
Y.N. Patt et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 216–231, 2010.
© Springer-Verlag Berlin Heidelberg 2010

RELOCATE: Register File Local Access Pattern
Redistribution Mechanism for Power and Thermal
Management in Out-of-Order Embedded Processor

Houman Homayoun1, Aseem Gupta2, Alex Veidenbaum1,
Avesta Sasan (M.A. Makhzan)3, Fadi Kurdahi3, and Nikil Dutt1

1 Department of Computer Science, University of California, Irvine, CA, USA
2 Freescale Semiconductor Inc. Austin, TX 78729, USA

3 Department of Electrical Engineering and Computer Science, University of California,
Irvine, CA 92697-3435, USA

{hhomayou,aseemg,mmakhzan,alex.veidenbaum,kurdahi,dutt}@uci.edu

Abstract. In order to reduce register file's peak temperature in an embedded
processor we propose RELOCATE: an architectural solution which redistributes
the access pattern to physical registers through a novel register allocation
mechanism. RELOCATE regionalizes the register file such that even though
accesses within a region are uniformly distributed, the activity levels are spread
over the entire register file in a deterministic pattern. It partitions the register file
and uses a micro-architectural mechanism to concentrate the accesses to a single
or a subset of such partitions through a novel register allocation mechanism. The
goal is to keep some partitions unused (idle) and cooling down. The temperature
of idle partitions is further reduced by power gating them into destructive sleep
mode to reduce their leakage power. The redistribution mechanism changes the
active region periodically to modulate the activity within the register file and
prevent the active region from heating up excessively. Our approach resulted in
an average reduction of 8.3°C in the register file's peak temperature for standard
benchmarks.

Keywords: Register file, Temperature, Power, Local Activity Redistribution,
Out of Order Embedded Processor.

1 Introduction

Continued CMOS process technology scaling has led to designs of much more complex
embedded processors with significantly higher computational power. The high level of
integration in SoC designs today has, however, led to correspondingly higher power
densities (Watt per mm2) which in turn lead to higher operating temperatures. High
operating temperatures have many unfavorable consequences: (i) Increased probability
of timing violations because of higher signal propagation delay and switching time, (ii)
Reduced lifetime because of phenomena such as electromigration, (iii) Lower clock
frequencies of designs because of higher device and interconnect delays, (iv) Increased

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 217

leakage power due to super-linear relationship with temperature, (v) need for expensive
cooling mechanisms, such as fans, and (vi) Overall increase in design effort and cost.

Components within a processor operate at different temperatures as function of
their circuit design and activity levels. One of the hottest components is the integer
register file. Recent embedded processors such as MIPS-74K or IBM PowerPC
750FX, use a large register file to support out-of-order execution. The register file is
accessed every cycle, unless the processor is stalled, for both reads and writes. In
addition, multiple instruction issue further increases the number of register file
accesses per cycle. Thus in these processors the register file is one of the most active
components which also makes it the hottest unit. Numerous academic and industrial
papers have pointed out this fact [1,15,19]. For example, Koren et al. [19] show that
the register file is hotter by as much as 20°C than any other block in a processor. This
peak temperature determines the “design temperature”, i.e., the reference temperature,
which is used to characterize the performance of the design. Therefore, there is a
critical need to reduce the peak operating temperature of the register file.

One general approach to reduce temperature of a given processor unit, including
the register file, is to reduce its activity level by activity migration. This approach
requires a replicated unit to be available in the system [16]. Once the unit reaches a
critical temperature, its activity is migrated to the replicated unit and the hot unit
becomes idle, allowing it to cool down.

While activity migration is effective in reducing the temperature of the register file
it requires a replicated register file [16], which is expensive and complex (30% area
overhead [16]). It can also lead to performance degradation (3~12% [16]), because of
migration overhead. For instance, in [16] copying registers from a register file to its
replica requires the pipeline to be drained and multiple additional reads and writes to
be performed.

This paper introduces the idea of local activity migration to manage register file
temperature in embedded out-of-order processors. It proposes a REgister file LOCal
Access paTtern rEdistribution mechanism (or, in brief, RELOCATE). RELOCATE
redistributes the access to physical registers through a novel register allocation
mechanism. By “local” we mean that a replicated register file is not required; instead
the register file access activity is “migrated” or redistributed from one part of the
register file to another. This is accomplished without a noticeable impact on register
usage and has no performance degradation.

RELOCATE uses a register file partitioned into multiple regions. This partitioning
allows the RF access activity to be distributed in a non-uniform pattern over the
regions. This pattern is such that the regions accessed are spatially and temporally
apart allowing the opportunity for other regions to cool-down. The goal is to keep
some regions unused and cooling down while other regions are active. This requires a
new micro-architecture because in current micro-architectures the accesses are fairly
uniformly distributed over the RF.

RELOCATE is based on the observation that only a small subset of physical
registers is used (mapped) at any given time during the course of program execution.
Therefore there is room for the migration (redistribution) within the RF itself instead
of migrating the activity to a replicated unit. The micro-architectural solution to
redistribute the physical registers and their access pattern is based on a novel register
renaming mechanism. The new register renamer attempts to allocate new registers

218 H. Homayoun et al.

from a given RF region and thus to concentrate the accesses in this region. The
renamer partitions the free list to correspond to regions in the register file. After a
partition is used for a period of N clocks, the renamer switches to a new partition.
Choosing a large enough N (10K cycles) allows the RF regions to cool down if they
can be kept idle (not accessed).

Successful local activity migration keeps some RF regions idle and this lack of
activity is the reason why these regions can cool down. However, such idle partitions
still dissipate leakage power, slowing down their cooling. Our approach further
reduces the temperature by power-gating an idle region. This should be doable since
an idle region has no accesses.

The experimental evaluation of the proposed mechanism is performed using an
integrated architectural/temperature simulator. The results show that a 64-entry
physical register file with 4 partitions performs best and achieves an average peak
temperature reduction of 8.3°C and 6.9°C for SPEK2K and MiBench benchmarks
respectively. The temperature is reduced without any impact on performance with
minimal area and hardware overhead.

2 Background

2.1 On-Chip Thermal Behavior

Today’s chips are operating at very high temperatures due to high power densities.
Within a processor, regions operate at different temperatures due to their varying
activity levels. The temperature of a region in a VLSI chip does not depend only on its
own power dissipation. At any given time there are two phenomena, that determine the
temperature of a region: spatial and temporal. Due to thermal diffusion, the temperature
of a region also depends on the temperature of neighboring regions. This is the spatial
phenomenon. Unlike power dissipation, the temperature of a region cannot change very
quickly. It can take up to several milliseconds for a region's temperature to rise or cool
down. This temporal phenomenon is characterized by the thermal resistance and thermal
capacitance of the material. For any thermal management solution to be effective, it
must consider both the spatial and temporal phenomena.

2.2 Conventional Register File Organization

An out-of-order embedded processor uses a larger register file with logical to physical
register renaming and a dynamic physical register allocation policy. The same
approach has been used in high performance superscalar processors such as Alpha
21264 [5] and MIPS R10000 [6].

The pipeline of an out-of-order embedded processors is capable of fetching,
decoding, renaming several instructions per processor clock cycle. The processor can
also execute and later commit up to as many instructions in each cycle as the issue
width. This type of out-of-order multiple-issue processor accesses the register file
very frequently. Up to 2*N reads and N writes can be issued to the register file per
clock cycle, where N is processor issue width. Thus the register file is one of the most
active components in a processor.

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 219

Due to frequent accesses the register file is one of the hottest units in an embedded
processor. The physical register file is typically designed as a SRAM structure with as
many write and twice as many read ports as the maximum number of instructions the
processor can issue in each cycle.

The register renamer in these processors is implemented either as a CAM (IBM
POWER4 [22] and Alpha 21264[5]) or a RAM (MIPS R10K[6]). This paper
discusses issues assuming a RAM based register renaming mechanism similar to the
one used in the MIPS R10K processor [6]. However, the techniques proposed in this
work also can be applied to a CAM based renamer.

2.3 Activity Migration

One general approach to reduce the temperature of a given processor block is to
modulate (or vary) its activity level. One such method is activity migration, where the
heat is spread by moving an activity to another block with the same functionality.
This technique requires availability of redundant blocks in the system [16]. Once a
block reaches a critical temperature, its activity is migrated and it becomes idle
allowing it to cool down and reduce its temperature as shown in Figure 1(a). Notice
that both temperature increase and decrease are non-linear functions of time.

Activity migration was used in [16] for different units in a processor. It was shown
that to benefit the most from this technique the migration period should be
significantly smaller than the time constant of the equivalent thermal RC circuit
(shown in Figure 1(a)). While short migration periods can result in larger temperature
decrease, they incurred large power/performance overhead, as reported in [16].

(a) (b)

Active Period Idle Period

Cooling due to
inactivity Cooling due to

inactivity and
power gating

time

Fig. 1. Thermal benefit of (a) activity migration and (b) combination of activity migration and
power gating

2.3.1 AM and Power Gating
Once the activity is migrated completely to a redundant block the base block can be
put into a low-power mode to further reduce its temperature. The main reason for this
is the reduction in idle leakage power, as described below. The decrease in
temperature ΔT is given by:

t

C

P

CR

T
T

ththth

old Δ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
=Δ

(1)

220 H. Homayoun et al.

where Δt is the time interval, P is total power dissipation (P total = P dynamic + P leakage),
Told is the original temperature, and Rth and Cth are the thermal resistance and
capacitance, respectively. From EQ.1 the rate of cooling is faster if P total becomes
smaller. This is shown in Figure 1(b) where cooling accelerates due to base block
inactivity as well as due to turning off the unused regions. The difference between the
two curves (marked d) is the additional temperature reduction on account of leakage
power saving.

3 Analysis of Register File Operation

In this section we examine the register file access pattern and register file occupancy.
This analysis allows us to propose a solution which reduces register file temperature
without any performance degradation and at a minimal cost.

3.1 Register File Occupancy

Figure 2 shows the register file occupancy results for the MiBench and SPEC2K
integer benchmarks. We observe that for nearly 60% of the time only half of all
register file entries are occupied across the MiBench benchmarks. For SPEC2K only
half of all register file entries are occupied for about 80% of the time. For 35% of the
time only a quarter of the register file is occupied in MiBench benchmarks. This ratio
is 60% for SPEC2K benchmarks. Such low register file occupancy raises the
question: why do we need such a large register file in the first place? To answer this
question, consider Figure 3 which shows the performance degradation as a result of
using a smaller register file --with 16, 32, and 48 registers, instead of the original size
of 64. We observe significant performance degradation across most SPEC2K and
MiBench benchmarks. The performance impact is up to 36% and 19% in SPEC2K
and MiBench benchmarks respectively when a register file with half its size (32
entries) is used. An even larger performance impact is observed as we shrink the size
of the register file further.

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bas
icm

ath bc
crc

dijk
s tra

djpeg fft gs
gsm

lam
e

mad

patr
ici

a
qso

rt

se
arc

h sh
a

su
sa

n_c
orn

er
s

su
sa

n_e
dges

tiff
2b

w

av
era

ge

RF_ocuupancy < 16 16 < RF_ocuupancy < 32
32 < RF_ocuupancy < 48 48 < RF_ocuupancy < 64

(b)

0%

10%
20%

30%

40%
50%

60%

70%

80%
90%

100%

bzip
2

cra
fty eo

n

galg
el gap gcc

gzip m
cf

pars
er

per
lbmk

tw
olf

vo
rte

x vp
r

av
era

ge

RF_ocuupancy < 16 16 < RF_ocuupancy < 32
32 < RF_ocuupancy < 48 48 < RF_ocuupancy < 64

Fig. 2. Register file occupancy results for (a) MiBench and (b) SPEC2K integer benchmarks

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 221

(a)

0%

5%

10%

15%

20%

25%

30%

35%

Basic
Math bc

crc

dijk
stra

djpeg fft gs
gsm

lam
e

mad

patr
ici

a
qso

rt

se
arc

h sh
a

su
sa

n_c
orn

ers

su
sa

n_e
dges

tiff
2b

w

av
era

ge

%
 p

er
fo

rm
an

ce
 d

eg
ra

d
at

io
n

48-entry 32-entry 16-entry

(b)

0%

10%

20%

30%

40%

50%

60%

bzip
2

cra
fty eo

n

galg
el gap gcc

gzip mcf

pars
er

perl
bmk

tw
olf

vo
rte

x vp
r

av
era

ge

%
 p

er
fo

rm
an

ce
 d

eg
ra

d
at

io
n

48-entry 32-entry 16-entry

Fig. 3. Performance degradation as a result of using a smaller register file -with 16, 32, and 48
registers for (a) MiBench and (b) SPEC2K integer benchmarks

Thus in spite of low average occupancy, using a smaller register file degrades the
performance noticeably. In fact, a smaller register file fills up faster when a long
latency operation occurs. For instance, after a load instruction miss in L2 cache it stays
on top of the ROB and doesn’t allow the subsequent instructions to be committed.
Therefore the dependent instruction’s corresponding physical registers can not be
released until the cache miss is serviced. During every cycle the processor fills up the
register file with up to 2 physical registers whereas it releases registers at a slower
rate. Consequently, the register file occupancy grows until it gets filled completely.

3.2 Register File Access Pattern

In this section we study how accesses to physical registers are distributed. We used
coefficient of variation (CV) as a metric to indicate the distribution of accesses to
physical registers. The coefficient of variation of accesses to the physical registers is a
normalized measure of dispersion of registers access distribution. It is defined as the
ratio of the standard deviation (σ) to the mean (μ).

na

nana
N

CV

n

i
i

access

2

1

)(
1 −

=
∑

= (2)

where na i is the number of accesses (read or write) to the physical registers i during a
specific period (10K cycles). N is the total number of physical registers.

As shown in Figure 4, most benchmarks have a uniformly distributed access
pattern to register file. It was also observed that register file occupancy is low for a
large portion of program execution time. Put together, while only a small number of
registers are occupied at any given time, the total accesses are uniformly distributed
over the entire physical register file during the course of execution.

222 H. Homayoun et al.

(a)

0%

2%

4%

6%

8%

10%

12%

bas
icmath bc

crc

dijk
stra

djpeg fft gs
gsm

lame
mad

patr
icia

qso
rt

searc
h sha

susan_c
orn

ers

susan_e
dges

tiff
2bw

avera
ge

%
 c

o
ef

fi
ci

en
t

o
f

va
ri

at
io

n

(b)

0%

2%

4%

6%

8%

10%

12%

14%

bzip
2

cra
fty eo

n

galg
el gap gcc

gzip mcf

pars
er

perl
bmk

tw
olf

vo
rte

x vp
r

av
era

ge

%
 c

o
ef

fi
ci

en
t

o
f

va
ri

at
io

n

Fig. 4. Coefficient of variation of accesses to physical register file for (a) MiBench and (b)
SPEC2K benchmarks

4 RELOCATE: Local Activity Redistribution within a Register
File

Activity migration is effective in reducing temperature but it typically requires
replicated units. As shown above, only a small subset of physical registers is in use at
any given time during program execution. Therefore, instead of migrating the activity
of this set of active registers to a replicated register file, one can do it within a single
register file (activity redistribution). This paper proposes to partition the (single)
register file into multiple regions and to spread the register allocation and therefore
their access activity in a deterministic pattern over these regions. Activity of a region
will be migrated after a certain amount of time to limit its temperature rise as such
idle regions (or partitions) will be cooling off. To further improve the temperature
reduction benefit of the proposed activity redistribution, one can power gate the idle
regions of the register file.

Let us assume that, on average, 16 registers are being used at any given time.
Results in the previous section showed that a small subset of active registers is
distributed fairly uniformly over the entire register file during any time interval. The
logical view of the baseline register file activity shown in Figure 5(a) represents 16
active registers distributed almost uniformly during a specific timing interval (4*τc).
This makes it impossible to perform any activity redistribution.

Now let us assume a register file is partitioned into four equal sized regions
(partitions) with 16 entries each. Assuming that the 16 active registers are allocated
such that they are concentrated in one partition for a certain period (we refer to this as a
convergence period or τc as shown in Figure 5(b)), other register regions can be kept
idle and cooling off. The activity needs to be moved to another partition after τc.
There are a number of ways to modulate the activity within the register file, e.g., in a
round-robin in-order pattern (AP1—AP2 —AP3 —AP4 as shown in Figure 5(b)). The
activity is modulated to another region after every convergence period. Note that
within a convergence period the activities are uniformly distributed within the active
region, similar to the baseline register file. Once the activity is modulated to a new

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 223

τc

τc

τc

Fig. 5. Examples of register activity distribution (a) baseline, (b) in-order (c) distant patterns

region (active region) all other regions (idle regions) are cooling down. The in-order
pattern spaces accesses in time, but there is not enough spatial separation (See Section
2 on Background). An access pattern with spatial as well as temporal separation
between active regions would further reduce the temperature. The following
redistribution pattern shown in Figure 5(c) can be used to achieve this: AP2 — AP4 —
AP1 — AP3 (round-robin distant pattern). When a region becomes active and
dissipates power, other regions get an opportunity to cool down. For instance, when
AP1 is active, regions AP2 and AP4 are cooling down. AP4 is spatially distant from
AP1 while AP2 is temporally distant from AP1.

4.1 The Architectural Mechanism to Support Activity Redistribution

This section introduces an architectural mechanism that attempts to concentrate active
physical registers (live registers) in one register file region. This is accomplished
through a novel register allocation mechanism that “concentrates” all register
allocations during renaming in a given time period (convergence period) in one
partition. It partitions the free register list into multiple consecutive partitions and
allocates all new physical registers from one partition. Each partition of the free
register list corresponds to a certain region in the register file. If there are no more
registers in a given partition then the next partition is “activated”, even if the time
period (convergence period) is not over yet. We refer to the partition(s) currently
participating in register renaming as active partitions and the rest as idle partitions.

The following terms will be used in the rest of the paper:

• Active partition: a register renamer partition which participates in register
renaming.

• Idle partition: a register renamer partition which does not participate in
renaming.

• Active region: a region of the register file corresponding to a register
renamer partition (whether active partition or idle) which has live registers.

• Idle region: a region of the register file corresponding to a register renamer
partition (whether active partition or idle) which has no live registers.

The activity concentration and redistribution in the register file occur via two
techniques described next.

224 H. Homayoun et al.

The concentration mechanism: At any given time registers are allocated from only
one partition, referred as the default active partition (DAP), for instance P1 in the
example of Figure 6. While our goal is to concentrate all live physical registers in one
region, the default partition may run out of free registers before the convergence
period is over. Once the free list of the DAP (P1) is empty, the next partition
(according to some algorithm) is activated (referred to as additional active partitions
or AAP) and is used for register renaming along with the default active partition. In
Figure 6 the second and fourth partitions are idle (and power gated) and are activated
only when the first and third partitions’ free lists are empty, in that order. To facilitate
physical register concentration in DAP, if two or more partitions are active and have
free registers, allocation is performed in the same order in which partitions were
activated. By doing this the default active partition gets the highest priority to allocate
physical registers if it has any free registers, thus further concentrating the accesses in
the DAP. For instance, if AAPs P2 and P3 were activated in this order, a new register
will be allocated from P2.

The redistribution mechanism: The default active partition is changed once every
N cycles (we used N=10K) to redistribute the activity within the register file
(according to some algorithm). For instance, one can use a round-robin distant
pattern algorithm (P2 — P4 — P1 — P3) to maximize the distance between regions.
Once a new default partition (NDP) is selected, all active partitions (DAP+AAP)
become idle. While these idle partitions do not participate anymore in register
renaming, their corresponding regions in the register file are kept active (powered
up) until their active list becomes empty. At this time the corresponding physical
registers become idle and are power gated as well. Recall that an idle partition does
not participate in register renaming. However, it is possible that a physical register
belonging to an idle partition may need to be read as a source register of a scheduled
instruction. An active region of the RF corresponding to an idle register renaming
partition can be powered down provided that all of its physical registers have been
released (no live registers left).

Fig. 6. Partitioned register renaming

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 225

We assume a two-cycle delay to wakeup a power gated physical register (the
detailed wakeup power/delay overhead will presented later). It should be noted that
after this wakeup delay is paid, there is no further effect on the register file access.
Thus our technique has no performance penalty in this case. This can be explained as
follows: the register renaming occurs in the front end of the microprocessor pipeline
whereas the register access occurs in the back end. There is a delay of at least two
pipeline stages between renaming and accessing a physical register file. These two
cycles allow us to wake up the physical register’s region without incurring any
performance penalty at the time of access.

The mechanism described above can be implemented by partitioning the circular
FIFO free list into multiple smaller size circular FIFOs dynamically adjusting the
circular FIFO size. A design proposed in [21] can be used for this, which has no
impact on queue performance. A CAM-based renamer [22] can also be similarly
partitioned.

5 Experimental Setup

We used the following experimental setup for evaluating this work. We used an
extensively modified version of MASE (SimpleScalar 4.0) [13] to model an
architecture similar to the MIPS-74K embedded processor [14]. Table 1 describes the
processor architecture in detail, which operates at 800 MHz frequency. MiBench and
SPEC2K benchmarks were compiled with the O4 flag using the Compaq compiler
and executed with reference data sets. The benchmarks were simulated for 1 billion
instructions or until completion.

Table 1. Processor Architecture

L1 I-cache 8KB, ,4 way, 2
cycles

L1 D-cache 8KB, 4 way, 2
cycles

L2-cache 128KB, 15 cycles

Fetch, dispatch 2 wide
Register file 64 entry

Memory 50 cycles
Instruction fetch
queue

2

Load/store
queue

16 entry

Arithmetic units 2 integer
Complex unit 2 INT

Pipeline 12 stages
Processor speed 800 MHz
Issue Out-of-order

Table 2. RF Design specification

Process
45nm-CMOS
9 metal layers

Register
file layout
area

0.009mm2

Operating Modes Active:R/W
Sleep: no data
retention

Operating
Voltage 0.6V~1.1V

Read Access
Cycle 200MHz

to 1.1GHz

Access time
typical corner
(0.9V, 45°)

0.32ns

Active Power
(Total) in typical
corner (0.9V, 45°)

66mW
@ 800MHz

Active
Leakage
Power typical
corner (0.9V,
45°)

15mW

Sleep Leakage
Power in typical
corner (0.9V, 45°)

2mW
Wakeup
Delay 0.42ns

Wakeup Energy
per register file
row (64bits)

0.42nJ

226 H. Homayoun et al.

To accurately model the register file, an industrial memory compiler was used to
generate a dual read and single write port, 64-entry, 64bit single-ended SRAM
memory in TSMC 45nm technology. The design including the wordline drivers, the
wordline pulse generator circuit, the memory bit-cells and the output drivers is then
scaled to model a 4-read, 2-write port SRAM. The register file operates in two modes:
an active mode where it can be accessed, and a deep sleep mode where it does not
keep the bit-cell data and can not be accessed. Table 2 shows the design specification
of this 6-port 64x64 bits SRAM memory. All measurements are done using Spice
simulation. The register file access time is 0.32 ns for a typical corner (0.9V and
45°C). The total power in typical corner is 66mw while the active leakage power is
15mw (for the entire register file). The deep sleep data-destructive state leakage is
2mw, almost 86% lower than the active leakage.

The power and delay overhead of transition from low leakage sleep mode to active
mode are presented in Table 2. The area overhead for implementing the power gating
technique is fairly small, almost 1% of the RF size (using one sleep transistor per
register file entry). Total dynamic power of the register file was computed as
N*Eaccess/Texec, where N is the total number of accesses (obtained from simulation)
and Eaccess is the single-access energy (from Table 2). Leakage power computations
are similar, but leakage energy is dissipated on every cycle. If the RF entry is put into
sleep mode the sleep leakage power is dissipated, otherwise the active leakage power
is dissipated. We used HotSpot [15] to estimate thermal profiles for the register file.
We integrated HotSpot into our simulator. The temperature trace is obtained every
10K cycles. Once the temperature is calculated it is reported back to the simulator for
the next interval leakage power computation. Since the leakage power is a function of
temperature, the power simulator includes a lookup table for leakage power
dissipation as a function of temperature in the range from 45°C to 120°C in
increments of 5°C.

6 Experimental Results

Figure 7 shows the average register file power reduction over the course of execution
of different benchmarks as a result of applying RELOCATE and for different number
of RF partitions. We used the experimental setup described in Section 5. We observe
that on average there is a reduction of 15% and 25% in the total power of MiBench
and SPEC2K benchmarks, respectively. We also observe that many benchmarks, such
as patricia (MiBench), eon and vortex (SPEC2K) have a power reduction of about
40%. However, it should be noted that the goal of our work is to reduce the peak
temperature of the register file. Usually, the peak temperature is attained as a result of
sustained peak power dissipation over a period of time. A workload can have a low
overall average power but a very high peak temperature or vice versa due to variation
in activity levels. The reduction in the average power does not have a direct
correlation with the reduction in the peak temperature of register file. Overall,
increasing the number of RF partitions provides more opportunity to capture and
cluster unmapped registers to a partition, indicating that the wakeup overhead is
amortized for larger number of partitions. There are some benchmarks (highlighted in
Figure 7) in which increasing the number of partitions results in smaller power

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 227

(a)

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%

BasicMath bc
crc

dijk
s tra

djpeg fft gs
gsm

lame
mad

patri
cia

qsort

search sha

susan_corn
ers

susan_edges
tiff

2bw

average

P
o

w
er

 R
ed

uc
tio

n
 %

num_partition=2 num_partition=4 num_partition=8

(b)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

bzip
cra

fty eo
n

galgel
gap

gcc
gzip mcf

pars
er

perlb
mk

tw
olf

vorte
x vpr

average

P
ow

er
 R

ed
u

ct
io

n
%

num_partition=2 num_partition=4 num_partition=8

Fig. 7. Register file power reduction for (a) MiBench and (b) SPEC2K integer benchmark

Table 3. Peak temperature reduction for MiBench
benchmarks

temperature
reduction for
different number
of partition (C°)

base
temperature
(C°)
 2P 4P 8P

basicMath 94.3 3.6 4.8 5.0

bc 95.4 3.8 4.4 5.2

crc 92.8 5.3 6.0 6.0

dijkstra 98.4 6.3 6.8 6.4

djpeg 96.3 2.8 3.5 2.4

fft 94.5 6.8 7.4 7.6

gs 89.8 6.5 7.4 9.7

gsm 92.3 5.8 6.7 6.9

lame 90.6 6.2 8.5 11.3

mad 93.3 3.8 4.3 2.2

patricia 79.2 11.0 12.4 13.2

qsort 88.3 10.1 11.6 11.9

search 93.8 8.7 9.3 9.1

sha 90.1 5.1 5.4 4.5

susan_corners 92.7 4.7 5.3 5.1

susan_edges 91.9 3.7 5.8 6.3

tiff2bw 98.5 4.5 5.9 4.1

average 92.5 5.6 6.8 6.9

Table 4. Peak temperature reduction for
SPEC2K integer benchmarks

temperature
reduction for
different
number of
partition (C°)

base
temperature
(C°)
 2P 4P 8P

bzip2 92.7 4.8 3.9 3.1

crafty 83.6 9.5 11 10.4

eon 77.3 10.6 12.4 12.5

galgel 89.4 6.9 7.2 5.8

gap 86.7 4.8 5.9 7.1

gcc 79.8 7.9 9.4 10.1

gzip 95.4 3.2 3.8 3.9

mcf 85.8 6.9 8.7 9.4

parser 97.8 4.3 5.8 4.8

perlbmk 85.8 10.6 12.3 12.6

twolf 86.2 8.8 10.2 10.5

vortex 81.7 11.3 12.5 12.9

vpr 94.6 4.9 5.2 4.4

average 87.4 7.2 8.3 8.2

reduction. In fact in these benchmarks the overall power overhead associated with
waking up an idle region is become larger as the number of partition increases. This is
in fact due to frequent but ineffective power gating and its overhead as the number of
partition increases. Table 3 and Table 4 show the peak temperature reduction result.

228 H. Homayoun et al.

We observe that benchmarks from both MiBench and Spec2K show a noticeable
reduction in the register file’s peak temperature. While increasing the number of
partitions in all benchmarks provides more opportunity to capture and cluster
unmapped registers, it does not always result in additional temperature reduction. This
is especially noticeable in djpeg, mad and tiff2wb (MiBench) and galgel and parser
(SPEC2K). In these cases increasing the number of partitions results in larger power
density in each partition because RF access activity is concentrated in a smaller
partition. While capturing more idle partitions and power gating them may potentially
result in higher power reduction, larger power density due to smaller partition size
results in overall higher temperature. The average reduction in the register file’s peak
temperature across all the benchmarks is 6.9 °C for MiBench benchmark and 8.2 °C
for SPEC2K benchmark. This is very significant in light of the fact that the register
file is the hottest block in an embedded processor. The peak temperature of register
file determines the design temperature for which the embedded system is designed.
Thus the proposed technique can reduce the design temperature by 8°C.

6.1 Additional Benefits of Temperature Reduction

Let us try to quantify the design gains as a result of reduction in the design temperature
by 8°C:

(i) The Mean Time To Failure (MTTF) of an electrical interconnect depends on
temperature because of electromigration. Depending on the base temperature, a 8°C
decrease in the operating temperature can increase the MTTF of an interconnect by up
to 2 years.

(ii) A reduction of 8°C in the design temperature means a lower switching delay of
transistors. The rated frequency of the design is increased. Based on [20] we estimate
that at 45nm technology, a circuit’s rated frequency can be increased from 800 MHz
to 880 MHz because of the 8°C reduction in peak operating temperature.

(iii) The leakage power has a super linear dependency on temperature. Depending
on the process parameters, the leakage power of a cell can be lower by as much as
18% as a result of lowering of temperature by 8°C.

A 8°C reduction also delivers additional power savings since the fan can be run

slower by reducing its duty cycle. However, these are difficult to estimate.

7 Related Work

Processor thermal characteristics at the architectural level have been studied
extensively in recent years [15].

Several techniques have been proposed to reduce chip temperature. Many of these
techniques are reactive in nature in response to a thermal emergency detected by
temperature sensors. These techniques either migrate the processor activity [16] or
adapt processor resources to reduce temperature [15]. Brooks et al. [3] introduced
dynamic thermal management (DTM) in reaction to thermal measurements. They
applied techniques such as stalling execution or migrating activity to reduce
temperature. Among DTM techniques, clock gating was shown to be effective in

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 229

reducing temperature across the chip in response to a thermal emergency. This
technique has been used in many processors including Intel’s Pentium M [25].

Leveraging the redundancy in a processor pipeline, several techniques have been
proposed for temperature reduction. In [15] the power density is controlled by
balancing the utilization of register file, issue queues, and functional units. Fetch
throttling was also shown to be effective in reducing the temperature [15].

Dynamic voltage and frequency scaling in response to thermal emergency has been
studied in [15, 24]. Temperature-aware task scheduling has been investigated at both
architectural level and operating system levels for multiprocessors [11]. Ku et al. [23]
proposed techniques for reducing cache temperature through power density
minimization. They introduced a cache block permutation to maximize the distance
between blocks with consecutive addresses. Several thermal management techniques
for multi-core architectures are explored in [27]. Various core throttling policies were
applied at core and processor level for chip thermal management. Heo et al. [16] have
introduced a power density minimization through computational activity migration.
They applied this technique to many processor blocks including the register file. This
technique is effective, but incurs into a large area overhead since it requires
replicating processor blocks.

Many recent works have focused mainly on reducing the power density and peak
temperature of a processor. They specifically target the register file as it has been
shown to be one of the hottest units in a processor [1, 15, 17, 19]. Previous work on
the register file’s power has mainly attempted to reduce the number of access to the
register file, reduce the number of ports [10], or reduce the number of entries [8,9].
The algorithm we proposed in this work can be combined with these algorithms for
further power and a potentially larger temperature reduction. Replication or banking
register file has been studied in [2, 4, 12, 16,17, 26]. This work does not rely on either
register file replication or banking, and as a result no significant area overhead is
incurred except for region power down. However the benefit of our proposed
approach can be improved in presence of replicated register file. Register assignment
algorithm for low-power, low temperature VLIW register files were also introduced in
[7]. These algorithms are applied at compiler level to an architecture where no
renaming exists.

8 Conclusion

The register file is the most active and the hottest unit in an embedded processor. In
this paper we proposed RELOCATE, an architectural solution to reduce the peak
temperature of the register file. We analyzed the register file accesses and observed
that while only a small number of physical registers are occupied at any given time,
the total accesses are uniformly distributed over the entire physical register file during
the course of execution. Our solution redistributes the access pattern to physical
registers through a novel register allocation mechanism. We regionalize the register
file such that even though accesses within a region are uniformly distributed, the
activity levels are spread over the entire register file in a deterministic pattern. This
allows us to power gate the unused regions of the register file. This resulted in a
reduction of an average of 8.3°C in register file's peak temperature for standard
benchmarks.

230 H. Homayoun et al.

References

1. Mesa-Martinez, F.J., Nayfach-Battilana, J., Renau, J.: Power model validation through
thermal measurements. In: International Symposium on Computer Architecture (2007)

2. Homayoun, H., Pasricha, S., Makhzan, M.A., Veidenbaum, A.: Dynamic register file
resizing and frequency scaling to improve embedded processor performance and energy-
delay efficiency. In: Design Automation Conference (2008)

3. Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance
microprocessors. In: High-Performance Computer Architecture (2001)

4. Tseng, J.H., Asanović, K.: Banked Multiported Register Files for High-Frequency
Superscalar Microprocessors. In: International Symposium on Computer Architecture
(2003)

5. Kessler, R.: The Alpha 21264 Microprocessor. IEEE Micro (March/April 1999)
6. Yeager, K.: The MIPS R10000 Superscalar Microprocessor. IEEE Micro (April 1996)
7. Zhou, X., Yu, C., Petrov, P.: Compiler-driven register re-assignment for register file

power-density and temperature reduction. In: Design Automation Conference (2008)
8. Balasubramonian, R., Dwarkadas, S., Albonesi, D.H.: Reducing the complexity of the

register file in dynamic superscalar processors. Micro (2001)
9. Borch, E., Tune, E., Manne, S., Emer, J.: Loose loops sink chips. In: HPCA (2002)

10. Park, I., Powell, M.D., Vijaykumar, T.N.: Reducing register ports for higher speed and
lower energy. In: International Symposium on Microarchitecture (2002)

11. Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., Benini, L., Micheli, G.D.:
Temperature control of high-performance multicore platforms using convex optimization.
In: Design, Automation and Test in Europe (2008)

12. Chaparro, P., Magklis, G., Gonzalez, J., Gonzalez, A.: Distributing the Frontend for
Temperature Reduction. In: High-Performance Computer Architecture (2005)

13. SimpleScalar4 tutorial, SimpleScalar LLC,
 http://www.simplescalar.com/tutorial.html

14. MIPS Technologies MIPS32® 74KTM Licensable Processor Core,
 http://www.mips.com/media/files/74k/FINAL_BDTI_MIPS_74k.pdf

15. Skadron, K., Stan, M.R., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan, D.:
Temperature-aware microarchitecture. In: ISCA 2003 (2003)

16. Heo, S., Barr, K., Asanović, K.: Reducing Power Density through Activity Migration. In:
International Symposium on Low Power Electronics and Design (2003)

17. Patel, K., Lee, W., Pedram, M.: Active Bank Switching for Temperature Control of the
Register File. In: GLSVLSI 2007 (2007)

18. Powell, M., Yang, S., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated Vdd: A circuit
technique to reduce leakage in deep-submicron cache memories. In: International
Symposium on Low Power Electronics and Design (2000)

19. Han, Y., Koren, I., Moritz, C.A.: Temperature Aware Floorplanning. In: Workshop on
Temperature Aware Computer Systems (June 2005)

20. Kumar, R., Kursun, V.: Impact of temperature fluctuations on circuit characteristics in 180
nm and 65nm CMOS technologies. In: International Symposium on Circuits and Systems
2006 (2006)

21. Dynamically adjustable load-sharing circular queues, US patent 6782461
22. Buti, T.N., McDonald, R.G., Khwaja, Z., Amdedkar, A., Le, H.Q., Burky, W.E., Williams,

B.: Organization and implementation of the register-renaming mapper for out-of-order
IBM POWER4 processors. IBM Journal of Research and Development (2005)

 RELOCATE: Register File Local Access Pattern Redistribution Mechanism 231

23. Ku, J.C., Ozdemir, S., Memik, G., Ismail, Y.: Thermal Management of On-Chip Caches
Through Power Density Minimization. In: International Symposium on Microarchitecture
2005 (2005)

24. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classification
and new exploration. In: International Symposium on Computer Architecture (2006)

25. Rotem, E., Naveh, A., Moffie, M., Mendelson, A.: Analysis of Thermal Monitor Features
of the Intel Pentium M Processor. In: TACS Workshop at ISCA-31 (June 2004)

26. Homayoun, H., Pasricha, S., Makhzan, M.A., Veidenbaum, A.V.: Improving performance
and reducing energy-delay with adaptive resource resizing for out-of-order embedded
processors. In: Conference on Languages, Compilers and Tools for Embedded Systems
(2008)

27. Donald, J., Martonosi, M.: Leveraging simultaneous multithreading for adaptive thermal
control. In: Second Workshop on Temperature-Aware Computer Systems (2005)

	RELOCATE: Register File Local Access Pattern Redistribution Mechanism for Power and Thermal Management in Out-of-Order Embedded Processor
	Introduction
	Background
	On-Chip Thermal Behavior
	Conventional Register File Organization
	Activity Migration

	Analysis of Register File Operation
	Register File Occupancy
	Register File Access Pattern

	RELOCATE: Local Activity Redistribution within a Register File
	The Architectural Mechanism to Support Activity Redistribution

	Experimental Setup
	Experimental Results
	Additional Benefits of Temperature Reduction

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

