
Compressive Sensing on Storage Data: An Effective

Solution to Alleviate I/O Bottleneck in Data-Intensive

Workloads

Abstract- The gap between computation speed and I/O

access on modern computing systems imposes processing

limitations in data-intensive applications. Employing

high-end memory has proven not to enhance the

performance for I/O bound applications, given the low

utilization of memory bandwidth in such applications, as

highlighted in recent studies. Despite several solutions to

improve the performance of storage, none of them is able

to shift the bottleneck from the I/O access to the memory

subsystem for I/O bound applications. In this paper, we

show that in the case of data-intensive multimedia

applications, by using Compressive Sensing (CS), a lossy

data compression method, the bottleneck is lifted from

the storage, increasing the bandwidth utilization of the

memory to gain further performance improvement from

a high-end memory. The reconstruction of compressed

data is however time and memory consuming. To address

this challenge, we employ and compare the hardware and

software acceleration of Orthogonal Matching Pursuit

(OMP), a greedy algorithm, which solves the problem by

choosing the most significant variable to reduce the least

square error. Our implementation results show that CS

increases memory bandwidth utilization by 1.4x and

using high bandwidth memory results in 24%

performance improvement. Overall, the proposed

solution of CS of storage data with FPGA accelerator

achieves up to 45% speedup in an end-to-end

implementation by only 4.6% accuracy degradation.

Keywords— compressive sensing; hardware accelerator;

memory; I/O access;

I. INTRODUCTION

Memory wall is one of the key challenges faced by the

designers in devising high-performance big-data analysis

platforms. Hybrid Memory Cube (HMC), High Bandwidth

Memory (HBM), and Dual Data Rate (DDRx) memory

technologies have been developed to cope with the memory

bandwidth bottleneck [1, 26, 27]. In the era of Big-Data,

machine learning [34], and Internet-of-Things (IoT), real-

time decision making is becoming non-trivial for the

envisaged autonomous systems along with processing large

amounts of garnered data (social networks, e-commerce, and

video streaming being the primary contributors in the

expansion of the data volume). As such, this introduces new

challenges to efficiently process data-intensive workloads on

high-performance computing (HPC) machines. Furthermore,

frequent storage access in I/O intensive applications and the

gap between computational power and I/O performance

exacerbates the problem [2, 28]. This leads to undesirable

situations, where I/O bottleneck devastates the efficiency and

scaling of big-data applications.

Moreover, a substantial amount of processing time is

spent in writing/reading data to/from the storage [3] in data-

intensive applications. This I/O latency prevents CPU to

efficiently utilize the memory subsystem [29]. Hence, using

high-end memory does not bring noticeable performance

benefits for I/O intensive applications, as highlighted in

recent studies [4, 30].

To improve the I/O performance, in-situ [5] and in-

memory data [6] processing have emerged as an effective

way to substitute the traditional data analytics and overcome

the increasingly severe I/O bottleneck for scientific and big-

data applications running at the petascale and beyond.

However, these approaches could not shift the bottleneck

from the storage to memory, as the access to data in the

storage is inevitable.

Data compression has been recently proposed to

minimize the storage utilization and decrease I/O time [7, 8].

While latest efforts have mainly focused on lossless data

compression methods, their effectiveness is limited by the

small achievable compression ratio, and high compression

effort [7, 8]. To address these challenges and provide a higher

degree of compression ratio, in this work we propose using

Compressive Sensing (CS) [10], a lossy data compression

method that enables the acquisition of a signal with fewer

samples than the Nyquist rate, and offer significantly higher

compression rate. As we focus on the data-intensive

multimedia workloads, a certain degree of data loss is

tolerable. This lossy method however, does not comes for

Hosein Mohammadi Makrani, Hossein Sayadi, Sai Manoj PD, Setareh Raftirad, and Houman Homayoun

Electrical and Computer Engineering Department

George Mason University

Fairfax, USA

{hmohamm8, hsayadi, spudukot, srafatir, and hhmoayou}@gmu.edu

978-1-5386-7479-6/18/$31.00 ©2018 IEEE

free, as it requires reconstruction of data using

computationally expensive methods such as Orthogonal

Matching Pursuit (OMP) algorithm. Recent development in

the hardware accelerators and the feasibility of utilizing them

in conjunction with processors such as Microsoft Catapult

project [9] motivates this study to use accelerators for

expediting the decompression time in order to employ

compressive sensing and alleviate I/O access.

CS incurs computational complexity for processing

including delay and power overhead. It also incurs

inaccuracy. The contribution of this work is to understand

this trade-off and find out whether compressive sensing is

effective in addressing the main challenge with storage

subsystem to process data intensive applications. We find that

CS, by identifying a right trade-off that realized by deploying

off-the-shelf accelerator solutions can shift the bottleneck

from the I/O access to the memory subsystem for I/O bound

data intensive multimedia applications.

The remainder of this paper is organized as follows:

Section II describes the background. Section III presents the

experimental setup and implementation of accelerator on

FPGA. Results are presented in Section IV. Section V

concludes the paper.

II. BACKGROUND

In this section, we briefly introduce data compression

methods, and the reconstruction of CS.

A. Data Compression

The rationale to use compression is that the compressed

data could be transmitted faster, thereby improving the

performance of I/O intensive workloads, such as multimedia

applications. However, decompression is a compute-

intensive operation that imposes an extra processing cost and

resource contention on compute node [11, 12]. Therefore, the

design and choice of data compression algorithms involve

trade-offs among various factors, including the degree of

compression, the amount of introduced distortion (using

lossy data compression), and the utilized computational

resources for decompression [13].

Lossless data compression algorithms usually exploit the

statistical redundancy to represent data more concisely

without losing information, and can precisely reconstruct the

original data from the compressed data [14]. Lossy data

compression is contrasted with lossless compression and can

reconstruct an approximation of the original data. In these

algorithms, some loss of information is acceptable [15]. The

data compression can be evaluated by compression ratio and

decompression speed. The results in [8] show that a lossy

method can achieve 2.27x and 5.36x more compression and

decompression throughput, respectively, compared to two

best known lossless methods at the same compression ratio.

Compression accuracy is a new metric involved in lossy

compression. Compression accuracy is a metric used to judge

the difference between original data and decompressed data.

The inherited deficiency of information loss limits the

application area of lossy compression on the lossless

requirement. Here, as we focus on the multimedia big data

applications, a certain degree of data loss is tolerable.

Compressive sensing (CS) is a lossy compression

technique that enables the acquisition of a signal with fewer

samples than the Nyquist rate. Hence, it has a high

compression ratio. While CS reduces the hardware

requirements of signal acquisition [16], digital signal

processing necessary to recover the original signal becomes

much more involved. Though CS has several advantages,

reconstruction of CS is complex and computationally

intensive [17]. Recently, several proposed reconstruction

algorithms show the trade-off between complexity and

accuracy. The most popular reconstruction algorithm for

compressive sensing is Orthogonal Matching Pursuit (OMP)

[18].

It is important to note that the traditional image/video

codec techniques while are effective in reducing the data size,

they are limited in terms of their applicability and the

functionality i.e., objective-specific. For example, the video

codec is developed to keep the quality at the particular level

or to reduce the decompression processing time. However,

CS is a general technique that enables us to have an arbitrary

compression ratio and also to have an arbitrary

decompression quality [22]. It also can be used on any form

of data (text, objects, images, and videos) [24].

B. Reconstruction

OMP is a greedy algorithm of less complexity that

searches for closely correlated values in each iteration, shown

in Figure 1 [19]. The complexity of the design increases with

data length and sparsity number. OMP has two inputs: the

measured signal (y) and the measurement matrix (𝜙). At each

iteration (t), a column of 𝜙 which has strong correlation with

Table 1: Variables’ definition

Variable Definition Example

N × N Images Size 128 * 128

M Measurements 42…252

k Sparsity 32

R Residual Matrix M * 1

𝜙 Measurement Matrix M * N

𝜆 Maximum Index after Dot Product 180

t No. of iterations k

OMP Reconstruction Algorithm

1: Initialize R0 = y, 𝜙0 = 0/ , Λ0 = 0/ , ф0 = 0/ and t= 0
2: Find Index λt = maxj=1…n subject to | < 𝜙j Rt-1 >|
3: Update Λt = Λt-1 U λt

4: Update фt = [фt-1 Λt]
5: Solve the Least Squares Problem
Xt = minx ||y - фy x||2

6: Calculate new approximation: αt = фt xt
7: Calculate new residual: Rt = y – αt
8: Increment t, and repeat from step 2 if t<k
After all the iterations, we can find correct sparse vector

Fig. 1. OMP Algorithm

y is chosen. Least squares algorithm is used to obtain a new

signal estimate. In the next step, the amount of contribution

that column y provides is subtracted to obtain a residue which

is used for the next iteration. Finally, after k iterations, correct

set of columns are determined. The variables used in the

algorithm are defined in Table 1.

The reconstruction of images through OMP is time and

memory consuming. If the reconstruction issue is

unanswered, the achievable performance benefits with the

reduction of I/O access time are very minimal or none.

Hence, software and hardware based accelerator are

employed to reduce the reconstruction time. This solution

also addresses the high-end memory underutilization

problem highlighted in recent work for big-data applications

in high-end servers [31]. In this paper, we will show that a

compression technique with a high compression ratio such as

compressive sensing in conjunction with FPGA [32, 33] or

GPU [25] accelerator can be used to reduce the I/O access

time and lift the bottleneck from the storage.

III. IMPLEMENTATION

In this section, we present a full end-to-end reconstruction

of compressive sensing, a lossy data compression solution, to

reduce data communication costs along the I/O path in order

to shift the bottleneck of data intensive workloads from

storage to memory for taking advantage of high-end memory.

As the data decompression incurs computational resource

contention with other analytics and given the rise of

accelerators in data centers, the data decompression is

offloaded to an accelerator. A detailed implementation and

assessment of the accelerators in software (GPU) and

hardware (FPGA) is presented here.

A. Experimental setup

To perform a comprehensive experiment and study the

effect of memory subsystem on the performance of

reconstruction, we use different SDRAM memory modules.

Our experimental methodology is focused on the objective of

understanding how memory affects the performance. For this

goal, we used Intel Performance Counter Monitoring tool

(PCM) [20] to understand memory as well as processor

behavior. In our experiments, we collect OS-level

performance information with DSTAT tool. We swept the

processors’ parameters when using memories with three

different frequency setting of 1866 MHz, 2133 MHz, and

2400 MHz. We repeat each experiment for a different number

of memory channels (1CH, 2CH, and 4CH).

For software accelerator implementation, we use two

different GPU families (Tesla M2070 with 448 CUDA cores

and 225W power draw, and GeForce 950 with 768 CUDA

cores and 90Watt TDP) and CPU platforms. We employ

CUDA 6.0 for our experiments. Moreover, cuBLAS library

API is used for sorting and matrix operations. The

reconstruction algorithm is also implemented in parallel on

the Intel Xeon E5-2683 V4 using OpenMP. Table 2 shows

our server configuration.

We used BigDataBench [21] for the choice of multimedia

big-data applications. We emphasize that our proposed

solution is effectively applicable to big-data domain

applications where a certain level of loss in the data is

tolerable. We therefore selected Image Segmentation

(Partitioning an image into multiple segments), SIFT (Detect

and describe local features in input images), and Face

Detection (Detecting face in an image) workloads. We used

15000 images as a dataset for input of workloads. This data

set is unstructured, organized according to the WordNet

hierarchy, with 23 non-empty synsets, including categories of

the plant, formation, natural object, sport, artifact, fun, guns,

person, animal, and Misc. All images converted to grayscale

of size 3072*2048 pixels. The average size of each image is

~5-6 MB.

B. Hardware accelerator

Based on the algorithm description, OMP is partitioned

into three main kernels: dot product, sort and least square

(which involves matrix inversion). These blocks are shown

in Figure 2. Parallelization techniques proposed in [18, 19]

are used for implementing these three kernels of OMP

algorithm. The proposed accelerator can take different image

sizes with sparsity up to 32.

For the implementation of hardware accelerator, Xilinx

XC7VX485T Virtex-7 connected to the host processor

through PCIe was used. The sparsity of k = 32 for different

size of images is chosen. The high-end FPGA was chosen

such that it can accommodate the design. For a sparsity of k

= 32, OMP takes 6208 cycles to reconstruct each column and

hence 10.12 µs for a 512 * 512 image size. Our FPGA

accelerator is designed to process a vector with the size of

768 * 768 (this is the exact size of our compressed input

vector file), the sparsity of 32. Table 3 shows resource

utilization of Virtex-7. The following paragraphs present the

architectural design information of OMP kernels:

1) Implementation of dot product kernel: OMP computes

the dot product of 𝜙𝑇 (a N × M matrix) at each iteration, with

a residual matrix R (a M×1 matrix) and has computational

complexity of O(M×N). To leverage the parallel and pipeline

architecture, a Tree multiplier is implemented, as shown in

Figure 3. It is implemented for each 256 × 1 size array. Based

on the matrix size, N multipliers and N - 1 adders are required

Fig. 2. Kernels of OMP

Qt × R
Sort < Qt × R >

and Form Q
(Qt × Q)-1 ×

Q’T × y

Least Square

R = y – Q × (Qt × Q)-1 × Q’T × y

Y

ф

for Tree multiplier. Therefore, the total number of operations

are 2N - 1. Hence, dot product of 256 × 1 and 1 × 256 is

available at every cycle. For the image size of 768 × 768,

column size of 𝜙𝑇 is 256. Therefore, the dot product of 768

× 256 and 256 × 1 is computed in 768 clock cycles.

2) Implementation of sort kernel: To locate the maximum

of | <𝜙R> | (N×1 vector), we use the sort kernel, of

computational complexity O(N). We implemented Sort

algorithm by using binary tree structure [23]. If we consider

S as a variable and dependent on the size of input file (image),

N/2S trees are implemented in our design. In order to

efficiently use parallelism, we applied concurrent sorting to

N/2S as shown in Figure 4. Since our architecture needs only

the highest number, we reduced the memory by cutting the

left sub-tree. Each concurrent binary tree gives highest

number, thereby generating N/2S highest numbers which are

fed to another binary tree. Our architecture is two staged,

hence 384 elements are obtained for every two cycles.

3) Implementation of the least square kernel: Least square

is the most important kernel of OMP algorithm as (𝜙T 𝜙)-1

has the highest hardware implementation complexity. Since

𝜙 has t columns of size M at each iteration t, the new matrix

(𝜙) is of size t × M. The result of (𝜙T 𝜙) computation is a t ×

t matrix. Three sub-blocks of least squares (x = (𝜙T 𝜙)-1 𝜙T

y) are matrix transpose, matrix multiplication, and matrix

inversion. To reduce the hardware complexity and utilize

minimal resources, we call matrix index in transpose order to

achieve matrix transpose. For matrix multiplication, we used

tree architecture discussed previously. Matrix inversion is

obtained by LU decomposition leveraging the symmetric

matrix. As shown in Figure 5, blocked algorithm for LU

decomposition is used for efficient parallel implementation.

IV. RESULTS

 In this work, we assume that the input data is already

compressed and therefore we focus on transferring

compressed data from storage to memory, decompression of

data, and the processing of data. In order to elucidate how

high-end memory with a decompression hardware

accelerator can reduce I/O bottleneck and improve

performance, we present our results in three stages: stage A

(without compressed data), stage B (with compressed data

but without decompression accelerator), and stage C (with

FPGA and GPU accelerator).

A. Stage A

To demonstrate how I/O limits the performance gain by

high-end memory, we evaluate the effect of CPU frequency

on the performance of studied workloads. The expectation is

that increasing the core frequency will put pressure on the

memory subsystem and eventually leads to gain performance

from high bandwidth memory. However, our results show it

has a reverse effect on data intensive application. Because

increasing the core frequency exacerbate disk access and

therefore prevents to gain performance. Figure 6 shows that

the execution time of studied applications does not drop

linearly by increasing the CPU frequency, particularly when

changing frequency from 1.9 GHz to 2.6 GHz. This trend

indicates that some parts of workloads are I/O bound. This

conclusion can further be advocated by the active state

residency (C0) of processor. This can be explained as

follows: If increasing the frequency of processor reduces C0,

the application is I/O bound, as when a core is waiting for

I/O, the core changes its state to save power. Similarly, if the

Table 2: Specification of server

Hardware Type Parameter Value

CPU

Model Intel Xeon E5-2683 v4

Core 16

Base Frequency 2.1 GHz

Turbo Frequency 3 GHz

L3 Cache 40 MB

Memory Type

Support

DDR4

1866/2133/2400

Maximum Memory

Bandwidth
76.8 GB/S

Max Memory

Channels

supported

4

Disk

(HDD)

Model Seagate

Capacity 500 GB

Speed 7200 RPM

Table 3: Resource Utilization of Virtex-7

Resource

Type
Components Available Used (%)

Logic
resources

Slices 75,900 52370 68%

Logic cells 485,760 393466 81%

CLB Flip-Flops 607,200 321817 53%

Memory
resources

Distributed RAM

(kb)
8,175 6050 74%

FIFO (36 kb each) 1,030 124 12%

Block RAM (kb) 37,080 32629 87%

Integrated IP

resources
DSP Slices 2,800 1736 62%

Control Logic

Tree
Multiplier

Store
and

Adder

R
egisters

Multiple
of “m”

N

M Columns Dot
ProductM

u
lt

ip
le

xe
r

D
e

m
u

lt
ip

le
xe

r

Binary Tree Manager

Controller Controller Controller

67

12 74

78

73

12

85

8982

36

58

72

21

U11

L11
U12

L21
U22

L22

b

b

Fig. 3. Block diagram of dot product Fig. 4. Example of parallel implementation of binary tree Fig. 5. Blocked LU for matrix

 inversion

active state residency does not change, the workload is CPU

bound.

Before addressing the I/O bottleneck, using high-end

memory does not bring noticeable performance for data

intensive applications. In the next stage, our results disclose

that high bandwidth memory improves the performance only

if there is high pressure on DRAM.

B. Stage B

In the second stage, we compress all the images with

different compression ratios in order to determine the optimal

compression rate that delivers both the quality and speedup.

Figure 7 shows the time of file transfer for different input file

sizes. Based on the experimental results, the vector size of

image file must be less than 600000 × 1 Byte to be able lift

the bottleneck from storage. Therefore, based on the trade-off

between compression ratio and quality of image, we decided

to compress all images into a vector with the size of 589824

× 1 (~600KB) where the PSNR of reconstructed image by CS

is greater than 32 dB. Figure 7 also shows the average PSNR

for different compressed file size. To show that how

compress sensing works well, we compare it with JPEG

(another well-known lossy image compression). The results

show that CS compresses a file 2.16x (on average) more than

JPEG while having the same quality (Peak signal-to-noise

ratio or PSNR = 32 dB). However, this high compression

ratio (which is necessary to lift the bottleneck from storage)

comes with the cost of reconstruction overhead.

 After transferring the vector file into the memory, the

processor starts to decompress the file and converts it to the

original image. Then the workload uses that image to

continue processing. Table 4 shows the execution time of

workloads without utilizing any accelerator for

decompression. The results show that using of CS increases

the whole execution time while the I/O time reduces. The

average time overhead of CS is 5.03%. The results also reveal

that decompression puts 1.4x more processing load on the

memory subsystem, on average. Figure 8 shows the impact

of changing memory parameters on the average performance

of studied applications before and after addressing the storage

access problem.

As the CS is a lossy compression, it may result in some

error on the applications outcome. Therefore, we evaluate the

impact of missing data on each application and the accuracy

of the results. For all three applications, we compare the

output of applications with the reconstructed image and the

original one. Based on our results, the average Structural

Similarity (SSIM) of Image Segmentation outputs for

reconstructed image and the original one is 0.936. Moreover,

the average number of detected keypoints by SIFT

application in a reconstructed image is 94.27% of total

keypoints detected in an original image. Also, the accuracy

of Face Detection application with CS is more than 98.01%

(3907 faces was detected among total 3986 faces in the

dataset) while it is 99.3% without CS. The results show that

the accuracy of studied data-intensive multimedia

applications has been only dropped 4.6% on average by CS.

Figure 9 shows examples of Image segmentation and SIFT.

C. Stage C

 We repeat the experiment with different memory

configurations to present the effect of high-end memory

(highest frequency and number of channels which provides

0

20

40

60

80

100

0

500

1000

1500

2000

2500

3000

3500

1.2G 1.9G 2.6G 1.2G 1.9G 2.6G 1.2G 1.9G 2.6G

Face Detection SIFT Image
Segmentation

S
ec

o
nd

Execution time (S) C0 residency (%)

P
erce

n
ta

g
e(%

)

Fig. 6. Execution time & C0 residency VS core frequency

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10

15

20

25

30

35

40

45

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

P
S

N
R

 (
d

B
)

Compressed file size (KB)

CS (dB) JPEG (dB) transfer time (S)

S
eco

n
d
 (S

)

2.16X

Fig. 7. Average transfer time and the quality of a compressed file

Table 4. Execution time and DRAM BW usage (without accelerator)

 Execution time (S) BW usage (MBpS)

Before CS After CS Before CS After CS

SIFT 1888 1942 1805 2752

Im. Seg. 1293 1347 6587 8395

Face Det. 659 713 3846 5556

0.9

1

1.1

1.2

1.3

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1 CH 2CH 4CH

S
p
ee

d
 U

p

After CS Before CS

Fig. 8. Average speed up by memory parameters

76.8 GBpS memory bandwidth) on the performance. We

present time distribution of transferring, decompression, and

processing data in the following tables. Table 5 presents the

time overhead of input transferring from storage to server

before and after compressive sensing. Table 6 shows only the

time of decompression. It shows that increasing the number

of memory channels and memory frequency decreases the

decompression time and consequently reduces execution

time. Based on the results, using high bandwidth memory is

beneficial on the speedup gain of the whole application when

compressive sensing is exploited. In fact, compressive

sensing increases the memory bandwidth utilization of high-

end memory, a problem which was highlighted in recent

work [4]. Table 7 presents the processing time of each

workload without considering the file transferring and

decompression time after compressive sensing.

D. Discussion

 We observed that the decompression time will be higher

than the transferring of an original file when the system does

not use an accelerator. Deploying hardware or software

accelerator takes advantage of the slack time provided by

transferring a compressed file from storage to the memory. In

this work, the application by itself has not been accelerated

and only the decompression phase has been accelerated. The

results show that using accelerator improves the performance

for all studied workloads. On average, FPGA implementation

has the best speed up gain in an end-to-end execution (29%,

46%, and 16% for Face Detection, SIFT, and Image

Segmentation respectively presented in Table 8).

Further, to evaluate the energy efficiency, we use Energy

Delay Product (EDP) metric. Our obtained results presented

in Figure 10 indicate that the FPGA accelerator is the most

energy-efficient approach to alleviate storage access. As the

power consumption is of importance in data centers, we

present the breakdown of power as well in Figure 11. Finally,

Figure 12 shows that C0 residency of the processor after

hardware acceleration. 19.2% improvement in C0 state

residency indicates that the bottleneck has been lifted from

the I/O. Therefore, compressive sensing as a lossy data

Table 5. Overhead of transferring input file

Before CS 194.7 (s)

After CS 23.6 (s)

Table 6. Decompression time with acceleration

Platform Decompression time (s) Speed up

Bare CPU 225.3 Base

CPU + High-End Mem 181.0 1.24x

Virtex-7 0.2 1126.5x

GPU - Tesla 104.8 2.1x

GPU - GeForce 30.1 7.4x

Table 7. Processing time of different workloads

Image Segmentation 1060.2 (s)

SIFT 1000.6 (s)

Face Detection 448.1 (s)

(a) 832 keypoints on an original image (b) 729 keypoints on the reconstructed image

(c) Image segmentation on an original image (d) Image segmentation on the reconstructed image
Fig. 9. Example of SIFT and image segmentation

Fig. 10. EDP of applications on different platforms

0

50

100

150

200

250

CPU Tesla GeForce Virtex Memory

W
a
tt

Face Det. SIFT Im. Seg.

Fig. 11. Power breakdown

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Face Det. SIFT Im. Seg. Average

E
D

P
 (

M
 j

S
)

Bare CPU GPU-Tesla GPU-Geforce
High-End Mem. Virtex 7

Table 8. End-to-end execution time and speed up using FPGA

accelerator

Application Before CS After CS + Accl Speed up

Image

Segmentation
1293 1083 16.2 %

SIFT

1888 1024 45.7 %

Face

Detection
659 471 28.5 %

compression technique can be used in data-intensive

multimedia applications if a suitable platform, which

supports the acceleration of decompression, is exploited.

V. CONCLUSION

Despite many efforts in designing improved memory

subsystems and high-speed storage, the I/O still remains a

bottleneck, in particular for data intensive applications. In

this work we show that using a high-end memory is not an

effective solution for I/O intensive applications unless the

bottleneck shifts from storage to memory. We propose data

transmission with compressed sensing to reduce I/O access

time. To mitigate the large processing times of

decompression involved in CS, software and hardware

accelerators of OMP reconstruction are implemented and

deployed in this work. Compared to a system without

compressive sensing, the C0 state of the CPU is increased by

19% on average, an indication of lifting bottleneck from the

storage I/O. Our result shows that compressive sensing of

storage in conjunction with OMP hardware (FPGA), and

software (GPU) accelerated reconstruction achieves up to

46% and 11% performance gain respectively with only 4.6%

accuracy degradation. Moreover, FPGA accelerator is the

most energy efficient solution for CS reconstruction.

REFERENCES

[1] Lee, Dong Uk, et al. "25.2 A 1.2 V 8Gb 8-channel 128GB/s
high-bandwidth memory (HBM) stacked DRAM with
effective microbump I/O test methods using 29nm process and
TSV." Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2014 IEEE International. IEEE, 2014.

[2] Singh, Dilpreet, and Chandan K. Reddy. "A survey on
platforms for big data analytics." Journal of Big Data 2.1
(2015): 8.

[3] Chen, CL Philip, and Chun-Yang Zhang. "Data-intensive
applications, challenges, techniques and technologies: A
survey on Big Data." Information Sciences 275 (2014): 314-
347.

[4] Awan, Ahsan Javed, et al. "Performance characterization of in-
memory data analytics on a modern cloud server." Big Data
and Cloud Computing (BDCloud), 2015 IEEE Fifth
International Conference on. IEEE, 2015.

[5] Fabian, Nathan, et al. "The paraview coprocessing library: A
scalable, general purpose in situ visualization library." Large
Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on. IEEE, 2011.

[6] Zaharia, Matei, et al. "Spark: Cluster computing with working
sets." HotCloud 10.10-10 (2010): 95.

[7] Nicolae, Bogdan. "High Throughput Data-Compression for
Cloud Storage." Globe 10 (2010): 1-12.

[8] Zou, Hongbo, et al. "Improving I/O performance with adaptive
data compression for big data applications." Parallel &
Distributed Processing Symposium Workshops (IPDPSW),
2014 IEEE International. IEEE, 2014.

[9] Caulfield, Adrian M., et al. "A cloud-scale acceleration
architecture." Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 2016.

[10] Foucart, Simon, and Holger Rauhut. A mathematical
introduction to compressive sensing. Vol. 1. No. 3. Basel:
Birkhäuser, 2013.

[11] Yang, Chi, et al. "A spatiotemporal compression based
approach for efficient big data processing on cloud." Journal of
Computer and System Sciences 80.8 (2014): 1563-1583.

[12] Jain, Deepak, Gordon McFadden, and Brian Will. "Hardware
Based Compression in Big Data." Data Compression
Conference (DCC), 2016. IEEE, 2016.

[13] Zou, Hongbo, et al. "FlexAnalytics: a flexible data analytics
framework for big data applications with I/O performance
improvement." Big Data Research 1 (2014): 4-13.

[14] Sayood, Khalid. Introduction to data compression. Newnes,
2012.

[15] Kontoyiannis, Ioannis. "Pattern matching and lossy data
compression on random fields." IEEE Transactions on
Information Theory 49.4 (2003): 1047-1051.

[16] Yuan, Xin, and Raziel Haimi-Cohen. "Image Compression
Based on Compressive Sensing: End-to-End Comparison with
JPEG." arXiv preprint arXiv:1706.01000 (2017).

[17] Bai, Lin, et al. "High-speed compressed sensing reconstruction
on FPGA using OMP and AMP." Electronics, Circuits and
Systems (ICECS), 2012 19th IEEE International Conference
on. IEEE, 2012.

[18] Kulkarni, Amey M., Houman Homayoun, and Tinoosh
Mohsenin. "A parallel and reconfigurable architecture for
efficient OMP compressive sensing reconstruction."
Proceedings of the 24th edition of the great lakes symposium
on VLSI. ACM, 2014.

[19] Kulkarni, Amey, and Tinoosh Mohsenin. "Accelerating
compressive sensing reconstruction OMP algorithm with CPU,
GPU, FPGA and domain specific many-core." Circuits and
Systems (ISCAS), 2015.

[20] Available at: https://software.intel.com/en-us/articles/intel-
performance-counter-monitor

[21] Lei et al. “Bigdatabench: A big data benchmark suite from
internet services,” in IEEE 20th HPCA, pp. 488-499, 2014.

[22] Xiang, Siyuan, and Lin Cai. "Scalable video coding with
compressive sensing for wireless videocast." Communications
(ICC), 2011 IEEE International Conference on. IEEE, 2011.

[23] Mihhailov, Dmitri, et al. "Parallel FPGA-based
implementation of recursive sorting algorithms."
Reconfigurable Computing and FPGAs (ReConFig), 2010
International Conference on. IEEE, 2010.

[24] Zhang, Jiaxing, et al. "Impression Store: Compressive Sensing-
based Storage for Big Data Analytics." HotCloud. 2014.

[25] Rozenberg, Eyal, and Peter Boncz. "Faster across the PCIe bus:
a GPU library for lightweight decompression: including
support for patched compression schemes." Proceedings of the
13th International Workshop on Data Management on New
Hardware. ACM, 2017.

[26] Makrani, Hosein Mohammadi, and Houman Homayoun.
"MeNa: A Memory Navigator for Modern Hardware in a
Scale-out Environment." In 2017 IEEE International

85

90

95

100

1.2G 1.9G 2.6G 1.2G 1.9G 2.6G 1.2G 1.9G 2.6G

Face Detection SIFT Image

Segmentation

C0 residency after CS (percentage)

Fig. 12. CPU frequency VS C0 when using FPGA Accelerator

Symposium on Workload Characterization (IISWC), pp. 2-11.
IEEE, 2017.

[27] Makrani, Hosein Mohammadi, and Houman Homayoun.
"Memory requirements of hadoop, spark, and MPI based big
data applications on commodity server class architectures." In
Workload Characterization (IISWC), 2017 IEEE International
Symposium on, pp. 112-113. IEEE, 2017.

[28] Makrani, Hosein Mohammadi, et al. “Main-Memory
Requirements of Big Data Applications on Commodity Server
Platform.” IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing (CCGRID), 2018.

[29] Makrani, Hosein Mohammadi, et al. “A comprehensive
Memory Analysis of Data Intensive Workloads on Server Class
Architecture.” ACM International Symposium on Memory
Systems (MEMSYS), 2018.

[30] Makrani, Hosein Mohammadi, et al. “Understanding the role
of memory subsystem on performance and energy-efficiency
of Hadoop applications.” Eight International Green and
Sustainable Computing Conference (IGSC), pp. 1-6, 2018.

[31] Makrani, Hosein Mohammadi, “Storage and Memory
Characterization of Data Intensive Workloads for Bare Metal
Cloud.” arXiv preprint arXiv:1805.08332, 2018.

[32] Neshatpour, Katayoun, et al. “Architectural considerations for
FPGA acceleration of Machine Learning Applications in
MapReduce.” International Conference on Embedded
Computer Systems: Architectures, Modeling and
Simulation(SAMOS), 2018.

[33] Neshatpour, Katayoun, et al. “Design Space Exploration for
Hardware Acceleration of Machine Learning Applications in
MapReduce.” The 26th IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM),
2018.

[34] Sayadi, Hossein, et al. “Customized Machine Learning-Based
Hardware-Assisted Malware Detection in Embedded
Devices.” IEEE TrustCom, 2018.

		2018-08-22T18:02:12-0400
	Certified PDF 2 Signature

