. This floorplan is the basis for our
power/temperature/area and performance modeling of vari-
ous on-chip structures and the processor as a whole.

3D technology, and its implications on processor archi-
tecture, is still in the early stages of development. A number
of design approaches are possible and many have been pro-
posed, from alternating cores and memory/cache [20, 23],
to folding a single pipeline across layers [27].

In this research, we provide a new alternative to the 3D
design space. A principal advantage of the dynamically
heterogeneous 3D architecture is that it does not change
the fundamental pipeline design of 2D architectures, yet
still exploits the 3D technology to provide greater energy
proportionality and core customization. In fact, the same
single design could be used in 1-, 2-, and 4-layer configu-
rations, for example, providing different total core counts
and different levels of customization and resource pooling.
For comparison purposes, we will compare against a com-
monly proposed approach which preserves the 2D pipeline
design, but where core layers enable more extensive cache
and memory.

Figure 1. CMP configurations: (a) baseline and (b) re-
source pooling.

2.1. Processor Model

We study the impact of resource pooling in a quad-core
CMP architecture. This does not reflect the limit of cores
we expect on future multicore architectures, but a reason-
able limit on 3D integration. For example, a design with
eight cores per layer and four layers of cores would provide
32 cores, but only clusters of four cores would be tightly
integrated vertically. Our focus is only on the tightly inte-
grated vertical cores.

For the choice of core we study two types of architec-
ture, a high-end architecture which is an aggressive super-
scalar core with issue width of 4, and a medium-end archi-
tecture which is an out-of-order core with issue width of
2. For the high-end architecture we model a core similar
to the Alpha 21264 (similar in functionality to the Intel Ne-
halem Core, but we have more data available for validation
on the 21264). For the medium-end architecture we con-
figure core resources similar to the IBM PowerPC-750 FX
processor [12].

2.2. 3D Floorplans

The high-level floorplan of our 3D quad-core CMP is
shown in Figure 1. For our high-end processor we assume
the same floorplan and same area as the Alpha 21264 [15]
but scaled down to 45nm technology. For the medium-
end architecture we scale down the Alpha 21264 floorplan
(in 45nm) based on smaller components in many dimen-
sions, with area scaling models similar to those described
by Burns and Gaudiot [3].

Moving from 2D to 3D increases power density due to
the proximity of the active layers. As a result, tempera-
ture is always a concern for 3D designs. Temperature-aware
floorplanning has been an active topic of research in the lit-
erature. There have been a number of 3D CMP temperature-
aware floorplans proposed [5, 8, 26]. Early work in 3D ar-
chitectures assumed that the best designs sought to alternate
hot active logic layers with cooler cache/memory layers.



More recent work contradicts that assumption – it is more
important to put the active logic layers as close as possible
to the heat sink [39]. Therefore, an architecture that clus-
ters active processor core layers tightly is consistent with
this approach. Other research has also exploited this princi-
ple. Loh, et al. [21] and Intel [1] have shown how stacking
logic on logic in a 3D integration could improve the area
footprint of the chip, while minimizing the clock network
delay and eliminating many pipeline stages.

For the rest of this work we focus on the two types of
floorplan shown in Figure 1(a) and Figure 1(b). Both pre-
serve the traditional 2D pipeline, but each provides a differ-
ent performance, flexibility, and temperature tradeoff.

The thermal-aware architecture in Figure 1(a) keeps the
pipeline logic closest to the heat-sink and does not stack
pipeline logic on top of pipeline logic. Conversely, the
3D dynamically heterogeneous configuration in Figure 1(b)
stacks pipeline logic on top of pipeline logic, as in other
performance-aware designs, gaining increased processor
flexibility through resource pooling. Notice that this com-
parison puts our architecture in the worst possible light – for
example, a many-core architecture that already had multiple
layers of cores would have very similar thermal character-
istics to our architecture without the benefits of pooling. By
comparing with a single layer of cores, the baseline has the
dual advantages of not having logic on top of logic, but also
putting all cores next to the heat sink.

3. Resource Pooling in the Third Dimension
Dynamically scheduled processors provide various

buffering structures that allow instructions to bypass older
instructions stalled due to operand dependences. These
include the instruction queue, reorder buffer, load-store
queue, and renaming registers. Collectively, these resources
define the instruction scheduling window. Larger windows
allow the processor to more aggressively search for instruc-
tion level parallelism.

The focus of this work, then, is on resource adaptation
in four major delay and performance-critical units – the re-
order buffer, register file, load/store queue, and instruction
queue. By pooling just these resources, we create an ar-
chitecture where an application’s scheduling window can
grow to meet its runtime demands, potentially benefiting
from other applications that do not need large windows.

While there are a variety of resources that could be
pooled and traded between cores (including execution units,
cache banks, etc.), we focus in this initial study of dynam-
ically heterogeneous 3D architectures on specific circuit
techniques that enable us to pool these structures, and dy-
namically grow and shrink the allocation to specific cores.

In this section, we study the impact on performance of
increasing the size of selected resources in a 3D design. We
assume 4 cores are stacked on top of each other. The max-

imum gains will be achieved when one, two, or three cores
in our 4-core CMP are idle, freeing all of their poolable re-
sources for possible use by running cores. The one-thread
case represents a limit study for how much can be gained
by pooling, but also represents a very important scenario –
the ability to automatically configure a more powerful core
when thread level parallelism is low. This does not repre-
sent an unrealistic case for this architecture – in a 2D ar-
chitecture, the cost of quadrupling, say, the register file is
high, lengthening wires significantly and moving other key
function blocks further away from each other. In this archi-
tecture, we are exploiting resources that are already there,
the additional wire lengths are much smaller than in the 2D
case, and we do not perturb the 2D pipeline layout.

We examine two baseline architectures (details given in
Section 6) — a 4-issue high-end core and a 2-issue medium-
end core. In Figure 2 we report the speedup for each of these
core types when selected resources are doubled, tripled, and
quadrupled (when 1, 2, and 3 cores are idle). Across most of
the benchmarks a noticeable performance gain is observed
with pooling. Omnetpp shows the largest performance ben-
efit in medium-end cores. The largest performance is ob-
served in swim and libquantum for high-end cores.

Performance gains are seen with increased resources, but
the marginal gains do drop off with larger structures. Fur-
ther experiments (not shown) indicate that pooling beyond
four cores provides little gain. The more scheduling re-
sources we provide, the more likely it is that some other
resource (e.g., the functional units, issue rate, cache) that
we are not increasing becomes the bottleneck. In fact, this
is true for some benchmarks right away, such as mcf and
perlbench, where no significant gains are achieved, imply-
ing some other bottleneck (e.g., memory latency) restricts
throughput. On average, 13 to 26% performance improve-
ment can be achieved for the medium-end processor, and
21 to 45% for the high end, by increasing selected window
resources. Most importantly, the effect of increased win-
dow size varies dramatically by application. This motivates
resource pooling, where we can hope to achieve high over-
all speedup by allocating window resources where they are
most beneficial.

4. Stackable Structures for Resource Pooling
This section describes the circuit and architectural mod-

ifications required to allow resources on vertically adjacent
cores to participate in pooling. Specifically, we describe
the changes required in each of the pipeline components.

4.1. Reorder Buffer and Register File

The reorder buffer (ROB) and the physical register
file (RF) are multi-ported structures typically designed as
SRAM, with the number of ports scaling with the issue
width of the core. Our goal is to share them across multiple
cores with minimal impact on access latency, the number of



(a)

(b)

Figure 2. Speedup from increasing resource size in the 3D stacked CMP with (a) medium-end and (b) high-end cores.

ports, and the overall design. We take advantage of a mod-
ular ROB (and register file) design proposed in [25] which
is shown to be effective in reducing the power and com-
plexity of a multi-ported 2D SRAM structure. Our baseline
multi-ported ROB/RF is implemented as a number of inde-
pendent partitions. Each partition is a self-standing and in-
dependently usable unit, with a precharge unit, sense amps,
and input/output drivers. Partitions are combined together
to implement a larger ROB/RF, as shown in Figure 3(a).
The connections running across the entries within a par-
tition (such as the bit-lines) are connected to a common
through line using bypass switches.

To add a partition to the ROB/RF, the bypass switch for a
partition is turned on. Similarly, the partition can be deallo-
cated by turning off the corresponding bypass switch. The
modular baseline architecture of our register file allows in-
dividual partitions to participate in resource pooling. To
avoid increasing the number of read and write ports of in-
dividual partitions of the ROB/RF, we simply assume that
an entire partition is always exclusively owned by one core
— either the core (layer) it belongs to (host core) or another
core (guest core). This significantly simplifies the design,
but restricts the granularity of sharing.

Note that before a partition participates in resource pool-
ing (or before it is re-assigned) we need to make sure that
all of its entries are empty. This can be facilitated by using
an additional bit in each row (entry) of the partition to indi-
cate whether it is full or empty – in most cases, that bit will
already exist.

Figure 3(b) shows a logical view of two stacked register

files, participating in resource pooling (only one partition
of the RF from each layer is shown in this figure). The ad-
ditional multiplexers and decoder shown in Figure 3(b) are
used to route the address and data from/to a partition in one
layer from/to another partition in a different layer. The de-
coder shown in the figure enables stacking of the ROB/RF.
To be able to pool up to 4 ROB/RF partitions on four dif-
ferent layers together, we need to use a 4-1 decoder and a
4-1 multiplexer. The register operand tag is also extended
with 2 additional bits. The overall delay added to the ROB
or RF due to additional multiplexing and decoding is fairly
small. For the case of stacking four cores where a 4 in-
put decoder/multiplexer is needed, the additional delay is
found to be below 20 ps (using SPICE simulation and as-
suming a standard cell 4 input multiplexer). In this design,
the access latency of the original register file is only 280ps
(using CACTI for an 8 read-port, 4 write-port, 64 entry reg-
ister file). The additional 20 ps delay due to an additional
decoder/multiplexer and the TSVs (5ps at most) still keep
the overall delay below one processor cycle. Thus, the fre-
quency is not impacted. For the ROB, the baseline delay is
230 ps and the additional delay can still be tolerated, given
our baseline architectural assumptions.

Due to the circular FIFO nature of the ROB, an addi-
tional design consideration to implement resource sharing is
required, which is not needed for the register file. The ROB
can be logically viewed as a circular FIFO with head and
tail pointers. The tail pointer points to the beginning of the
free entry of the ROB where new dispatch instructions can
be allocated. The instructions are committed from the head



sense-amps

input/output drivers
bypass switch array

memory cell array

sense-amps

input/output drivers
bypass switch array

memory cell array

bitline

Throughline

Bypass 
switch

(a) (b)

Figure 3. (a) Partitioned ROB and RF design, (b) logical view of two stacked RF(ROB) partitions.
pointer. Resource sharing requires dynamically adjusting
the size of the reorder buffer. To implement such dynamic
resizing we use the technique proposed in [25], where two
additional pointers are added to the ROB to dynamically
adjust its size.

4.2. Instruction Queue and Ld/St Queue
Both the Instruction Queue (IQ) and the Load/Store

Queue (LSQ) are CAM+SRAM structures which hold in-
structions until they can be issued. The main complexity of
the IQ and LSQ stems from the associative search during
the wakeup process [24]. Due to large power dissipation
and large operation delay, the size of these units does not
scale well in a 2D design. The number of instruction queue
and LSQ entries has not changed significantly in recent gen-
erations of 2D processors.

Figure 4(a) shows a conventional implementation of the
instruction queue. The taglines run across the queue and
every cycle the matchline compares the tagline value broad-
cast by the functional units with the instruction queue en-
try (source operand). We assume our baseline IQ utilizes
the well-studied divided tagline (bitline) technique [14]. As
shown in Figure 4(b), two or more IQ entries are combined
together to form a partition and to divide the global tag line
into several sub-tag lines. This way the IQ is divided into
multiple partitions. In the non-divided tag line structure the
tag line capacitance is N * diffusion capacitance of pass
transistors + wire capacitance (usually 10 to 20% of total
diffusion capacitance) where N is the total number of rows.
In the divided tag line scheme the equivalent tagline capac-
itance is greatly reduced and is approximated as M * diffu-
sion capacitance + 2 * wire capacitance, where M is the
number of tagline segments. As tagline dynamic power dis-
sipation is proportional to CV 2, reducing the effective ca-
pacitance will linearly reduce tagline dynamic power. The
overhead of this technique is adding a set of pass transis-

tors per sub-tagline. As a side effect, the large number of
segments increases the area and power overhead [14].

To be able to share two or more partitions of the in-
struction queue, we include one multiplexer per tagline and
per IQ partition to select between the local tagline and the
global taglines (shown in Figure 4(c)). Similarly to the RF,
to avoid increasing the number of taglines we simply as-
sume that each partition is always allocated exclusively to
a single core. This way the number of taglines remains the
same and multiplexing, as shown in Figure 4(c), will route
the data on the tagline to the right partition. For the SRAM
payload of the instruction queue we simply follow the same
modification proposed for our SRAM register file. Bitline
segmentation helps to reduce the number of die-to-die vias
required for communication between two layers.

We also need to modify the instruction selection logic.
Increasing the maximum size of the instruction queue in-
creases the complexity of the selection logic [24]. In a typi-
cal superscalar processor each instruction queue entry has a
set of bid and grant ports to communicate with the selection
logic. Increasing the size of the IQ increases the number
of input ports of the selection logic which can negatively
impact the clock frequency. To avoid increasing the com-
plexity of the selection logic, we simply allow all partitions
participating in resource pooling to share the same selection
logic port along with the partition that belongs to the guest
core (layer). In this case, we OR the bid signals (from the
shared partition and the guest core partition) to the selection
logic. The priority is given to the older entry (age-based pri-
ority decoding).

The overall delay overhead in the selection logic is de-
cided by the ORing operation and the age-based priority de-
coding. Note that the ORing of the bid signals only slightly
increases the selection logic delay, by less than 20 ps (us-
ing SPICE simulation). This delay does not increase the



Layer 0

Layer 1 
(flipped)

Baseline

XOR

Layer 1 
(flipped)

 tagline

Sub-
tagline

tagline 
Layer 1

tagline 
Layer 2

(a) (b) (c)

Local 
tagline

global 
tagline

 tagline

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

XOR

MUX

MUX

MUX

(a) (b) (c) (d)
Figure 4. (a) Conventional implementation of the IQ, (b) partitioned IQ using divided tagline, (c) implementation of the stacked
IQ, (d) logical view of the stacked instruction queue.

selection logic access delay beyond a single clock period.
For the age-based priority decoding we propose the follow-
ing to hide its delay: we perform the age-priority compu-
tation in parallel with the selection logic (to overlap their
delays). When the grant signal comes back, we use the now
pre-computed age information to decide where to route the
grant.

Under the given assumptions, this analysis indicates we
can add the pooling logic without impacting cycle time;
however, it is possible that under different assumptions, on
different designs, these overheads could be exposed. We
will examine the potential impact in the results section.

5. Adaptive Mechanism for Resource Pooling
In addition to the circuit modifications that are neces-

sary to allow resource aggregation across dies, we also need
mechanisms and policies to control the pooling or sharing
of resources.

In devising policies to manage the many new shared re-
sources in this architecture, we would like to maximize
flexibility; however, design considerations limit the gran-
ularity (both in time and space) at which we can partition
core resources. Time is actually the easier issue. Because
the aggregated structures are quite compact (in total 3D
distance), we can reallocate partitions between cores very
quickly, within a cycle or cycles. To reduce circuit complex-
ity, we expect to physically repartition on a more coarse-
grain boundary (e.g., four or eight entries rather than single
entries).

In the results section, we experiment with a variety
of size granularities for reallocation of pooled resources.
Large partitions both restrict the flexibility of pooling and
also tend to lengthen the latency to free resources. We also
vary how aggressively the system is allowed to reallocate

resources; specifically, we explore various static settings for
the minimum (MIN) and the maximum (MAX) value for the
size of a partition, which determine the floor and the ceiling
for core resource allocation.

Our baseline allocation strategy exploits two principles.
First, we need to be able to allocate resources quickly. Thus,
we cannot reassign active partitions, which could take hun-
dreds of cycles or more to clear active state. Instead we
actively harvest empty partitions into a free list, from which
they can later be assigned quickly. Second, because we
can allocate resources quickly, we need not wait to harvest
empty partitions — we grab them immediately. This works
because even if the same core needs the resource again right
away, it can typically get it back in a few cycles.

We assume a central arbitration point for the (free)
pooled resources. A thread will request additional parti-
tions when a resource is full. If available (on the list of free
partitions), and the thread is not yet at its MAX value, those
resources can be allocated upon request. As soon as a parti-
tion has been found to be empty it is returned to the free list
(unless the size of the resource is at MIN). The architecture
could adjust MIN and MAX at intervals depending on the
behavior of a thread, but this will be the focus of future work
– for now we find static values of MIN and MAX to perform
well. If two cores request resources in the same cycle, we
use a simple round-robin priority scheme to arbitrate.

6. Methodology
In order to evaluate different resource adaptation poli-

cies, we add support for dynamic adaptation to the SMT-
SIM simulator [34], configured for multicore simulation.
Our power models use a methodology similar to [2]. We
capture the energy per access and leakage power dissipation
for individual SRAM units using CACTI-5.1 [33] targeting



45nm technology. The energy and power consumption for
each unit is computed by multiplying access counts by the
per-access SRAM energy. For temperature calculation we
use Hotspot 5.0 [29].

Table 1 gives the characteristics of our baseline core ar-
chitectures. Note that for each of the register files, 32 reg-
isters are assumed to be unavailable for pooling, as they are
needed for the storage of architectural registers.

6.1. Modeling 3D Stacked Interconnect for
Resource Pooling

We model Tier-to-Tier (T2T) connection with Through
Silicon Vias (TSV). TSVs enable low-latency, high-
bandwidth, and very dense vertical interconnect among the
pooled blocks across multiple layers of active silicon. We
assume four dies are stacked on top of each other. Each tier
has an Alpha processor (high-end core case) with die size of
6.4mm × 6.4mm with 12 layers of metal from M1 to M12
and the redistribution layer (RDL). The 3D stacked chip
model is flip chip technology and the tiers are connected
face-to-back. In the face-to-back connection, the RDL of
Tier 1 (T1) is connected to the package via flip chip bumps,
and the RDL of Tier 2 (T2) is connected to the M1 of T1
via TSV and forms the T2T connection.

Each core is placed in a single tier of the stack. TSVs
connect the Register File (RF), Instruction Queue (IQ), Re-
order Buffer (ROB), and Load and Store Queue (LSQ) of
each layer vertically. The connection from bottom tier M1
to M12 and RDL layer of the top tier is via TSV, and from
M12 and RDL is with resistive via and local routing to the
M1 of the sink in RF, IQ, ROB and LSQ.

The resistive through metal via connects metal layers of
the tiers, e.g., M1 to M2 in each tier. The vertical and
horizontal parasitics of the metals, via, and TSV connec-
tions have been extracted to build the interconnect model.
A T2T connection includes a through silicon via and a
µbump. The parasitics of the µbumps are small compared
with the TSV [10]. Hence, we only model the parasitics
of the TSVs for T2T connections. The length, diameter,
and dielectric linear thickness of the TSV which is used for
the T2T connection in our model are, respectively, 50µm,
5µm, and 0.12µm. A TSV is modeled as an RLC element
with RL in series and C connected to the substrate, i.e.,
global ground in our model. The parasitic resistance, capac-
itance, and inductance of the T2T connections are modeled
by RTSV =47mΩ, LTSV =34pH , and CTSV =88fF [11].

The power and signal TSVs connect the power/ground
mesh from the package flip chip bumps to each layer. The
TSV pitch for the tier to tier connection is assumed to be
uniformly distributed with a density of 80/mm2 [11]. We
assume the TSV structures are via-last where the TSV is on
top of the back end of the line (BEOL), i.e., RDL layer and
the M1.

Medium-End Core High-End Core
Cores 4 4
Issue,Commit width 2 4
INT instruction queue 16 entries 32 entries
FP instruction queue 16 entries 32 entries
Reorder Buffer entries 32 entries 64 entries
INT registers 48 64
FP registers 48 64
Functional units 2 int/ldst 1 fp 4 int/ldst 2 fp
L1 cache 16KB, 4-way, 2 cyc 32KB, 4-way, 2 cyc
L2 cache (priv) 256KB, 4-way, 10 cyc 512KB, 4-way, 15 cyc
L3 cache (shared) 4MB, 4-way, 20 cyc 8MB, 8-way, 30 cyc
L3 miss penalty 250 cyc 250 cyc
Frequency 2GHz 2GHz
Vdd 1.0V 1.0V

Table 1. Architectural specification.

Tier to Tier Path Delay (ps)
T1 to T2 1.26
T1 to T3 2.11
T1 to T4 2.53
T2 to T3 1.31
T2 to T4 2.19
T3 to T4 1.35

Table 2. Tier to tier delay via TSV path.

In our circuit model we extract the delay path from each
SRAM pin (SRAM pin is a signal bump on top of the RDL
layer) to the multiplexer of the next SRAM pin. The de-
lay timing for each tier is around 1-2.5 ps as illustrated in
Table 2 for tier 1 to 4.

The TSV lands on the µbump and landing pad. Sur-
rounding the TSV and landing pad there is a keep-out area
where no block, i.e., standard cell is allowed to place and
route. We estimate the total TSVs required for connecting
memory pins of the RF, IQ, ROB, and LSQ vertically for
different stack up numbers in both medium-end and high-
end cores. The total area for the TSV landing pad and the
block out area is calculated and summarized in Table 3. The
RF has the largest number of TSVs and the ROB has the
fewest.

Power density in the stacked layers increases the thermal
profile of the 3D configuration, compared to 2D. In a typical
3D design, TSVs can help with vertical heat transfer among
the layers and reduce the thermal hotspots. Hence, addi-
tional TSVs which are required for the T2T communication
in our architecture will help balance the temperature.

In Table 4 we show our Hotspot configuration. In
our thermal model we assume a different packaging for
medium-end and high-end architecture. For high-end we
assume a modern heat sink that is designed for 160W chips
(4-cores). For the medium-end architecture we assume a
convection resistance of 1.5 which represents a moderate
packaging for 30W chips [22].

Note that the vertical delays we report in Table 2 (less
than 3 ps) compare to the communication cost that would
be incurred if resources are shared across 2D cores (which
would be about 3 nanoseconds, or 6 cycles) – more than 3



Blocks pins TSV area µm2 TSV block out area µm2

2 Layer Stack medium-end high-end medium-end high-end medium-end high-end
Register File 876 1752 68766 137532 87600 175200
Load and Store Queue 792 1600 62172 125600 79200 160000
Instruction Queue 224 464 17584 36424 22400 46400
Reorder Buffer 128 256 10048 20096 12800 25600
Total 2020 4072 158570 319652 202000 407200
3 Layer Stack medium-end high-end medium-end high-end medium-end high-end
Register File 1314 2628 103149 206298 131400 262800
Load and Store Queue 1188 2400 93258 188400 118800 240000
Instruction Queue 336 696 26376 54636 33600 69600
Reorder Buffer 196 384 15386 30144 19600 38400
Total 3034 6108 238169 479478 303400 610800
4 Layer Stack medium-end high-end medium-end high-end medium-end high-end
Register File 1752 3504 137532 275064 175200 350400
Load and Store Queue 1584 3200 124344 251200 158400 320000
Instruction Queue 448 928 35168 72848 44800 92800
Reorder Buffer 265 512 20803 40192 26500 51200
Total 4049 8144 317846 639304 404900 814400

Table 3. TSV area utilization.

High-End Core Medium-End Core
Die thickness (um) 150 150
Ambient temperature 40oC 40oC
Convection capacitance 140 J/K 140 J/K
Convection resistance 1.5 K/W 0.1 K/W
Heat sink side 0.076 m 0.076 m
Heat spreader side 0.035 m 0.035 m
Interlayer Material 0.02mm 0.02mm

Thickness (3D)
Interlayer Material 0.25 mK/W 0.25 mK/W

Resistivity (w/o TSVs)

Table 4. Temperature estimation related parameters.

orders of magnitude higher. In the interest of space, we do
not provide a detailed comparison of our proposed scheme
with a 2D dynamically heterogeneous architecture. How-
ever, even assuming a generous two-cycle communication
latency between all cores in 2D, our results show that just
the pipeline changes required to accommodate an equiva-
lent level of sharing would cost each core more than 13%
performance.

6.2. Benchmarks and Metrics

We compose multi-program workloads with 2 and 4
threads. The applications are selected from among the
SPEC2000 and SPEC2006 benchmark suites, selecting rep-
resentative sets of memory-intensive and compute-intensive
benchmarks. The two- and four-thread groupings are se-
lected alphabetically to avoid bias. Table 5 summarizes our
workload mixes. For each application in the mix we fast-
forward to skip the initialization phase and then simulate
until each thread executes 200 million instructions.

We are interested in studying both the performance and
fairness effect of our techniques. We report weighted
speedup and fairness results. Fairness is defined in [6]. Fair-
ness close to 1 indicates a completely fair system where all
threads have uniform performance degradation or gain (rel-
ative to single-thread performance on a baseline core). Fair-
ness close to 0 indicates that at least one thread starves. We

Two thread workloads
2T0 applu - apsi 2T7 libquantum 06 - lucas
2T1 art - bwaves 06 2T8 mcf 06 - mesa
2T2 bzip2 - cactusADM 06 2T9 mgrid - milc 06
2T3 facerec - galgel 2T10 omnetpp 06 - perl 06
2T4 gcc 06 - gromacs 06 2T11 povray 06 - sixtrack
2T5 h264 06 - hmmer 06 2T12 soplex 06 - swim
2T6 lbm 06 - leslie 06 2T13 vortex - vpr

Four thread workloads
4T0 applu - apsi - art - bwaves
4T1 bzip - cactusADM 06 - facerec - galgel
4T2 gcc 06 - gromacs 06 - h264 06 - hmmer 06
4T3 lbm 06 - leslie 06 -libquantum 06 - lucas
4T4 mcf 06 - mesa - mgrid - milc 06
4T5 omnetpp 06 - perl 06 - povray 06 - sixtrack
4T6 soplex 06 - swim 06 - vortex - vpr

Table 5. Workload Mix. Spec2006 benchmarks are de-
noted with ” 06”.

also present weighted speedup [30], using the non-pooling
core as the baseline.

7. Results
This section demonstrates the performance and energy

advantages of resource pooling. We examine the granularity
of resource partitioning, setting of limits on resource usage,
and the impact on temperature, power, and energy.

Figure 5 shows the weighted speedup and fairness for
several configurations of our dynamically heterogeneous
processor architecture. All configurations pool resources
among four cores, whether the workload is four threads or
two. All allocate resources greedily, within the constraints
of the MIN and MAX settings. The different results in this
graph represent different values for MIN and MAX, assum-
ing MIN and MAX are constant over time and the same for
all cores. For comparison, we also show the performance
we get from doubling or tripling all resources.

From this graph we see that while we can get signif-
icant performance gains (8-9%) with full utilization (four
threads), gains are dramatic when some cores are idle. With



Medium-end 2Thr High-end 2Thr Medium-end 4Thr High-end 4Thr
0.90
1.00
1.10
1.20
1.30
1.40

W
ei

gh
te

d 
Sp

ee
du

p
MIN=0.0,MAX=1.0
MIN=0.0625,MAX=1.0
MIN=0.125,MAX=1.0
MIN=0.25,MAX=1.0
2X
3X

(a)
Medium-end 2Thr High-end 2Thr Medium-end 4Thr High-end 4Thr

0.00
0.20
0.40
0.60
0.80
1.00

Fa
irn

es
s

MIN=0.0,MAX=1.0
MIN=0.0625,MAX=1.0
MIN=0.125,MAX=1.0
MIN=0.25,MAX=1.0

(b)(a) (b)

Figure 5. (a) Weighted speedup and (b) fairness for dynamically heterogeneous cores, relative to cores with no sharing, for
two-thread and four-thread workloads. These results vary MIN and MAX, which determine the floor and the ceiling for core
resource allocation.

1 thread 2 thread 4 thread
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
or

m
al

iz
ed

 W
ei

gh
te

d 
Sp

ee
du

p

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 6. Comparison between the medium-end and the
high-end core with and without 3D sharing.

two threads we get 26-28% performance for the best policy.
In fact, with two threads, performance far exceeds statically
doubling the resources, and is equivalent to tripling each
core’s resources.

Not surprisingly, setting a MIN value to zero, in which
case a core can actually give up all resources (for example if
it is stalled for an Icache miss) appears to be a bad idea. The
best result comes when we reserve one eighth of the total
resources (half of a single core’s resources) for the core. We
see (results not shown) no performance advantage in setting
MAX below 1.0. This means that there is no apparent need
to restrict one core’s ability to grab all available resources if
it needs it.

In Figure 5, the medium-end and high-end performance
results are normalized to different baselines, so we cannot
directly compare those results. Therefore, we show the re-
sults for the two architectures (no sharing and sharing with
MIN=0.125 and MAX=1.0) all normalized to the high-end,
no sharing result in Figure 6. From this graph we can see
that resource pooling makes the medium core significantly
more competitive with the high-end. Without sharing, the
medium core operates at 67% of the performance of the
high end. With pooling and four active threads it operates at
71%, with two active threads, it operates at 86%, and with
one active thread, it operates at 97% of the performance of
the high-end core.

Finally, we performed a sensitivity analysis to study the
impact of clock frequency scaling on the performance ben-
efit of resource pooling. If the worst-case logic overhead of
25 ps were fully exposed (given our assumptions, it should

not be exposed at all), increasing the cycle time by that
same amount (5%), this architecture still gains 4% running
4 threads, 20% running 2 threads, and 33% running one
thread, relative to an architecture with no sharing for the
medium-end core. For the high-end core, the respective
gains are 6.5% running 4 threads, 25% running 2 threads,
and 42% running one thread.

7.1. Fine vs. Coarse Partitioning

We also study the performance across different partition-
ing granularities for the best allocation technique. Larger
(coarser) granularity of reallocation simplifies the circuits
and the reallocation manager. In Figure 7 we report
weighted speedup for dynamic heterogeneity, as the gran-
ularity of reallocation is changed (fine grain is one entry per
allocation).

We observe that performance is very tolerant of large
partition sizes – we apparently gain little from increased
flexibility. The reason is that most of the resource allo-
cations and deallocations occur in bursts. Once a thread
misses in the data cache, it will keep requesting resources
until it either consumes the whole pool or reaches its MAX
limit. Once this happens, the thread will retain the resources
for the duration of the miss. Large partitions actually make
it easier to meet a thread’s sudden demand quickly. We use
4 partitions (per core) for the remaining experiments de-
scribed in this paper.

7.2. Power, Temperature, and Energy

Figure 8 shows the power consumption of the various
architectures. The pooling processor architectures pay a
small price in power, in large part because of the enhanced
throughput.

The small additional power overhead is in contrast in
some cases to the large performance benefit (in terms of
weighted speed up). This is due in part to a subtlety
of our experiments. Weighted speedup weights applica-
tion speedups equally (rather than over-weighting high-
IPC threads, which throughput measures do). Because we
get some large speedups on low-IPC threads, we see high
average speedup, but smaller increase in total instruction
throughput and thus smaller increase in power.



2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T 
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T 
Avg

0.8

1

1.2

1.4

1.6

1.8
W

ei
gh

te
d 

Sp
ee

du
p 

(v
s n

o 
sh

ar
in

g)
Fine Grain 8 partitions 4 partitions 2 partitions

Figure 7. Weighted speedup for dynamic heterogeneity, as the granularity of reallocation is changed, for 2-thread and 4-thread
workloads (medium-end cores).

0
20
40
60
80

100

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T 
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T 
Avg

po
we

r (
W

att
)

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 8. Power consumption per core for MIN=0.125, MAX=1.0 as well as the baseline (no sharing) for 2-thread workloads
and 4-thread workloads.

Because of the layout advantages (remember, the base-
line processor places all cores right next to the heat sink),
the cost in maximum temperature is more significant (Fig-
ure 9). Interestingly, the temperature of the medium
resource-pooling core is comparable to the high-end core.
This is in part because we assume the medium core is laid
out tightly, resulting in a slightly higher max temperature
for four-thread workloads. For two-thread workloads,
the medium resource-pooling core has slightly lower tem-
perature than the high-end core (average 2 degree lower).
If the medium core covered the same area as the high-end
core, for example, the max temperature would be signif-
icantly lower. Even still, at equal temperature, the more
modest cores have a significant advantage in energy effi-
ciency measured in MIPS2/W (MIPS2/W is the inverse of
energy-delay product), as seen in Figure 10. This is a criti-
cal result. By outperforming the non-pooling medium core,
and approaching the performance in some cases of the large
core (due to its just-in-time provisioning of resources), the
dynamically heterogeneous medium-end core provides the
highest energy efficiency.

8. Related Work
Prior research has attempted to provide dynamically het-

erogeneous computing in the 2D domain. Core Fusion [13]
and TFlex [16] aggregate resources at the granularity of an
entire core, creating large cores out of smaller cores when
ILP is high and/or thread level parallelism is low. The dy-
namically heterogeneous architecture described in this pa-
per shares resources at a much finer granularity. Other re-
search provides the ability to share execution resources be-
tween cores. The Conjoined Core architecture [18] shares

over-provisioned resources between cores, but is limited in
what resources it can share and has limited ability to adapt
to changing resource needs. The StageNet architecture [7]
can access stages from other core pipelines, allowing it to
reconfigure around faults.

There is also a large body of prior work in 3D stacked
architectures, including several others that exploit logic-on-
logic designs. Some previous research focuses on parti-
tioning the pipelined architecture and split the function unit
blocks across different layers [26, 35]. Other researchers
maintain the functional blocks in each layer and take advan-
tage of floorplan and physical design to gain performance
benefits from stacking [8]. A re-partitioned design of the In-
tel 3D Pentium 4 was designed by Black, et al. [1] with 15%

performance improvement but 15% increased power. They
demonstrate that by re-designing and splitting the IA32 pro-
cessor, thermal hotspots can be reduced without sacrificing
timing.

Both design and process technology are evolving to ad-
dress the 3D thermal and reliability challenges. For ex-
ample, Coskun, et al. [4] examine new inter layer cooling
schemes. Commercial products and some recent test chips
already leverage 3D technology in several domains, such as
image sensors [38] and stacked memories [9,31], including
some examples that map logic on logic [32, 37].

9. Conclusion
This paper describes a dynamically heterogeneous 3D

stacked architecture which enables very fine-grain reallo-
cation of resources between cores on a stacked chip multi-
processor architecture. This architecture enables fine-grain
resource sharing not possible in a conventional 2D archi-



0
20
40
60
80

100
120
140

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T 
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T 
Avg

te
m

pe
ra

tu
re

 (
Ce

lsi
us

)

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 9. MAX temperature for MIN=0.125,MAX=1.0 and baseline for 2-thread workloads and 4-thread workloads.

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T 
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T 
Avg

0

1

2

3

4

N
or

m
ali

ze
d 

M
IP

S2
/ W

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 10. MIPS2 per Watt for the 2-thread and the 4-thread workloads normalized to the high-end configuration without
sharing.

tecture. It can do so because we can leverage our current
expertise in creating tight 2D pipelines on one layer, while
accessing pooled resources of the same type on other layers.

This paper examines the sharing of instruction schedul-
ing window resources, in particular, describing circuit-level
techniques to enable fast reallocation of resources between
cores. We find that a processor with poolable resources
shared among four cores can outperform a conventional
multiprocessor by 41% when one thread is running, 23%
when two threads are running, and 9% when four threads
are running.

By eliminating the need to over-provision each core,
modest cores become more competitive with high-
performance cores, enabling an architecture that gives up
little in performance, yet provides strong gains in energy-
delay product over a conventional high-performance CMP
architecture.

Acknowledgments
The authors would like to thank Gabriel Loh for his valu-

able assistance with the paper, and the anonymous review-
ers for many useful suggestions. This research was sup-
ported in part by the NSF Computing Innovation Fellow
Program (grant NSF 1019343/CRA Sub Award CIF-B-68),
NSF grant CCF-1018356, and a grant from the Semicon-
ductor Research Corporation.

References
[1] B. Black, D. Nelson, C. Webb, and N. Samra. 3D process-

ing technology and its impact on IA32 microprocessors. In

International Conference on Computer Design, 2004.
[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-

work for architectural-level power analysis and optimiza-
tions. In International Symposium on Computer Architecture,
2000.

[3] J. Burns and J.-L. Gaudiot. Area and system clock effects
on SMT/CMP processors. In International Conference on
Parallel Architectures and Compilation Techniques, 2001.

[4] A. K. Coskun, D. Atienza, T. Rosing, T. Brunschwiler, and
B. Michel. Energy-efficient variable-flow liquid cooling in
3D stacked architectures. In Design Automation and Test in
Europe, 2010.

[5] D. Cuesta, J. Ayala, J. Hidalgo, M. Poncino, A. Acquaviva,
and E. Macii. Thermal-aware floorplanning exploration for
3D multi-core architectures. In Proc. of GLVLSI, 2010.

[6] S. Eyerman and L. Eeckhout. System-level performance met-
rics for multiprogram workloads. IEEE Micro, May 2008.

[7] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. A. Mahlke.
The stagenet fabric for constructing resilient multicore sys-
tems. In International Symposium on Microarchitecture,
2008.

[8] M. Healy, M. Vittes, M. Ekpanyapong, C. S. Ballapuram,
S. K. Lim, H.-H. S. Lee, and G. H. Loh. Multiobjective mi-
croarchitectural floorplanning for 2-D and 3-D ICs. In Proc.
of ICCAD, 2007.

[9] M. B. Healy, K. Athikulwongse, R. Goel, M. M. Hossain,
D. H. Kim, Y.-J. Lee, D. L. Lewis, T.-W. Lin, C. Liu, M. Jung,
B. Ouellette, M. Pathak, H. Sane, G. Shen, D. H. Woo,
X. Zhao, G. H. Loh, H.-H. S. Lee, and S. K. Lim. Design
and analysis of 3D-maps: A many-core 3D processor with
stacked memory. In Proc. of CICC, 2010.



[10] X. Hu, P. Du, and C.-K. Cheng. Exploring the rogue wave
phenomenon in 3D power distribution networks. In Electrical
Performance of Electronic Packaging and Systems, 2010.

[11] X. Hu, P. Du, and C.-K. Cheng. Exploring the rogue wave
phenomenon in 3D power distribution networks. In Proc. of
EPEPS, 2010.

[12] IBM Corporation. PowerPC 750 RISC. In Microprocessor
Technical Summary, Aug. 2003.

[13] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fu-
sion: Accommodating software diversity in chip multiproces-
sors. In International Symposium on Computer Architecture,
2007.

[14] A. Karandikar. Low power SRAM design using hierarchi-
cal divided bit-line approach. In International Conference on
Computer Design, 1998.

[15] R. Kessler, E. McLellan, and D. Webb. The alpha 21264
microprocessor architecture. In International Conference on
Computer Design, 1998.

[16] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ran-
ganathan, D. Gulati, D. Burger, and S. W. Keckler. Com-
posable lightweight processors. In International Symposium
on Microarchitecture, 2007.

[17] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In In-
ternational Symposium on Microarchitecture, 2003.

[18] R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-core
chip multiprocessing. In International Symposium on Mi-
croarchitecture, 2004.

[19] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA Heterogeneous Multi-core Archi-
tectures for Multithreaded Workload Performance. In Inter-
national Symposium on Computer Architecture, June 2004.

[20] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,
and M. Kandemir. Design and management of 3D chip multi-
processors using network-in-memory. In International Sym-
posium of Computer Architecture, 2006.

[21] G. H. Loh, Y. Xie, and B. Black. Processor design in 3D die-
stacking technologies. IEEE Micro, 27:31–48, May 2007.

[22] J. W. S. M. Datta, T. Osaka. Microelectronics packaging. In
CRC Press, 2005.

[23] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Bal-
asubramonian, R. Iyer, S. Makineni, and D. Newell. Opti-
mizing communication and capacity in a 3D stacked recon-
figurable cache hierarchy. In High-Performance Computer
Architecture, 2009.

[24] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processors. In International Symposium on Com-
puter Architecture, 1997.

[25] D. V. Ponomarev, G. Kucuk, and K. Ghose. Dynamic resiz-
ing of superscalar datapath components for energy efficiency.
IEEE Trans. Computers, Feb. 2006.

[26] K. Puttaswamy and G. Loh. Thermal herding: Mi-
croarchitecture techniques for controlling hotspots in high-
performance 3D-integrated processors. In High-Performance
Computer Architecture, 2007.

[27] K. Puttaswamy and G. H. Loh. Dynamic instruction sched-
ulers in a 3-dimensional integration technology. In Proc. of
GLSVLSI, 2006.

[28] K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang,
C. S. Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang,
R. J. Polastre, R. R. Horton, and J. U. Knickerbocker. 3D
chip-stacking technology with through-silicon vias and low-
volume lead-free interconnections. In IBM Journal of Re-
search and Development, Nov. 2008.

[29] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In International Symposium on Computer Architecture,
2003.

[30] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
a simultaneous multithreading architecture. In Symposium
on Architectural Support for Programming Languages and
Operating Systems, 2000.

[31] Tezzaron Semiconductor. www.tezzaron.com.
[32] T. Thorolfsson. Two 3DIC case studies: Memory-on-logic

and logic-on-logic. In IBM Research Student Workshop on
3D System Integration, 2010.

[33] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.Jouppi.
CACTI 5.1. Technical report, HPL, 2008.

[34] D. M. Tullsen. Simulation and modeling of a simultane-
ous multithreading processor. In Proc. of CMG Conference,
1996.

[35] B. Vaidyanathan, W.-L. Hung, F. Wang, Y. Xie,
V. Narayanan, and M. Irwin. Architecting microproces-
sor components in 3D design space. In Proc. of VLSID,
2007.

[36] Y. Watanabe, J. D. Davis, and D. A. Wood. WiDGET: Wis-
consin decoupled grid execution tiles. In International Sym-
posium on Computer Architecture, 2010.

[37] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee. An
optimized 3D-stacked memory architecture by exploiting ex-
cessive, high-density TSV bandwidth. In High-Performance
Computer Architecture, 2010.

[38] H. Yoshikawa, A. Kawasaki, Tomoaki, Iiduka, Y. Nishimura,
K. Tanida, K. Akiyama, M. Sekiguchi, M. Matsuo,
S. Fukuchi, and K. Takahashi. Chip scale camera module
(cscm) using through-silicon-via (TSV). In Proc. of ISSCC,
2009.

[39] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang. Thermal
management for 3D processors via task scheduling. In Proc.
of ICPP, 2008.


