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Abstract- The gap between computation speed and I/O 

access on modern computing systems imposes processing 

limitations in data-intensive applications. Employing 

high-end memory has proven not to enhance the 

performance for I/O bound applications, given the low 

utilization of memory bandwidth in such applications, as 

highlighted in recent studies. Despite several solutions to 

improve the performance of storage, none of them is able 

to shift the bottleneck from the I/O access to the memory 

subsystem for I/O bound applications. In this paper, we 

show that in the case of data-intensive multimedia 

applications, by using Compressive Sensing (CS), a lossy 

data compression method, the bottleneck is lifted from 

the storage, increasing the bandwidth utilization of the 

memory to gain further performance improvement from 

a high-end memory. The reconstruction of compressed 

data is however time and memory consuming. To address 

this challenge, we employ and compare the hardware and 

software acceleration of Orthogonal Matching Pursuit 

(OMP), a greedy algorithm, which solves the problem by 

choosing the most significant variable to reduce the least 

square error. Our implementation results show that CS 

increases memory bandwidth utilization by 1.4x and 

using high bandwidth memory results in 24% 

performance improvement.  Overall, the proposed 

solution of CS of storage data with FPGA accelerator 

achieves up to 45% speedup in an end-to-end 

implementation by only 4.6% accuracy degradation. 

Keywords— compressive sensing; hardware accelerator; 

memory; I/O access;  

I. INTRODUCTION 

Memory wall is one of the key challenges faced by the 

designers in devising high-performance big-data analysis 

platforms. Hybrid Memory Cube (HMC), High Bandwidth 

Memory (HBM), and Dual Data Rate (DDRx) memory 

technologies have been developed to cope with the memory 

bandwidth bottleneck [1, 26, 27]. In the era of Big-Data, 

machine learning [34], and Internet-of-Things (IoT), real-

time decision making is becoming non-trivial for the 

envisaged autonomous systems along with processing large 

amounts of garnered data (social networks, e-commerce, and 

video streaming being the primary contributors in the 

expansion of the data volume). As such, this introduces new 

challenges to efficiently process data-intensive workloads on 

high-performance computing (HPC) machines. Furthermore, 

frequent storage access in I/O intensive applications and the 

gap between computational power and I/O performance 

exacerbates the problem [2, 28]. This leads to undesirable 

situations, where I/O bottleneck devastates the efficiency and 

scaling of big-data applications. 

Moreover, a substantial amount of processing time is 

spent in writing/reading data to/from the storage [3] in data-

intensive applications. This I/O latency prevents CPU to 

efficiently utilize the memory subsystem [29]. Hence, using 

high-end memory does not bring noticeable performance 

benefits for I/O intensive applications, as highlighted in 

recent studies [4, 30].  

To improve the I/O performance, in-situ [5] and in-

memory data [6] processing have emerged as an effective 

way to substitute the traditional data analytics and overcome 

the increasingly severe I/O bottleneck for scientific and big-

data applications running at the petascale and beyond. 

However, these approaches could not shift the bottleneck 

from the storage to memory, as the access to data in the 

storage is inevitable.  

Data compression has been recently proposed to 

minimize the storage utilization and decrease I/O time [7, 8]. 

While latest efforts have mainly focused on lossless data 

compression methods, their effectiveness is limited by the 

small achievable compression ratio, and high compression 

effort [7, 8]. To address these challenges and provide a higher 

degree of compression ratio, in this work we propose using 

Compressive Sensing (CS) [10], a lossy data compression 

method that enables the acquisition of a signal with fewer 

samples than the Nyquist rate, and offer significantly higher 

compression rate. As we focus on the data-intensive 

multimedia workloads, a certain degree of data loss is 

tolerable. This lossy method however, does not comes for 
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free, as it requires reconstruction of data using 

computationally expensive methods such as Orthogonal 

Matching Pursuit (OMP) algorithm. Recent development in 

the hardware accelerators and the feasibility of utilizing them 

in conjunction with processors such as Microsoft Catapult 

project [9] motivates this study to use accelerators for 

expediting the decompression time in order to employ 

compressive sensing and alleviate I/O access.   

CS incurs computational complexity for processing 

including delay and power overhead. It also incurs 

inaccuracy. The contribution of this work is to understand 

this trade-off and find out whether compressive sensing is 

effective in addressing the main challenge with storage 

subsystem to process data intensive applications. We find that 

CS, by identifying a right trade-off that realized by deploying 

off-the-shelf accelerator solutions can shift the bottleneck 

from the I/O access to the memory subsystem for I/O bound 

data intensive multimedia applications. 

The remainder of this paper is organized as follows: 

Section II describes the background. Section III presents the 

experimental setup and implementation of accelerator on 

FPGA. Results are presented in Section IV. Section V 

concludes the paper. 

II. BACKGROUND 

In this section, we briefly introduce data compression 

methods, and the reconstruction of CS. 

A. Data Compression 

The rationale to use compression is that the compressed 

data could be transmitted faster, thereby improving the 

performance of I/O intensive workloads, such as multimedia 

applications. However, decompression is a compute-

intensive operation that imposes an extra processing cost and 

resource contention on compute node [11, 12]. Therefore, the 

design and choice of data compression algorithms involve 

trade-offs among various factors, including the degree of 

compression, the amount of introduced distortion (using 

lossy data compression), and the utilized computational 

resources for decompression [13].  

Lossless data compression algorithms usually exploit the 

statistical redundancy to represent data more concisely 

without losing information, and can precisely reconstruct the 

original data from the compressed data [14]. Lossy data 

compression is contrasted with lossless compression and can 

reconstruct an approximation of the original data. In these 

algorithms, some loss of information is acceptable [15]. The 

data compression can be evaluated by compression ratio and 

decompression speed. The results in [8] show that a lossy 

method can achieve 2.27x and 5.36x more compression and 

decompression throughput, respectively, compared to two 

best known lossless methods at the same compression ratio. 

Compression accuracy is a new metric involved in lossy 

compression. Compression accuracy is a metric used to judge 

the difference between original data and decompressed data. 

The inherited deficiency of information loss limits the 

application area of lossy compression on the lossless 

requirement. Here, as we focus on the multimedia big data 

applications, a certain degree of data loss is tolerable.  

Compressive sensing (CS) is a lossy compression 

technique that enables the acquisition of a signal with fewer 

samples than the Nyquist rate. Hence, it has a high 

compression ratio. While CS reduces the hardware 

requirements of signal acquisition [16], digital signal 

processing necessary to recover the original signal becomes 

much more involved. Though CS has several advantages, 

reconstruction of CS is complex and computationally 

intensive [17]. Recently, several proposed reconstruction 

algorithms show the trade-off between complexity and 

accuracy. The most popular reconstruction algorithm for 

compressive sensing is Orthogonal Matching Pursuit (OMP) 

[18]. 

It is important to note that the traditional image/video 

codec techniques while are effective in reducing the data size, 

they are limited in terms of their applicability and the 

functionality i.e., objective-specific. For example, the video 

codec is developed to keep the quality at the particular level 

or to reduce the decompression processing time. However, 

CS is a general technique that enables us to have an arbitrary 

compression ratio and also to have an arbitrary 

decompression quality [22]. It also can be used on any form 

of data (text, objects, images, and videos) [24].  

B. Reconstruction 

OMP is a greedy algorithm of less complexity that 

searches for closely correlated values in each iteration, shown 

in Figure 1 [19]. The complexity of the design increases with 

data length and sparsity number. OMP has two inputs: the 

measured signal (y) and the measurement matrix (𝜙). At each 

iteration (t), a column of 𝜙 which has strong correlation with 

Table 1: Variables’ definition 

Variable Definition Example 

N × N Images Size 128 * 128 

M Measurements 42…252 

k Sparsity 32 

R Residual Matrix M * 1 

𝜙 Measurement Matrix M * N 

𝜆 Maximum Index after Dot Product 180 

t No. of iterations k 
 

OMP Reconstruction Algorithm 

1: Initialize R0 = y, 𝜙0 = 0/ , Λ0 = 0/ , ф0 = 0/ and t= 0 
2:  Find Index λt = maxj=1…n subject to | < 𝜙j Rt-1 >| 
3: Update Λt = Λt-1 U λt 

4: Update фt = [фt-1   Λt] 
5: Solve the Least Squares Problem 
Xt = minx ||y -  фy x||2 

6: Calculate new approximation: αt = фt xt   
7: Calculate new residual: Rt = y – αt 
8: Increment t, and repeat from step 2 if t<k 
After all the iterations, we can find correct sparse vector  

Fig. 1. OMP Algorithm 

 



y is chosen. Least squares algorithm is used to obtain a new 

signal estimate. In the next step, the amount of contribution 

that column y provides is subtracted to obtain a residue which 

is used for the next iteration. Finally, after k iterations, correct 

set of columns are determined. The variables used in the 

algorithm are defined in Table 1.   

The reconstruction of images through OMP is time and 

memory consuming. If the reconstruction issue is 

unanswered, the achievable performance benefits with the 

reduction of I/O access time are very minimal or none. 

Hence, software and hardware based accelerator are 

employed to reduce the reconstruction time. This solution 

also addresses the high-end memory underutilization 

problem highlighted in recent work for big-data applications 

in high-end servers [31]. In this paper, we will show that a 

compression technique with a high compression ratio such as 

compressive sensing in conjunction with FPGA [32, 33] or 

GPU [25] accelerator can be used to reduce the I/O access 

time and lift the bottleneck from the storage.   

III. IMPLEMENTATION 

In this section, we present a full end-to-end reconstruction 

of compressive sensing, a lossy data compression solution, to 

reduce data communication costs along the I/O path in order 

to shift the bottleneck of data intensive workloads from 

storage to memory for taking advantage of high-end memory. 

As the data decompression incurs computational resource 

contention with other analytics and given the rise of 

accelerators in data centers, the data decompression is 

offloaded to an accelerator. A detailed implementation and 

assessment of the accelerators in software (GPU) and 

hardware (FPGA) is presented here. 

A. Experimental setup 

To perform a comprehensive experiment and study the 

effect of memory subsystem on the performance of 

reconstruction, we use different SDRAM memory modules. 

Our experimental methodology is focused on the objective of 

understanding how memory affects the performance. For this 

goal, we used Intel Performance Counter Monitoring tool 

(PCM) [20] to understand memory as well as processor 

behavior. In our experiments, we collect OS-level 

performance information with DSTAT tool. We swept the 

processors’ parameters when using memories with three 

different frequency setting of 1866 MHz, 2133 MHz, and 

2400 MHz. We repeat each experiment for a different number 

of memory channels (1CH, 2CH, and 4CH).  

For software accelerator implementation, we use two 

different GPU families (Tesla M2070 with 448 CUDA cores 

and 225W power draw, and GeForce 950 with 768 CUDA 

cores and 90Watt TDP) and CPU platforms. We employ 

CUDA 6.0 for our experiments. Moreover, cuBLAS library 

API is used for sorting and matrix operations. The 

reconstruction algorithm is also implemented in parallel on 

the Intel Xeon E5-2683 V4 using OpenMP. Table 2 shows 

our server configuration.  

We used BigDataBench [21] for the choice of multimedia 

big-data applications. We emphasize that our proposed 

solution is effectively applicable to big-data domain 

applications where a certain level of loss in the data is 

tolerable. We therefore selected Image Segmentation 

(Partitioning an image into multiple segments), SIFT (Detect 

and describe local features in input images), and Face 

Detection (Detecting face in an image) workloads. We used 

15000 images as a dataset for input of workloads. This data 

set is unstructured, organized according to the WordNet 

hierarchy, with 23 non-empty synsets, including categories of 

the plant, formation, natural object, sport, artifact, fun, guns, 

person, animal, and Misc. All images converted to grayscale 

of size 3072*2048 pixels. The average size of each image is 

~5-6 MB. 

B. Hardware accelerator 

Based on the algorithm description, OMP is partitioned 

into three main kernels: dot product, sort and least square 

(which involves matrix inversion). These blocks are shown 

in Figure 2. Parallelization techniques proposed in [18, 19] 

are used for implementing these three kernels of OMP 

algorithm. The proposed accelerator can take different image 

sizes with sparsity up to 32. 

For the implementation of hardware accelerator, Xilinx 

XC7VX485T Virtex-7 connected to the host processor 

through PCIe was used. The sparsity of k = 32 for different 

size of images is chosen. The high-end FPGA was chosen 

such that it can accommodate the design. For a sparsity of k 

= 32, OMP takes 6208 cycles to reconstruct each column and 

hence 10.12 µs for a 512 * 512 image size. Our FPGA 

accelerator is designed to process a vector with the size of 

768 * 768 (this is the exact size of our compressed input 

vector file), the sparsity of 32. Table 3 shows resource 

utilization of Virtex-7. The following paragraphs present the 

architectural design information of OMP kernels:  

1) Implementation of dot product kernel: OMP computes 

the dot product of 𝜙𝑇 (a N × M matrix) at each iteration, with 

a residual matrix R (a M×1 matrix) and has computational 

complexity of O(M×N). To leverage the parallel and pipeline 

architecture, a Tree multiplier is implemented, as shown in 

Figure 3. It is implemented for each 256 × 1 size array. Based 

on the matrix size, N multipliers and N - 1 adders are required 

 

Fig. 2. Kernels of OMP 
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for Tree multiplier. Therefore, the total number of operations 

are 2N - 1. Hence, dot product of 256 × 1 and 1 × 256 is 

available at every cycle. For the image size of 768 × 768, 

column size of 𝜙𝑇 is 256. Therefore, the dot product of 768 

× 256 and 256 × 1 is computed in 768 clock cycles.  

2) Implementation of sort kernel: To locate the maximum 

of | <𝜙R> | (N×1 vector), we use the sort kernel, of 

computational complexity O(N). We implemented Sort 

algorithm by using binary tree structure [23]. If we consider 

S as a variable and dependent on the size of input file (image), 

N/2S trees are implemented in our design. In order to 

efficiently use parallelism, we applied concurrent sorting to 

N/2S as shown in Figure 4. Since our architecture needs only 

the highest number, we reduced the memory by cutting the 

left sub-tree. Each concurrent binary tree gives highest 

number, thereby generating N/2S highest numbers which are 

fed to another binary tree. Our architecture is two staged, 

hence 384 elements are obtained for every two cycles.  

3) Implementation of the least square kernel: Least square 

is the most important kernel of OMP algorithm as (𝜙T 𝜙)-1 

has the highest hardware implementation complexity. Since 

𝜙 has t columns of size M at each iteration t, the new matrix 

(𝜙) is of size t × M. The result of (𝜙T 𝜙) computation is a t × 

t matrix. Three sub-blocks of least squares (x = (𝜙T 𝜙)-1 𝜙T 

y) are matrix transpose, matrix multiplication, and matrix 

inversion. To reduce the hardware complexity and utilize 

minimal resources, we call matrix index in transpose order to 

achieve matrix transpose. For matrix multiplication, we used 

tree architecture discussed previously. Matrix inversion is 

obtained by LU decomposition leveraging the symmetric 

matrix. As shown in Figure 5, blocked algorithm for LU 

decomposition is used for efficient parallel implementation.  

IV. RESULTS 

 In this work, we assume that the input data is already 

compressed and therefore we focus on transferring 

compressed data from storage to memory, decompression of 

data, and the processing of data. In order to elucidate how 

high-end memory with a decompression hardware 

accelerator can reduce I/O bottleneck and improve 

performance, we present our results in three stages: stage A 

(without compressed data), stage B (with compressed data 

but without decompression accelerator), and stage C (with 

FPGA and GPU accelerator). 

A. Stage  A 

To demonstrate how I/O limits the performance gain by 

high-end memory, we evaluate the effect of CPU frequency 

on the performance of studied workloads. The expectation is 

that increasing the core frequency will put pressure on the 

memory subsystem and eventually leads to gain performance 

from high bandwidth memory. However, our results show it 

has a reverse effect on data intensive application. Because 

increasing the core frequency exacerbate disk access and 

therefore prevents to gain performance. Figure 6 shows that 

the execution time of studied applications does not drop 

linearly by increasing the CPU frequency, particularly when 

changing frequency from 1.9 GHz to 2.6 GHz. This trend 

indicates that some parts of workloads are I/O bound. This 

conclusion can further be advocated by the active state 

residency (C0) of processor. This can be explained as 

follows: If increasing the frequency of processor reduces C0, 

the application is I/O bound, as when a core is waiting for 

I/O, the core changes its state to save power. Similarly, if the 

Table 2: Specification of server  

Hardware Type Parameter Value 

CPU 

Model Intel Xeon E5-2683 v4 

# Core 16 

Base Frequency 2.1 GHz 

Turbo Frequency 3 GHz 

L3 Cache 40 MB 

Memory Type 

Support 

DDR4 

1866/2133/2400 

Maximum Memory 

Bandwidth 
76.8 GB/S 

Max Memory 

Channels 

supported 

4 

Disk 

(HDD) 

Model Seagate 

Capacity 500 GB 

Speed 7200 RPM 

Table 3: Resource Utilization of Virtex-7 

Resource 

Type 
Components Available Used (%) 

Logic 
resources 

Slices 75,900 52370 68% 

Logic cells 485,760 393466 81% 

CLB Flip-Flops 607,200 321817 53% 

Memory 
resources 

Distributed RAM 

(kb) 
8,175 6050 74% 

FIFO (36 kb each) 1,030 124 12% 

Block RAM (kb) 37,080 32629 87% 

Integrated IP 

resources 
DSP Slices 2,800 1736 62% 
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active state residency does not change, the workload is CPU 

bound. 

Before addressing the I/O bottleneck, using high-end 

memory does not bring noticeable performance for data 

intensive applications. In the next stage, our results disclose 

that high bandwidth memory improves the performance only 

if there is high pressure on DRAM.  

B. Stage B 

In the second stage, we compress all the images with 

different compression ratios in order to determine the optimal 

compression rate that delivers both the quality and speedup. 

Figure 7 shows the time of file transfer for different input file 

sizes. Based on the experimental results, the vector size of 

image file must be less than 600000 × 1 Byte to be able lift 

the bottleneck from storage. Therefore, based on the trade-off 

between compression ratio and quality of image, we decided 

to compress all images into a vector with the size of 589824 

× 1 (~600KB) where the PSNR of reconstructed image by CS 

is greater than 32 dB. Figure 7 also shows the average PSNR 

for different compressed file size. To show that how 

compress sensing works well, we compare it with JPEG 

(another well-known lossy image compression). The results 

show that CS compresses a file 2.16x (on average) more than 

JPEG while having the same quality (Peak signal-to-noise 

ratio or PSNR = 32 dB). However, this high compression 

ratio (which is necessary to lift the bottleneck from storage) 

comes with the cost of reconstruction overhead.  

 After transferring the vector file into the memory, the 

processor starts to decompress the file and converts it to the 

original image. Then the workload uses that image to 

continue processing. Table 4 shows the execution time of 

workloads without utilizing any accelerator for 

decompression. The results show that using of CS increases 

the whole execution time while the I/O time reduces. The 

average time overhead of CS is 5.03%. The results also reveal 

that decompression puts 1.4x more processing load on the 

memory subsystem, on average. Figure 8 shows the impact 

of changing memory parameters on the average performance 

of studied applications before and after addressing the storage 

access problem.   

As the CS is a lossy compression, it may result in some 

error on the applications outcome. Therefore, we evaluate the 

impact of missing data on each application and the accuracy 

of the results. For all three applications, we compare the 

output of applications with the reconstructed image and the 

original one. Based on our results, the average Structural 

Similarity (SSIM) of Image Segmentation outputs for 

reconstructed image and the original one is 0.936. Moreover, 

the average number of detected keypoints by SIFT 

application in a reconstructed image is 94.27% of total 

keypoints detected in an original image. Also, the accuracy 

of Face Detection application with CS is more than 98.01% 

(3907 faces was detected among total 3986 faces in the 

dataset) while it is 99.3% without CS. The results show that 

the accuracy of studied data-intensive multimedia 

applications has been only dropped 4.6% on average by CS. 

Figure 9 shows examples of Image segmentation and SIFT.    

C. Stage C 

 We repeat the experiment with different memory 

configurations to present the effect of high-end memory 

(highest frequency and number of channels which provides 
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Fig. 6. Execution time & C0 residency VS core frequency      
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Fig. 7. Average transfer time and the quality of a compressed file    
 

 

 

Table 4. Execution time and DRAM BW usage (without accelerator) 

 Execution time (S) BW usage (MBpS) 

Before CS After CS Before CS After CS 

SIFT 1888 1942 1805 2752 

Im. Seg. 1293 1347 6587 8395 

Face Det. 659 713 3846 5556 
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76.8 GBpS memory bandwidth) on the performance. We 

present time distribution of transferring, decompression, and 

processing data in the following tables. Table 5 presents the 

time overhead of input transferring from storage to server 

before and after compressive sensing. Table 6 shows only the 

time of decompression. It shows that increasing the number 

of memory channels and memory frequency decreases the 

decompression time and consequently reduces execution 

time. Based on the results, using high bandwidth memory is 

beneficial on the speedup gain of the whole application when 

compressive sensing is exploited. In fact, compressive 

sensing increases the memory bandwidth utilization of high-

end memory, a problem which was highlighted in recent 

work [4]. Table 7 presents the processing time of each 

workload without considering the file transferring and 

decompression time after compressive sensing.   

D. Discussion  

 We observed that the decompression time will be higher 

than the transferring of an original file when the system does 

not use an accelerator. Deploying hardware or software 

accelerator takes advantage of the slack time provided by 

transferring a compressed file from storage to the memory. In 

this work, the application by itself has not been accelerated 

and only the decompression phase has been accelerated. The 

results show that using accelerator improves the performance 

for all studied workloads. On average, FPGA implementation 

has the best speed up gain in an end-to-end execution (29%, 

46%, and 16% for Face Detection, SIFT, and Image 

Segmentation respectively presented in Table 8).    

Further, to evaluate the energy efficiency, we use Energy 

Delay Product (EDP) metric. Our obtained results presented 

in Figure 10 indicate that the FPGA accelerator is the most 

energy-efficient approach to alleviate storage access. As the 

power consumption is of importance in data centers, we 

present the breakdown of power as well in Figure 11. Finally, 

Figure 12 shows that C0 residency of the processor after 

hardware acceleration. 19.2% improvement in C0 state 

residency indicates that the bottleneck has been lifted from 

the I/O. Therefore, compressive sensing as a lossy data 

Table 5. Overhead of transferring input file  

Before CS 194.7 (s) 

After CS 23.6 (s) 

Table 6. Decompression time with acceleration 

Platform Decompression time (s) Speed up 

Bare CPU 225.3 Base 

CPU + High-End Mem 181.0 1.24x 

Virtex-7 0.2 1126.5x 

GPU - Tesla 104.8 2.1x 

GPU - GeForce 30.1 7.4x 

Table 7. Processing time of different workloads  

Image Segmentation 1060.2 (s) 

SIFT 1000.6 (s) 

Face Detection 448.1 (s) 

 

(a) 832 keypoints on an original image (b) 729 keypoints on the reconstructed image

(c) Image segmentation on an original image (d) Image segmentation on the reconstructed image  
Fig. 9. Example of SIFT and image segmentation  
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compression technique can be used in data-intensive 

multimedia applications if a suitable platform, which 

supports the acceleration of decompression, is exploited.   

V. CONCLUSION 

Despite many efforts in designing improved memory 

subsystems and high-speed storage, the I/O still remains a 

bottleneck, in particular for data intensive applications.  In 

this work we show that using a high-end memory is not an 

effective solution for I/O intensive applications unless the 

bottleneck shifts from storage to memory. We propose data 

transmission with compressed sensing to reduce I/O access 

time. To mitigate the large processing times of 

decompression involved in CS, software and hardware 

accelerators of OMP reconstruction are implemented and 

deployed in this work. Compared to a system without 

compressive sensing, the C0 state of the CPU is increased by 

19% on average, an indication of lifting bottleneck from the 

storage I/O. Our result shows that compressive sensing of 

storage in conjunction with OMP hardware (FPGA), and 

software (GPU) accelerated reconstruction achieves up to 

46% and 11% performance gain respectively with only 4.6% 

accuracy degradation. Moreover, FPGA accelerator is the 

most energy efficient solution for CS reconstruction.   
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