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Abstract. In order to reduce register file's peak temperature in an embedded 
processor we propose RELOCATE: an architectural solution which redistributes 
the access pattern to physical registers through a novel register allocation 
mechanism. RELOCATE regionalizes the register file such that even though 
accesses within a region are uniformly distributed, the activity levels are spread 
over the entire register file in a deterministic pattern. It partitions the register file 
and uses a micro-architectural mechanism to concentrate the accesses to a single 
or a subset of such partitions through a novel register allocation mechanism.  The 
goal is to keep some partitions unused (idle) and cooling down. The temperature 
of idle partitions is further reduced by power gating them into destructive sleep 
mode to reduce their leakage power. The redistribution mechanism changes the 
active region periodically to modulate the activity within the register file and 
prevent the active region from heating up excessively. Our approach resulted in 
an average reduction of 8.3°C in the register file's peak temperature for standard 
benchmarks. 

Keywords: Register file, Temperature, Power, Local Activity Redistribution, 
Out of Order Embedded Processor. 

1   Introduction 

Continued CMOS process technology scaling has led to designs of much more complex 
embedded processors with significantly higher computational power. The high level of 
integration in SoC designs today has, however, led to correspondingly higher power 
densities (Watt per mm2) which in turn lead to higher operating temperatures. High 
operating temperatures have many unfavorable consequences: (i) Increased probability 
of timing violations because of higher signal propagation delay and switching time, (ii) 
Reduced lifetime because of phenomena such as electromigration, (iii) Lower clock 
frequencies of designs because of higher device and interconnect delays, (iv) Increased 
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leakage power due to super-linear relationship with temperature, (v) need for expensive 
cooling mechanisms, such as fans, and (vi) Overall increase in design effort and cost. 

Components within a processor operate at different temperatures as function of 
their circuit design and activity levels. One of the hottest components is the integer 
register file. Recent embedded processors such as MIPS-74K or IBM PowerPC 
750FX, use a large register file to support out-of-order execution. The register file is 
accessed every cycle, unless the processor is stalled, for both reads and writes. In 
addition, multiple instruction issue further increases the number of register file 
accesses per cycle. Thus in these processors the register file is one of the most active 
components which also makes it the hottest unit.  Numerous academic and industrial 
papers have pointed out this fact [1,15,19]. For example, Koren et al. [19] show that 
the register file is hotter by as much as 20°C than any other block in a processor. This 
peak temperature determines the “design temperature”, i.e., the reference temperature, 
which is used to characterize the performance of the design. Therefore, there is a 
critical need to reduce the peak operating temperature of the register file. 

One general approach to reduce temperature of a given processor unit, including 
the register file, is to reduce its activity level by activity migration. This approach 
requires a replicated unit to be available in the system [16].  Once the unit reaches a 
critical temperature, its activity is migrated to the replicated unit and the hot unit 
becomes idle, allowing it to cool down. 

While activity migration is effective in reducing the temperature of the register file 
it requires a replicated register file [16], which is expensive and complex (30% area 
overhead [16]). It can also lead to performance degradation (3~12% [16]), because of 
migration overhead. For instance, in [16] copying registers from a register file to its 
replica requires the pipeline to be drained and multiple additional reads and writes to 
be performed. 

This paper introduces the idea of local activity migration to manage register file 
temperature in embedded out-of-order processors.  It proposes a REgister file LOCal 
Access paTtern rEdistribution mechanism (or, in brief, RELOCATE). RELOCATE 
redistributes the access to physical registers through a novel register allocation 
mechanism. By “local” we mean that a replicated register file is not required; instead 
the register file access activity is “migrated” or redistributed from one part of the 
register file to another. This is accomplished without a noticeable impact on register 
usage and has no performance degradation.  

RELOCATE uses a register file partitioned into multiple regions. This partitioning 
allows the RF access activity to be distributed in a non-uniform pattern over the 
regions. This pattern is such that the regions accessed are spatially and temporally 
apart allowing the opportunity for other regions to cool-down. The goal is to keep 
some regions unused and cooling down while other regions are active. This requires a 
new micro-architecture because in current micro-architectures the accesses are fairly 
uniformly distributed over the RF. 

RELOCATE is based on the observation that only a small subset of physical 
registers is used (mapped) at any given time during the course of program execution. 
Therefore there is room for the migration (redistribution) within the RF itself instead 
of migrating the activity to a replicated unit.  The micro-architectural solution to 
redistribute the physical registers and their access pattern is based on a novel register 
renaming mechanism. The new register renamer attempts to allocate new registers 
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from a given RF region and thus to concentrate the accesses in this region.  The 
renamer partitions the free list to correspond to regions in the register file. After a 
partition is used for a period of N clocks, the renamer switches to a new partition.  
Choosing a large enough N (10K cycles) allows the RF regions to cool down if they 
can be kept idle (not accessed). 

Successful local activity migration keeps some RF regions idle and this lack of 
activity is the reason why these regions can cool down. However, such idle partitions 
still dissipate leakage power, slowing down their cooling. Our approach further 
reduces the temperature by power-gating an idle region. This should be doable since 
an idle region has no accesses.    

The experimental evaluation of the proposed mechanism is performed using an 
integrated architectural/temperature simulator. The results show that a 64-entry 
physical register file with 4 partitions performs best and achieves an average peak 
temperature reduction of 8.3°C and 6.9°C for SPEK2K and MiBench benchmarks 
respectively. The temperature is reduced without any impact on performance with 
minimal area and hardware overhead.  

2   Background 

2.1   On-Chip Thermal Behavior 

Today’s chips are operating at very high temperatures due to high power densities. 
Within a processor, regions operate at different temperatures due to their varying 
activity levels.  The temperature of a region in a VLSI chip does not depend only on its 
own power dissipation. At any given time there are two phenomena, that determine the 
temperature of a region: spatial and temporal. Due to thermal diffusion, the temperature 
of a region also depends on the temperature of neighboring regions. This is the spatial 
phenomenon. Unlike power dissipation, the temperature of a region cannot change very 
quickly. It can take up to several milliseconds for a region's temperature to rise or cool 
down. This temporal phenomenon is characterized by the thermal resistance and thermal 
capacitance of the material. For any thermal management solution to be effective, it 
must consider both the spatial and temporal phenomena. 

2.2   Conventional Register File Organization 

An out-of-order embedded processor uses a larger register file with logical to physical 
register renaming and a dynamic physical register allocation policy. The same 
approach has been used in high performance superscalar processors such as Alpha 
21264 [5] and MIPS R10000 [6].  

The pipeline of an out-of-order embedded processors is capable of fetching, 
decoding, renaming several instructions per processor clock cycle. The processor can 
also execute and later commit up to as many instructions in each cycle as the issue 
width. This type of out-of-order multiple-issue processor accesses the register file 
very frequently. Up to 2*N reads and N writes can be issued to the register file per 
clock cycle, where N is processor issue width. Thus the register file is one of the most 
active components in a processor.  
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Due to frequent accesses the register file is one of the hottest units in an embedded 
processor. The physical register file is typically designed as a SRAM structure with as 
many write and twice as many read ports as the maximum number of instructions the 
processor can issue in each cycle.  

The register renamer in these processors is implemented either as a CAM (IBM 
POWER4 [22] and Alpha 21264[5]) or a RAM (MIPS R10K[6]). This paper 
discusses issues assuming a RAM based register renaming mechanism similar to the 
one used in the MIPS R10K processor [6]. However, the techniques proposed in this 
work also can be applied to a CAM based renamer.  

2.3   Activity Migration 

One general approach to reduce the temperature of a given processor block is to 
modulate (or vary) its activity level. One such method is activity migration, where the 
heat is spread by moving an activity to another block with the same functionality. 
This technique requires availability of redundant blocks in the system [16]. Once a 
block reaches a critical temperature, its activity is migrated and it becomes idle 
allowing it to cool down and reduce its temperature as shown in Figure 1(a). Notice 
that both temperature increase and decrease are non-linear functions of time. 

Activity migration was used in [16] for different units in a processor. It was shown 
that to benefit the most from this technique the migration period should be 
significantly smaller than the time constant of the equivalent thermal RC circuit 
(shown in Figure 1(a)). While short migration periods can result in larger temperature 
decrease, they incurred large power/performance overhead, as reported in [16]. 

 
(a) (b) 
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inactivity and 
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time  

Fig. 1. Thermal benefit of (a) activity migration and (b) combination of activity migration and 
power gating 

2.3.1   AM and Power Gating 
Once the activity is migrated completely to a redundant block the base block can be 
put into a low-power mode to further reduce its temperature. The main reason for this 
is the reduction in idle leakage power, as described below. The decrease in 
temperature ΔT is given by:   
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where Δt is the time interval, P is total power dissipation (P total = P dynamic + P leakage), 
Told is the original temperature, and Rth and Cth are the thermal resistance and 
capacitance, respectively. From EQ.1 the rate of cooling is faster if P total becomes 
smaller.  This is shown in Figure 1(b) where cooling accelerates due to base block 
inactivity as well as due to turning off the unused regions. The difference between the 
two curves (marked d) is the additional temperature reduction on account of leakage 
power saving. 

3   Analysis of Register File Operation 

In this section we examine the register file access pattern and register file occupancy. 
This analysis allows us to propose a solution which reduces register file temperature 
without any performance degradation and at a minimal cost. 

3.1   Register File Occupancy 

Figure 2 shows the register file occupancy results for the MiBench and SPEC2K 
integer benchmarks.  We observe that for nearly 60% of the time only half of all 
register file entries are occupied across the MiBench benchmarks. For SPEC2K only 
half of all register file entries are occupied for about 80% of the time. For 35% of the 
time only a quarter of the register file is occupied in MiBench benchmarks. This ratio 
is 60% for SPEC2K benchmarks. Such low register file occupancy raises the 
question: why do we need such a large register file in the first place? To answer this 
question, consider Figure 3 which shows the performance degradation as a result of 
using a smaller register file --with 16, 32, and 48 registers, instead of the original size 
of 64. We observe significant performance degradation across most SPEC2K and 
MiBench benchmarks. The performance impact is up to 36% and 19% in SPEC2K 
and MiBench benchmarks respectively when a register file with half its size (32 
entries) is used. An even larger performance impact is observed as we shrink the size 
of the register file further.  
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Fig. 2. Register file occupancy results for (a) MiBench and (b) SPEC2K integer benchmarks 
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Fig. 3. Performance degradation as a result of using a smaller register file -with 16, 32, and 48 
registers for (a) MiBench and (b) SPEC2K integer benchmarks 

Thus in spite of low average occupancy, using a smaller register file degrades the 
performance noticeably. In fact, a smaller register file fills up faster when a long 
latency operation occurs. For instance, after a load instruction miss in L2 cache it stays 
on top of the ROB and doesn’t allow the subsequent instructions to be committed. 
Therefore the dependent instruction’s corresponding physical registers can not be 
released until the cache miss is serviced. During every cycle the processor fills up the 
register file with up to 2 physical registers whereas it releases registers at a slower 
rate. Consequently, the register file occupancy grows until it gets filled completely. 

3.2   Register File Access Pattern 

In this section we study how accesses to physical registers are distributed. We used 
coefficient of variation (CV) as a metric to indicate the distribution of accesses to 
physical registers. The coefficient of variation of accesses to the physical registers is a 
normalized measure of dispersion of registers access distribution. It is defined as the 
ratio of the standard deviation (σ ) to the mean ( μ ). 
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where na i is the number of accesses (read or write) to the physical registers i during a 
specific period (10K cycles). N is the total number of physical registers.  

As shown in Figure 4, most benchmarks have a uniformly distributed access 
pattern to register file. It was also observed that register file occupancy is low for a 
large portion of program execution time.  Put together, while only a small number of 
registers are occupied at any given time, the total accesses are uniformly distributed 
over the entire physical register file during the course of execution. 
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Fig. 4. Coefficient of variation of accesses to physical register file for (a) MiBench and (b) 
SPEC2K benchmarks 

4   RELOCATE: Local Activity Redistribution within a Register 
File 

Activity migration is effective in reducing temperature but it typically requires 
replicated units.  As shown above, only a small subset of physical registers is in use at 
any given time during program execution. Therefore, instead of migrating the activity 
of this set of active registers to a replicated register file, one can do it within a single 
register file (activity redistribution). This paper proposes to partition the (single) 
register file into multiple regions and to spread the register allocation and therefore 
their access activity in a deterministic pattern over these regions. Activity of a region 
will be migrated after a certain amount of time to limit its temperature rise as such 
idle regions (or partitions) will be cooling off.  To further improve the temperature 
reduction benefit of the proposed activity redistribution, one can power gate the idle 
regions of the register file.  

Let us assume that, on average, 16 registers are being used at any given time. 
Results in the previous section showed that a small subset of active registers is 
distributed fairly uniformly over the entire register file during any time interval. The 
logical view of the baseline register file activity shown in Figure 5(a) represents 16 
active registers distributed almost uniformly during a specific timing interval (4*τc).  
This makes it impossible to perform any activity redistribution. 

Now let us assume a register file is partitioned into four equal sized regions 
(partitions) with 16 entries each. Assuming that the 16 active registers are allocated 
such that they are concentrated in one partition for a certain period (we refer to this as a 
convergence period or τc as shown in Figure 5(b)), other register regions can be kept 
idle and cooling off.  The activity needs to be moved to another partition after τc.  
There are a number of ways to modulate the activity within the register file, e.g., in a 
round-robin in-order pattern (AP1—AP2 —AP3 —AP4 as shown in Figure 5(b)). The 
activity is modulated to another region after every convergence period. Note that 
within a convergence period the activities are uniformly distributed within the active 
region, similar to the baseline register file. Once the activity is modulated to a new  
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τc 

τc 

τc 

 

Fig. 5. Examples of register activity distribution (a) baseline, (b) in-order (c) distant patterns 

region (active region) all other regions (idle regions) are cooling down.  The in-order 
pattern spaces accesses in time, but there is not enough spatial separation (See Section 
2 on Background). An access pattern with spatial as well as temporal separation 
between active regions would further reduce the temperature. The following 
redistribution pattern shown in Figure 5(c) can be used to achieve this: AP2 — AP4 — 
AP1 — AP3 (round-robin distant pattern). When a region becomes active and 
dissipates power, other regions get an opportunity to cool down. For instance, when 
AP1 is active, regions AP2 and AP4 are cooling down. AP4 is spatially distant from 
AP1 while AP2 is temporally distant from AP1.  

4.1   The Architectural Mechanism to Support Activity Redistribution 

This section introduces an architectural mechanism that attempts to concentrate active 
physical registers (live registers) in one register file region. This is accomplished 
through a novel register allocation mechanism that “concentrates” all register 
allocations during renaming in a given time period (convergence period) in one 
partition. It partitions the free register list into multiple consecutive partitions and 
allocates all new physical registers from one partition. Each partition of the free 
register list corresponds to a certain region in the register file. If there are no more 
registers in a given partition then the next partition is “activated”, even if the time 
period (convergence period) is not over yet. We refer to the partition(s) currently 
participating in register renaming as active partitions and the rest as idle partitions.  

The following terms will be used in the rest of the paper: 

• Active partition: a register renamer partition which participates in register 
renaming. 

• Idle partition: a register renamer partition which does not participate in 
renaming. 

• Active region: a region of the register file corresponding to a register 
renamer partition (whether active partition or idle) which has live registers. 

• Idle region: a region of the register file corresponding to a register renamer 
partition (whether active partition or idle) which has no live registers. 

The activity concentration and redistribution in the register file occur via two 
techniques described next. 
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The concentration mechanism: At any given time registers are allocated from only 
one partition, referred as the default active partition (DAP), for instance P1 in the 
example of Figure 6. While our goal is to concentrate all live physical registers in one 
region, the default partition may run out of free registers before the convergence 
period is over. Once the free list of the DAP (P1) is empty, the next partition 
(according to some algorithm) is activated (referred to as additional active partitions 
or AAP ) and is used for register renaming along with the default active partition. In 
Figure 6 the second and fourth partitions are idle (and power gated) and are activated 
only when the first and third partitions’ free lists are empty, in that order. To facilitate 
physical register concentration in DAP, if two or more partitions are active and have 
free registers, allocation is performed in the same order in which partitions were 
activated. By doing this the default active partition gets the highest priority to allocate 
physical registers if it has any free registers, thus further concentrating the accesses in 
the DAP. For instance, if AAPs P2 and P3 were activated in this order, a new register 
will be allocated from P2.  

The redistribution mechanism: The default active partition is changed once every 
N cycles (we used N=10K) to redistribute the activity within the register file 
(according to some algorithm). For instance, one can use a round-robin distant 
pattern algorithm (P2 — P4 — P1 — P3) to maximize the distance between regions. 
Once a new default partition (NDP) is selected, all active partitions (DAP+AAP) 
become idle. While these idle partitions do not participate anymore in register 
renaming, their corresponding regions in the register file are kept active (powered 
up) until their active list becomes empty. At this time the corresponding physical 
registers become idle and are power gated as well. Recall that an idle partition does 
not participate in register renaming. However, it is possible that a physical register 
belonging to an idle partition may need to be read as a source register of a scheduled 
instruction. An active region of the RF corresponding to an idle register renaming 
partition can be powered down provided that all of its physical registers have been 
released (no live registers left). 

 

Fig. 6. Partitioned register renaming 
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We assume a two-cycle delay to wakeup a power gated physical register (the 
detailed wakeup power/delay overhead will presented later). It should be noted that 
after this wakeup delay is paid, there is no further effect on the register file access. 
Thus our technique has no performance penalty in this case. This can be explained as 
follows: the register renaming occurs in the front end of the microprocessor pipeline 
whereas the register access occurs in the back end. There is a delay of at least two 
pipeline stages between renaming and accessing a physical register file. These two 
cycles allow us to wake up the physical register’s region without incurring any 
performance penalty at the time of access. 

The mechanism described above can be implemented by partitioning the circular 
FIFO free list into multiple smaller size circular FIFOs dynamically adjusting the 
circular FIFO size. A design proposed in [21] can be used for this, which has no 
impact on queue performance. A CAM-based renamer [22] can also be similarly 
partitioned. 

5   Experimental Setup 

We used the following experimental setup for evaluating this work. We used an 
extensively modified version of MASE (SimpleScalar 4.0) [13] to model an 
architecture similar to the MIPS-74K embedded processor [14]. Table 1 describes the 
processor architecture in detail, which operates at 800 MHz frequency. MiBench and 
SPEC2K benchmarks were compiled with the O4 flag using the Compaq compiler 
and executed with reference data sets. The benchmarks were simulated for 1 billion 
instructions or until completion.  

 
Table 1. Processor Architecture 

L1 I-cache 8KB, ,4 way, 2 
cycles 

L1 D-cache 8KB, 4 way, 2 
cycles 

L2-cache 128KB, 15 cycles 

Fetch, dispatch  2 wide 
Register file 64 entry 

Memory 50 cycles 
Instruction fetch 
queue 

2 

Load/store 
queue 

16 entry 

Arithmetic units 2 integer 
Complex unit 2 INT 

Pipeline 12 stages 
Processor speed 800 MHz 
Issue Out-of-order 

 

Table 2. RF Design specification 

Process 
45nm-CMOS 
9 metal layers 

Register 
file layout 
area 

0.009mm2 

Operating Modes Active:R/W 
Sleep: no data 
retention 

Operating 
Voltage 0.6V~1.1V 

Read Access 
Cycle 200MHz 

to 1.1GHz 

Access time 
typical corner 
(0.9V, 45°) 

0.32ns 

Active Power 
(Total) in typical 
corner (0.9V, 45°) 

66mW 
@ 800MHz 

Active 
Leakage 
Power typical 
corner (0.9V, 
45°) 

15mW 

Sleep Leakage 
Power in typical 
corner (0.9V, 45°) 

2mW 
Wakeup 
Delay 0.42ns 

Wakeup Energy 
per register file 
row (64bits) 

0.42nJ 
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To accurately model the register file, an industrial memory compiler was used to 
generate a dual read and single write port, 64-entry, 64bit single-ended SRAM 
memory in TSMC 45nm technology. The design including the wordline drivers, the 
wordline pulse generator circuit, the memory bit-cells and the output drivers is then 
scaled to model a 4-read, 2-write port SRAM. The register file operates in two modes: 
an active mode where it can be accessed, and a deep sleep mode where it does not 
keep the bit-cell data and can not be accessed. Table 2 shows the design specification 
of this 6-port 64x64 bits SRAM memory. All measurements are done using Spice 
simulation. The register file access time is 0.32 ns for a typical corner (0.9V and 
45°C). The total power in typical corner is 66mw while the active leakage power is 
15mw (for the entire register file). The deep sleep data-destructive state leakage is 
2mw, almost 86% lower than the active leakage. 

The power and delay overhead of transition from low leakage sleep mode to active 
mode are presented in Table 2. The area overhead for implementing the power gating 
technique is fairly small, almost 1% of the RF size (using one sleep transistor per 
register file entry). Total dynamic power of the register file was computed as 
N*Eaccess/Texec, where N is the total number of accesses (obtained from simulation) 
and Eaccess is the single-access energy (from Table 2). Leakage power computations 
are similar, but leakage energy is dissipated on every cycle. If the RF entry is put into 
sleep mode the sleep leakage power is dissipated, otherwise the active leakage power 
is dissipated. We used HotSpot [15] to estimate thermal profiles for the register file. 
We integrated HotSpot into our simulator. The temperature trace is obtained every 
10K cycles. Once the temperature is calculated it is reported back to the simulator for 
the next interval leakage power computation. Since the leakage power is a function of 
temperature, the power simulator includes a lookup table for leakage power 
dissipation as a function of temperature in the range from 45°C to 120°C in 
increments of 5°C. 

6   Experimental Results 

Figure 7 shows the average register file power reduction over the course of execution 
of different benchmarks as a result of applying RELOCATE and for different number 
of RF partitions. We used the experimental setup described in Section 5. We observe 
that on average there is a reduction of 15% and 25% in the total power of MiBench 
and SPEC2K benchmarks, respectively. We also observe that many benchmarks, such 
as patricia (MiBench), eon and vortex (SPEC2K) have a power reduction of about 
40%.  However, it should be noted that the goal of our work is to reduce the peak 
temperature of the register file. Usually, the peak temperature is attained as a result of 
sustained peak power dissipation over a period of time. A workload can have a low 
overall average power but a very high peak temperature or vice versa due to variation 
in activity levels. The reduction in the average power does not have a direct 
correlation with the reduction in the peak temperature of register file. Overall, 
increasing the number of RF partitions provides more opportunity to capture and 
cluster unmapped registers to a partition, indicating that the wakeup overhead is 
amortized for larger number of partitions. There are some benchmarks (highlighted in 
Figure 7) in which increasing the number of partitions results in smaller power  
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Fig. 7. Register file power reduction for (a) MiBench and (b) SPEC2K integer benchmark 

Table 3. Peak temperature reduction for MiBench 
benchmarks  

temperature 
reduction for 
different number 
of partition (C°) 

 

base 
temperature 
(C°) 
 2P 4P 8P 

basicMath 94.3 3.6 4.8 5.0 

bc 95.4 3.8 4.4 5.2 

crc 92.8 5.3 6.0 6.0 

dijkstra 98.4 6.3 6.8 6.4 

djpeg 96.3 2.8 3.5 2.4 

fft 94.5 6.8 7.4 7.6 

gs 89.8 6.5 7.4 9.7 

gsm 92.3 5.8 6.7 6.9 

lame 90.6 6.2 8.5 11.3 

mad 93.3 3.8 4.3 2.2 

patricia 79.2 11.0 12.4 13.2 

qsort 88.3 10.1 11.6 11.9 

search 93.8 8.7 9.3 9.1 

sha 90.1 5.1 5.4 4.5 

susan_corners 92.7 4.7 5.3 5.1 

susan_edges 91.9 3.7 5.8 6.3 

tiff2bw 98.5 4.5 5.9 4.1 

average 92.5 5.6 6.8 6.9 

Table 4. Peak temperature reduction for  
SPEC2K integer benchmarks  

temperature 
reduction for 
different 
number of 
partition (C°) 

 

base 
temperature
(C°) 
 2P 4P 8P 

bzip2 92.7 4.8 3.9 3.1 

crafty 83.6 9.5 11 10.4 

eon 77.3 10.6 12.4 12.5 

galgel 89.4 6.9 7.2 5.8 

gap 86.7 4.8 5.9 7.1 

gcc 79.8 7.9 9.4 10.1 

gzip 95.4 3.2 3.8 3.9 

mcf 85.8 6.9 8.7 9.4 

parser 97.8 4.3 5.8 4.8 

perlbmk 85.8 10.6 12.3 12.6 

twolf 86.2 8.8 10.2 10.5 

vortex 81.7 11.3 12.5 12.9 

vpr 94.6 4.9 5.2 4.4 

average 87.4 7.2 8.3 8.2 

 
reduction. In fact in these benchmarks the overall power overhead associated with 
waking up an idle region is become larger as the number of partition increases. This is 
in fact due to frequent but ineffective power gating and its overhead as the number of 
partition increases. Table 3 and Table 4 show the peak temperature reduction result. 
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We observe that benchmarks from both MiBench and Spec2K show a noticeable 
reduction in the register file’s peak temperature. While increasing the number of 
partitions in all benchmarks provides more opportunity to capture and cluster 
unmapped registers, it does not always result in additional temperature reduction. This 
is especially noticeable in djpeg, mad and tiff2wb (MiBench) and galgel and parser 
(SPEC2K). In these cases increasing the number of partitions results in larger power 
density in each partition because RF access activity is concentrated in a smaller 
partition. While capturing more idle partitions and power gating them may potentially 
result in higher power reduction, larger power density due to smaller partition size 
results in overall higher temperature. The average reduction in the register file’s peak 
temperature across all the benchmarks is 6.9 °C for MiBench benchmark and 8.2 °C 
for SPEC2K benchmark. This is very significant in light of the fact that the register 
file is the hottest block in an embedded processor. The peak temperature of register 
file determines the design temperature for which the embedded system is designed. 
Thus the proposed technique can reduce the design temperature by 8°C.  

6.1   Additional Benefits of Temperature Reduction 

Let us try to quantify the design gains as a result of reduction in the design temperature 
by 8°C: 

(i) The Mean Time To Failure (MTTF) of an electrical interconnect depends on 
temperature because of electromigration. Depending on the base temperature, a 8°C 
decrease in the operating temperature can increase the MTTF of an interconnect by up 
to 2 years. 

(ii) A reduction of 8°C in the design temperature means a lower switching delay of 
transistors. The rated frequency of the design is increased. Based on [20] we estimate 
that at 45nm technology, a circuit’s rated frequency can be increased from 800 MHz 
to 880 MHz because of the 8°C reduction in peak operating temperature. 

(iii) The leakage power has a super linear dependency on temperature. Depending 
on the process parameters, the leakage power of a cell can be lower by as much as 
18% as a result of lowering of temperature by 8°C. 

 
A 8°C reduction also delivers additional power savings since the fan can be run 

slower by reducing its duty cycle. However, these are difficult to estimate. 

7   Related Work 

Processor thermal characteristics at the architectural level have been studied 
extensively in recent years [15].  

Several techniques have been proposed to reduce chip temperature. Many of these 
techniques are reactive in nature in response to a thermal emergency detected by 
temperature sensors. These techniques either migrate the processor activity [16] or 
adapt processor resources to reduce temperature [15]. Brooks et al. [3] introduced 
dynamic thermal management (DTM) in reaction to thermal measurements. They 
applied techniques such as stalling execution or migrating activity to reduce 
temperature. Among DTM techniques, clock gating was shown to be effective in 
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reducing temperature across the chip in response to a thermal emergency. This 
technique has been used in many processors including Intel’s Pentium M [25]. 

Leveraging the redundancy in a processor pipeline, several techniques have been 
proposed for temperature reduction.  In [15] the power density is controlled by 
balancing the utilization of register file, issue queues, and functional units. Fetch 
throttling was also shown to be effective in reducing the temperature [15]. 

Dynamic voltage and frequency scaling in response to thermal emergency has been 
studied in [15, 24]. Temperature-aware task scheduling has been investigated at both 
architectural level and operating system levels for multiprocessors [11]. Ku et al. [23] 
proposed techniques for reducing cache temperature through power density 
minimization. They introduced a cache block permutation to maximize the distance 
between blocks with consecutive addresses. Several thermal management techniques 
for multi-core architectures are explored in [27]. Various core throttling policies were 
applied at core and processor level for chip thermal management.  Heo et al. [16] have 
introduced a power density minimization through computational activity migration. 
They applied this technique to many processor blocks including the register file. This 
technique is effective, but incurs into a large area overhead since it requires 
replicating processor blocks. 

Many recent works have focused mainly on reducing the power density and peak 
temperature of a processor. They specifically target  the register file as it has been 
shown to be one of the hottest units in a processor [1, 15, 17, 19]. Previous work on 
the register file’s power has mainly attempted to reduce the number of access to the 
register file, reduce the number of ports [10], or reduce the number of entries [8,9]. 
The algorithm we proposed in this work can be combined with these algorithms for 
further power and a potentially larger temperature reduction. Replication or banking 
register file has been studied in [2, 4, 12, 16,17, 26]. This work does not rely on either 
register file replication or banking, and as a result no significant area overhead is 
incurred except for region power down. However the benefit of our proposed 
approach can be improved in presence of replicated register file. Register assignment 
algorithm for low-power, low temperature VLIW register files were also introduced in 
[7]. These algorithms are applied at compiler level to an architecture where no 
renaming exists. 

8   Conclusion 

The register file is the most active and the hottest unit in an embedded processor. In 
this paper we proposed RELOCATE, an architectural solution to reduce the peak 
temperature of the register file. We analyzed the register file accesses and observed 
that while only a small number of physical registers are occupied at any given time, 
the total accesses are uniformly distributed over the entire physical register file during 
the course of execution. Our solution redistributes the access pattern to physical 
registers through a novel register allocation mechanism. We regionalize the register 
file such that even though accesses within a region are uniformly distributed, the 
activity levels are spread over the entire register file in a deterministic pattern. This 
allows us to power gate the unused regions of the register file. This resulted in a 
reduction of an average of 8.3°C in register file's peak temperature for standard 
benchmarks. 
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