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_______________________________________________________________________ 
 

 Caches are known to consume a large part of total microprocessor power. Traditionally, voltage scaling has 

been used to reduce both dynamic and leakage power in caches. However, aggressive voltage reduction causes 
process-variation-induced failures in cache SRAM arrays, which compromise cache reliability. We present 

Multi-Copy Cache (MC2), a new cache architecture that achieves significant reduction in energy consumption 

through aggressive voltage scaling, while maintaining high error resilience (reliability) by exploiting multiple 

copies of each data item in the cache. Unlike many previous approaches, MC2 does not require any error map 

characterization and therefore is responsive to changing operating conditions (e.g., Vdd-noise, temperature and 

leakage) of the cache. MC2 also incurs significantly lower overheads compared to other ECC-based caches. Our 
experimental results on embedded benchmarks demonstrate that MC2 achieves up to 60% reduction in energy 

and energy-delay product (EDP) with only 3.5% reduction in IPC and no appreciable area overhead. 

 
Categories and Subject Descriptors: B.3.1 [Semiconductor Memories]: Static Memory (SRAM); B.3.2 
[Design Styles] Cache Memories; B.1.3 [Control Structure Reliability, Testing and Fault-Tolerance]: Error 

Checking, Redundant Design 

General Terms: Algorithm, Design, Reliability, Theory 
Additional Key Words and Phrases: Variation Aware Cache, Low Power Cache, Low Power Memory 

Organization, Low Power Design, Fault Tolerance 

________________________________________________________________________ 
 

1. INTRODUCTION  

As ITRS roadmap predicts [1] [4], in the continued pursuit of Moore’s law, power 

densities will continue to affect reliability of both embedded SoCs and high performance 

desktop/server processors. Although the logic content and throughput of the systems will 

continue to increase exponentially, a flat curve must be maintained for dynamic and 

leakage power in order to prolong battery life, maintain cooling costs and mitigate the 

adverse effects of increased power densities on reliability. The resulting Power 

Management Gap must be addressed through various means including architectural 

techniques. Caches are already known to consume a large amount of power, about 30-

70% of total processor power [2] [3] for embedded systems and on-chip cache size will 

continue to grow due to device scaling coupled with performance requirements. 

Therefore, in order to manage total power consumption and reliability of the system, it is 

important to manage power and reliability of the caches.  
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A typical cache structure is shown in Figure 1.1(reproduced from [34]). It consist of 

mainly 3 parts: a) an SRAM array for storing data, b) a much smaller SRAM array to 

store the tag and c) input/output logic, including decoder, comparator and output muxes 

and drivers. Figure 1.2 shows breakdown of the power consumption in a 16K cache for 

70 nm, estimated using CACTI 4.1 [39]. Clearly the data SRAM consumes about 88% of 

total power, while the rest is shared by the tag SRAM and input/output logic. Hence, in 

order to reduce the power consumption of the cache, one must particularly focus on the 

data SRAM. 
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Figure 1.1 Typical Cache Structure  (from [34]) 
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Figure 1.2 Power Consumption of 16K cache (using CACTI 4.1 for 70nm tech) <TBfixed> 

 

Traditionally, voltage scaling has been used to reduce the dynamic and leakage power 

consumption of the cache. However, aggressive voltage scaling causes process-variation-

induced failures in SRAM cells such as read access failures, destructive read failures and 

write failures [5] [19]. Since applications may not be tolerant to even a single bit error, 

caches must be operated at a high Vdd with a very low probability of failure leading to 

high energy consumption. However, by exploiting mechanisms that allow a cache to 

become inherently resilient to large number of cell failures, we can operate the cache at a 

lower Vdd and thus gain significant energy savings.  

 In this work, we propose Multi-Copy Cache (MC
2
), a novel cache architecture that 

significantly enhances the reliability of the cache by maintaining multiple copies of every 

data item. Whenever a data is accessed, multiple copies of the accessed data are 

processed to detect and correct errors. Specifically, 2 copies of each clean data and 3 

copies of each dirty data  are maintained in the cache <explain more?>. MC
2
 is 

particularly useful for embedded applications since their working set sizes are often much 

smaller than existing cache sizes, and the unused cache space can be effectively used for 

storing multiple copies, achieving error resiliency through redundancy. Such a cache has 

high reliability and can be subject to aggressive voltage scaling resulting in significant 

reduction in energy consumption. Moreover, since errors are dynamically detected and 

corrected, MC
2
 does not need any apriori error characterization of the cache. Also, 

compared to other existing cache architectures exploiting redundancy (e.g., ECC), MC
2
 

incurs minimal performance and area overheads. <Explain that MC2 may decrease cache 

capcity significantly but for embedded benchmarks it only results in modest loss in 

performance> Our experimental results on embedded benchmarks show that, compared 

to a conventional cache operating at nominal Vdd, MC
2
 reduces energy consumption by 

up to 60%, with only about 3.5% loss in performance and no appreciable area overhead.  
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The rest of the paper is organized as follows: Section 2 discusses the opportunity for 

efficiently increasing cache reliability and some background related to SRAM reliability. 

Section 3 introduces the MC
2
 architecture and Section 4 discusses the related work. In 

Section 5 presents the hardware implementation and its overheads. Section 6 evaluates 

the architecture in terms of performance and energy for a set of embedded applications, 

and Section 7 concludes the paper. 

 

2. BACKGROUND 

A. Opportunity: Small Working Set Sizes 

We exploit the fact that the working set sizes of many embedded applications are much 

lower than available cache space in modern embedded processors. Fritts et al., [7] defines 

working set size of an application as the cache size in which miss rate decreases 

dramatically (atleast 50%) with respect to smaller cache size. In absence of such a 

dramatic decrease, working set size is defined to be the size which reduces miss rate 

below 2%. Fritts et al., [8] showed that for multimedia applications, working set size for 

instructions is less than 8KB and that for data is less than 32 KB. Guthaus et al., [9] 

showed that for most embedded applications, instruction and data working set size is less 

than 4-8KB. Our own investigation for MiBench embedded suite (Figure 2.1) shows that 

although there are a few benchmarks with a working set size of 16-32K, most of the 

benchmarks have a working set size of 8K or less, with about 50% of the applications 

having less than 2K as working set size. On the other hand, as Table 2.1 shows, modern 

SoCs and processors typically have L1 cache of sizes 16-64KB and L2 cache sizes up to 

2MB, demonstrating a significant portion of the cache – outside of the working set – is 

not used for many embedded applications.   

We exploit this opportunity to utilize the extra cache space to create an efficient error 

control mechanism embedded in the cache by maintaining multiple copies of each data 

item. A number of techniques have been previously proposed to increase reliability of 

caches and SRAM memories. Some of these techniques like parity and ECC [10] [11] 

[12] have the ability to dynamically detect and correct only a limited number of errors but 

incur high penalty in access latency and area. Other techniques [6] [13] [14] [15] [16] 

[17] [27] provide high error tolerance but require a cache error-map of various 

resolutions (per-byte to per-cache line) that must be generated by BIST whenever there is 

a change in operating conditions such as Vdd and frequency.  Since SRAM failures are 

highly dynamic and influenced by several conditions beyond the control of users, such 
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failures may not be captured by infrequent BIST characterizations (as explained later). In 

contrast to previous and related works, our MC
2
 architecture:  

 can dynamically detect a very high number of errors in SRAM arrays, 

 does not require any BIST characterization, 

 is responsive to dynamic changes in SRAM error pattern.  

 unlike SECDED, incurs only a minimal impact on both access latency and 

SRAM area and yet has high error tolerance, and 

 enables aggressive Vdd scaling, yielding significant reduction in energy 

consumption. 

 

Figure 2.1: Minimum cache size with assoc. 8 needed for < 2% miss rate 

Table 2.1: L1 and L2 cache sizes for modern microprocessors 

Processor Intel Xscale ARM Cortex A8 ARM Cortex A9 Freescale QorIQ P2 

L1 size 32K 16-32K 16-64K 32K 

L2  size 512K 2M 2M 512K 

B. Process Variation and SRAM Reliability 

Failures of SRAM cells can be of various types caused by different reasons. For 

example, there may be manufacturing defects leading to permanent open/short circuits in 

SRAM cells, causing permanent failures. These are known as hard failures [20]. There 

may also be transient errors, caused by radiation particles, change the stored data in the 

cell. These are known as soft errors [20]. However, one of most dominant cause of 

SRAM cell failures is process variation [14] [20]. It is well known that the process 

variations in semiconductor are a significant concern for designers and this concern is 

only going to exacerbate for future technology nodes. Process variations affect various 

semiconductor process parameters such as channel length, oxide thickness, etc. These 

variations in process parameters can be inter-die or intra-die. Inter-die variations change 

the parameters in the same direction for all transistors within a single die. Intra-die 

variations, on the other hand, cause a mismatch between parameters of the transistors 
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within a single die. These intra-die variations may be systematic, i.e., spatially correlated 

or they may be random. Spatially correlated variations do not cause large mismatches 

between neighboring transistors [20]. Random intra-die variations, mostly caused by 

Random Dopant Fluctuations (RDF), lead to mismatches between neighboring transistors 

and are the dominant cause of failures in SRAM cells [14] [20] [21]. Though process 

variation can affect many different process parameters, its effect can be effectively 

lumped into variation of threshold voltage V¬t for individual transistors.  

 

Figure 2.2 shows the typical six-transistor cell 

used for CMOS SRAM. During the read 

operation, the read access time is very 

sensitive to the variations in the threshold 

voltages of the access transistors (SR or SL) 

and the pull-down transistors (NR or NL). 

During the write operation, threshold voltage 

variations of the access transistors and the 

pull-up transistors (PR or PL) have the 

strongest effect on the write time. SRAM cell 

failures induced by process variations are also known as parametric failures. Parametric 

failures can be of different types, as follows:   

a) read access failure: reduction in bitline voltage differential during read within the 

maximum allowed time  

b) write access failure: unsuccessful write within the maximum allowed time  

c) read stability failure: an increase in the pmos/nmos node voltage beyond the trip 

voltage of the inverter pair causing a bit flip during read  

d) hold failure: bit flip while in standby mode caused by decrease in 

data retention voltage  

Our proposed MC
2
 architecture is effective against all above SRAM failures.  

 Dynamic nature of SRAM failures: As shown by Khajeh et al. [22], the probability of 

SRAM failure is highly dependent on Vdd, frequency of operation, and temperature. It is 

well known that a decrease in Vdd increases failure probability of SRAM failures [14] 

[20]. However, an increase in Vdd increases the dynamic and leakage power dissipation, 

which in turn increases the temperature. Increase in temperature causes an increase in cell 

delay resulting in a higher probability of failure. Moreover, the increase in temperature 

increases the leakage power further resulting in a positive feedback loop between the two 

Figure 2.2: 6-T SRAM Cell (from [28]) 
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[22]. Therefore, as Vdd is increased, temperature as well as leakage and dynamic powers 

may increase in an interdependent fashion, increasing the failure probability 

unexpectedly, as shown in Figure 2.3. Additionally, if a set of SRAM cells are accessed 

very frequently or if they are located near hotspots such as execution units, the dynamic 

power dissipation of those cells will increase, leading to an increase in temperature and 

inducing the cells towards failure [40]. Figure 2.4 (based on [22]) pictorially depicts the 

relationships between Vdd, frequency, temperature, memory activity, power dissipation 

and probability of failure. From the above discussion, we note that SRAM failures are 

very dynamic: not only affected by user-controlled operating conditions such as Vdd and 

frequency, but also by other conditions such as voltage irregularities, leakage, 

temperature, nearby hotspots, memory access pattern, drift in frequency -- all of which 

may be constantly changing and are beyond the control of the user.  It is therefore 

crucial that any error control mechanism in SRAM caches be responsive to dynamic 

changes in error patterns, without being dependent on static error maps – which MC
2 

accomplishes. 

 
Figure 2.3: Unexpected increase in failure as Vdd is 

increased due to interaction between leakage power 

and temperature [22] 

 
 

Figure 2.4: Interrelationship of Vdd, frequency, 
temperature, leakage/dynamic power, etc and their 

effect on SRAM failure probability (based on [22]) 

 

3. MC
2
 ARCHITECTURE 

A. Basic Mechanism 

The basic idea behind multi-copy cache (MC
2
) is to maintain multiple copies of each 

data item in the cache. Such a mechanism makes the cache resilient to a high number of 

SRAM failures. As long as same bit-position of every copy is not affected by failures, the 

errors can always be detected and may also be corrected
1
. This high error-resiliency 

technique allows the cache to operate under aggressive low Vdd leading to reduction in 

energy and power consumption. The multi-copy mechanism may be implemented in 

many different ways, depending on cache organization, type of cache (instruction or 

                                                           
1
 It is very rare that same bit-positions of more than one copy will be affected by failures. 

For a bit failure rate of 10
-6

, failure rate for two copies of a 32-bit word is over 1 million 

times lower than that with single copy. 
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data), write policy (write-through or write-back), write-miss policy (write-allocate or no 

write-allocate) and replacement policy of the cache; each implementation of MC
2 

will 

incur some overhead and potentially some performance degradation. Thus the MC
2
 

architecture must be designed carefully to minimize these overheads while achieving low 

energy with high resiliency. 

In this paper, we present the RDT (Redundancy through Duplication and Triplication) 

policy for MC
2
. We assume a writeback data cache with write-allocate policy and true 

LRU replacement policy. MC
2
 with RDT policy maintains 2 copies of each clean data 

and 3 copies of each dirty data in the same set. If a data in the cache is clean (i.e, 

unmodified by the processor), a correct copy of that data is also available in the lower 

level of memory (LLM). Therefore only 2 copies of the clean data need to be maintained 

in the cache. Whenever a clean data is read by the processor, both copies are compared 

with each other. If there is any mismatch, an error is detected and the requested data is 

read from the LLM and is forwarded to the processor. On the other hand, if the requested 

data in the cache is dirty (i.e., modified by processor), the most updated version of that 

data is in the cache and not in the LLM. Hence for dirty data, 3 copies are be maintained 

in the cache so that in the event of error(s), the correct data can be generated by majority 

voting logic using all 3 copies. Thus, the use of RDT policy would result in 2 or 3 cache 

lines with same data in a given set.  

 

 
Figure 3.1: Example 1 of Reads and Writes to 

MC2        

    

 
Figure 3.2: Example 2 of Reads and Writes to MC2  

 

Examples: 

 1) Figure 3.1 shows the physical contents of a particular set s of an 8 way set associative 

MC
2
 for a sequence of reads and writes. Each of the eight rectangles represents a cache 

line in the given set. Initially the cache is cold and the set is empty. Then four cache lines 

A, B, C and D, belonging to set s, are read one after another from the memory and placed 

in the set. At that point, the set s contains 4 clean data, each with two adjacent copies. 

Assume that there are multiple read accesses such that D becomes the LRU data (marked 
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by dots). Now the processor writes to data A. After the write is completed, A would 

become dirty. Hence, it would need 3 copies instead of its present 2 copies, requiring a 

new copy of A to be created. This is done by evicting both copies of LRU data D and 

using one of the freed cache lines to store the 3rd copy of A. Next, the processor writes to 

data C. A new copy of C is created using the empty cache line present in the set s. As the 

example shows, all copies of a given data may not be physically adjacent.  

2) Figure 3.2 shows another example. Again, assume the cache set s is all empty in the 

beginning. The processor reads data A and B, which are placed in the set with 2 adjacent 

copies for each data. The processor reads these two data multiple times such that B 

becomes the least recently used data. Then the processor performs two writes to two 

separate cache lines – data C, followed by data D. Since we assume write-back cache 

with write allocate, both writes would result in write misses. First the write miss for data 

C is served and 3 copies of cache line C are created in set s and updated with the data 

from the processor. At this point, there is only one empty cache line left in the set. Now, 

when the write miss for data D is served, 3 copies of data D must be created. Since data B 

is the least recently used data, the cache lines belonging to data B along with the only 

empty cache line are used to store 3 copies of data D.    We now describe the detailed 

MC
2
 RDT cache architecture operation and implementation overheads.  

3)Add example for a write allocated when all four data in the set are clean. This will 

result in evicting last three recently used lines and discarding the fourth line. Add 

diagram. 

 

 
Figure 3.3: Conventional cache architecture 

 
Figure 3.4: Multi-Copy cache architecture 
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B. Cache Architecture and Operation 

In a conventional N-way associative cache (Figure 3.3), there are N tag comparators 

producing N way-select signals (WS1-N). During cache read, the way-select signals drive 

the output multiplexer /driver which outputs the requested data from the selected way. 

During cache write, way-select signals are also used to write the data to the selected way. 

<Explain difference in tag matching: only one tag matched in CC vs upto 3 tags matched 

in MC2, but requires no hardware change in tag array operation> In the MC
2
 architecture 

(Figure 3.4), the output multiplexer is replaced by data error detection and correction 

logic. Using the way-select signals, this logic compares multiple copies of the requested 

data and accordingly, detects and corrects errors. It outputs the corrected data and the 

read error signal, indicating if there is any error in the accessed data. The write 

demultiplexers of the MC
2
 allow simultaneous writing to multiple cache lines in the data 

and the tag array of the set. Additionally there may be an optional check logic that 

processes the cache flags (clean/dirty) and the way-select signals to ensure that the RDT 

policy is being followed (i.e., 2 copies for every clean data, 3 copies for every dirty data). 

The flags logic will raise a machine check interrupt if it finds any policy violation.   

Furthermore, in the conventional cache (CC), the entire cache is run on one Vdd 

domain, typically connected to the processor Vdd (nominal Vdd) for L1 caches. 

Similarly, in MC
2
, the tag side of the cache (tag SRAM array, comparators, decoder and 

write demultiplexer) is connected to nominal Vdd. However, MC
2
’s the data side (data 

array, error detect/correct logic, decoder and write demultiplexer) is run on a separate 

Vdd that can be aggressively scaled down. Level shifters are required while going from 

low to high Vdd only (i.e., for data side output to processor) [41] and generates negligible 

overheads as shown in Sections 5 & 6.   

 Figure 3.5 shows the flowchart of the MC
2
 RDT cache operation. The address tag bits 

from the processor are compared with the tag bits stored for each cache line of the 

selected set. The RDT policy ensures 

that, for any given address, there can be:   

no tag match (cache miss); exactly two 

matches (cache hit for clean data); 

exactly three matches (cache hit for dirty 

data). In case of a miss (referred to as 

conventional miss), a new cache line is 

fetched from the LLM. Depending upon 

Figure 3.5: Flow chart of MC2 RDT 

operation (TM represents Tag Matches) 
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the type of access (read or write), either two or three cache lines in the selected set are 

evicted and are replaced by the newly fetched line. For write accesses, all three copies 

must be updated. For cache hits for clean data, the type of access may be either read or 

write. For read accesses, both copies of the clean data are compared with each other. If 

there is a match, the data is forwarded to the processor. This is referred to as clean read 

hit. If there is no match, read error miss has happened and the correct copy of the 

requested data is fetched from LLM. Write accesses to any clean data always result in 

clean write misses. This event represents clean to dirty transition (top right corner of 

Figure 3.4). The cache line corresponding to the accessed address is fetched from the 

LLM. An existing line in the selected set is evicted and replaced with the newly fetched 

line, resulting in three copies of the accessed data. Now all three copies are marked dirty 

and updated with the data from the processor. If there are 3 tag matches during tag 

comparison, this must be a cache hit for dirty data. If the access is a read operation, the 

correct data is generated by majority voting logic among all 3 copies. This is referred to 

as dirty read hit. If the access is a write operation, all 3 copies must be updated with the 

data from the processor. This is referred to as dirty write hit. Whenever there is a dirty 

data writeback, all three copies are identified using a secondary tag search and processed 

and then, the correct data is written to LLM.  

Dirty Data Writeback Whenever there is a conventional miss or a clean write miss, one 

or two or three cache lines may be replaced with data from LLM. Using true LRU policy, 

up to three cache lines may be evicted in a single cache access (for example, a 

conventional write miss). If any of the replaced lines is dirty, it must be ensured that the 

correct data is being written to the memory. Therefore whenever a dirty line is being 

evicted from the cache, all other copies of that dirty line must be located and processed 

before writing to LLM. This is done by accessing the tag array and performing another 

set of comparisons with tag bits of the dirty cache line being replaced. After locating all 

three copies, they are read into a write-buffer. The write-buffer will store all three copies 

of the dirty data, if the bus is not available immediately. The write-buffer will perform a 

majority voting logic using all 3 copies and write the correct data to LLM, whenever the 

bus is available. Irrespective of the size of the write-buffer, only one majority voting 

logic is required – only for the data in the top of the write-buffer.  

<Add a para on changes in replacement algorithm allowing efficient replacement of 

multiple lines; latency of this during misses will be hidden by the latency of access to 

LLM> 
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The MC
2
 RDT cache will incur overheads in delay, area and energy due to error detect/ 

correct logic, check logic, level shifters and additional operations required during cache 

access (such as writing to multiple lines and tags). Sections 5 & 6 examine these 

overheads and establish that these overheads are minimal.    

 

4. RELATED WORK 

There are several previous works related to improving SRAM reliability in face of 

process variation and soft errors especially for low voltage operation. A number of these 

works approach the problem from a circuit perspective, improving reliability of each 

SRAM cell. Apart from the familiar 6T SRAM cell, 8T SRAM cell [23] and 10T SRAM 

cell [25] have been proposed. Both 8T and 10T SRAM cells improve read stability, 

though the stability of the inverter pair remains unchanged. Kulkarni et al. [24] proposed 

a Schmidt trigger based 10T SRAM cell with inherent tolerance towards process 

variation using a feedback-based mechanism. However, this SRAM cell requires a 100% 

increase in area and about 42% increase in access time for low voltage operation.  

Several architectural techniques have also been proposed to improve reliability of on-

chip cache by using redundancy. It is typical in the industry to have redundant rows and 

columns in the SRAM cache. Any defective row or column may be detected before 

shipping and is replaced by a redundant row or column using laser fuses [26]. But, this 

technique is effective against manufacturing defects, not process variation induced errors, 

which depend heavily on operating conditions such as Vdd. A number of other 

techniques have been proposed to improve SRAM array reliability against process 

variation failures. Wilkerson et al. [6] proposed multiple techniques using part of a cache 

line as a redundancy for defective bits for the rest of cache lines in the same set. It 

disables the faulty words and replaces them with non-faulty words in the same set. 

Agarwal et al. [13] proposed a fault tolerant cache architecture in which the column 

multiplexers are programmed to select non-faulty block in the same row, if the accessed 

block is faulty. A similar work is PADed caches [17] which use programmable address 

decoders that are programmed to select non-faulty blocks as replacements of faulty 

blocks.  Makzhan et al. [15] and Sasan et al.,[16] [27]  proposed a number of cache 

architectures in which the error-prone part of the cache is fixed using either a separate 

redundancy cache or parts of the same cache or using charge pumps to increase Vdd of 

the defective wordlines. However all the techniques proposed in these works [6] [13] [15] 

[16] [17] [27] require BIST characterization of the cache and generation of some form of 
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a cache error map with various levels of granularity: per wordline, per cache line, per 

byte etc. Whenever Vdd is scaled up or down, the BIST engine is run and the entire cache 

memory is characterized generating an error map. Every time BIST characterization is 

run, the cache has to be flushed of its current contents followed by writing, reading and 

comparing by the BIST engine before the cache is ready for use. The time overhead of 

the BIST characterization would limit the frequency at which Vdd can be scaled up or 

down. The storage of error map, depending upon its granularity, also increases the area 

overhead of the cache. Even with these costs, a basic assumption behind the above works 

is that, once the BIST characterization is done, the error map perfectly describes the 

locations of process variation errors until the next change in Vdd. As discussed in Section 

2Error! Reference source not found., this assumption is not valid because of the 

dynamic nature of SRAM failures.  

In order to improve SRAM reliability against such dynamic failures, dynamic error 

detection and correction ability is required without using any static error map. One of 

most popular mechanism for such dynamic error detection/correction is error control 

coding (ECC), which is widely used in caches and memories. The simplest form of ECC 

is one-bit parity which detects odd number of errors in the data and is often used in L1 

caches [28]. Since such one-bit parity mechanisms do not have any correction capability, 

it is not useful except for instruction caches or data caches with write through policy. 

Another form of ECC used in caches is SECDED (single error correction, double errors 

detection). Hsiao et al. [10] proposed an optimal minimum-odd weight column SECDED 

code that is suitable for fast implementation in memory. However, inspite of its 

optimality, the Hsaio code incurs multiple clock cycle latencies for caches and significant 

area overhead (about 30%), as we show later in the results. Kim et al. [29] and Naseer et 

al. [30] have proposed ECC schemes to correct multiple error bits and further improve 

reliability beyond SECDED. However, as shown by Mazumder [31] and Agarwal et al. 

[13], ECC mechanism beyond one-bit correction capability cannot be implemented in 

memory because of the area and delay overheads. Zhang et al. [18] used replication of 

some “hot” frequently used cache lines to mitigate soft errors. Such a technique has non-

uniform error tolerance and is ineffective towards process variation-induced failures. 

Moreover, it requires additional error control mechanism such as parity for its operation. 

A recent work uses configurable part of the cache for storing multiple ECC check bits for 

different segments of cache line using an elaborate Orthogonal Latin Square Code ECC 

[42] to enable dynamic error correction. This requires upto 8 levels of XOR gates for 
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decoding, resulting in significant increase in cache critical path delay. <Add two more 

references suggested by the reviewer> 

In contrast to previous works, our MC
2
 architecture is able to detect and correct errors 

dynamically without requiring any BIST characterization and error map storage. MC
2
 

provides better reliability than SECDED cache with minimal area overhead and much 

less latency to detect/correct errors. Compared to elaborate ECC mechanisms such as 

[42], MC
2
 architecture has a simple detection/correction mechanism resulting in much 

lower delay overhead. Indeed, as we show in the next section, MC
2
 incurs less than 3% 

overhead in cache delay and less than 2% increase in read hit dynamic energy with 

negligible area overhead. 

5. HARDWARE IMPLEMENTATION AND OVERHEADS 

 The MC
2 

architecture has three main changes over a conventional cache (CC): a) the 

output mux of the CC (Figure 5.1) is replaced by the data detection & correction logic 

(Figure 5.2), b) level shifters are needed only when signals travel from low to high Vdd 

domains (data side output to the processor), and c) additional operations are required 

during cache access (writing to multiple lines and tags during cache write, extra line-fill 

during clean write miss). For level shifting, we use dual Vdd/Vth logic gates with built-in 

level shifting [41] at the data side output of the cache. Such gates use a higher threshold 

voltage for PMOS transistors driven by low Vdd inputs and have only a slightly increased 

delay (< 10ps) and almost no additional overhead in power consumption compared by 

conventional single Vdd gates, as discussed in our technical report [29]Error! Reference 

source not found..<TBfixed>     

The data error detection & correction logic is constituted by a number of Bit Error 

Detect/Correct (BEDC) logic blocks, one for each data bit (Figure 5.2). BEDCi for ith 

data bit outputs the following signals: a) REi, read error signal b) NE-Di, no-error data bit 

c) C-Di, corrected data bit. REi indicates if there is any error and is relevant only for clean 

data. NE-Di is the correct output bit if there is no error while C-Di is the corrected output 

bit selected using majority voting of three copies. The BEDC block essentially consists of 

two parallel parts – one for error detection and the other for error correction. The error 

detection logic uses N-input OR and AND gates to produce outputs REi and NE-Di. The 

error correction logic uses an N-input XOR gate to produce output C-Di (  

Figure 5.3). To enable quantitative comparisons, we synthesized the output logic for 

MC
2
 (error detect/correct logic and the check logic) as well as the multiplexer & output 

driver of CC using Synopsys Design Compiler for TSMC 65nm typical library for a 16K 
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8-way associative cache.  We found that the delay of MC
2
 output logic is increased only 

by 5% compared to CC output mux while area and power consumption are lower than 

CC mux <explain why lower>.  

 
Figure 5.1:  Output multiplexer / driver of 

conventional cache (16K 8 way cache) 

 
Figure 5.2: Data error detection and correction logic 

of MC2 (16K 8 way cache) 

 

To put these overheads in perspective of the entire cache, we used CACTI 4.1 [39] and 

estimated that for a 16K 8-way associative cache, the output mux/driver contributes to 

48% of total delay, 8% of dynamic power, 10% of leakage power and 3% of area for CC. 

Recall that the MC
2
 architecture replaces CC’s output mux with MC

2
 output logic; we 

expect that the multi-copy mechanism will increase the delay of the cache nominally 

(estimated < 3%). Since the area of MC
2
 output logic is less than CC mux area, we 

conclude that MC
2
 has no appreciable area overhead. 
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Figure 5.3: Bit error detection & correction (BEDC) 
logic 

 

 

 
Figure 5.4:  Normalized dynamic energy of CC and  
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MC2 events (all normalized to CC Read Hit) 

 

 

 

 

 

 

 

 

 

 

 

In order to account for additional operations in MC
2
, we developed an analytical 

dynamic energy model for each cache event. In a conventional cache, there are four 

mutually exclusive events that can happen during any cache access. They are as follows: 

1. read hit (RH), 2.write hit (WH), 3. read miss (RM)  and 4. write miss (WM). Each of 

these events consists of several micro-operations such as tag array read, data array read, 

read miss line fill (RLF), write miss line fill (WLF), dirty data writeback (WB) etc 

<ELF?>.  Equations (5.1-5.7) describe the energy model used for each of these events for 

conventional cache. For MC
2
 architecture, there are seven mutually exclusive events that 

can happen during any cache access, viz. 1. conventional read miss (RM), 2. 

conventional write miss (WM), 3. clean read hit (CRH), 4. clean write miss (CWM), 5. 

read error miss (REM), 6. dirty read hit (DRH) and 7. dirty write hit (DWH). Equations 

(5.8-5.21) describe the energy model for events for MC
2
 architecture. 

 
 

Individual cache micro-operations referred to in the above equations are described below 

  Tag Read:  Read all tags for the selected set and compare with the input tag  

Data Read: Read data for all ways  in parallel for the selected set   

: Select LRU line: Select least recently used line in the set 

: Select multiple copies of LRU line: Select multiple copies of least recently used line in the set. This is 
done by first using regular LRU search followed by a secondary tag read to find other copies. 

  Data Write (i  words): Write i words of data to the specified way of the selected set 

Tag Write(i):  Write i tags of the selected set 

Data Write(i lines): Write i cache lines of data to the specified way of the selected set 

Mem Read: Read lower level of memory (including bus access) 

Mem Write: Write to lower level of memory (including bus access) 

 : Flags Logic: Check if number of copies matches status of the line (dirty or clean)  

Data Corr Logic: Perform data error detection and correction 
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Mem Write (w/ corr): Write to LLM after applying majority voting logic  

 

CACTI 4.1 [28] is modified to obtain energy 

consumptions of individual micro-operations 

involved in conventional cache and MC cache. 

The results of this model are shown in  

 

Figure 5.4. For example, there is only 2% increase in dynamic energy for read hit and 

about 17% increase for write miss. Since there is negligible area overhead, we assume 

there is no change in leakage power. The total energy overhead of MC
2
 is application 

dependent and is examined in the next section. 

  

The estimate of delay overhead is specific to the base cache size, associativity and the 

synthesis library used. There may be further delay of the cache logic pipeline due to Vdd 

scaling, some of which may be reduced by using dual-Vth caches [34]. In general, the 

impact on the cache access timing would vary, depending on a number of factors such as 

cache associativity, organization, logic implementation and process (technology node 

and use of dual-Vth). Hence, rather than examining random design configurations, we 

evaluate MC
2
 architecture for the design corner cases; i.e. the best and the worst case 

timing scenarios. The load/store latency of 2 cycles is assumed to be broken into actual 

cache access taking place in cycle 1, while the bus access taking only a part of the next 

cycle. Based on this, we assume two scenarios for MC
2
 cache access: a) best case (MC

2
-

B): MC
2
 delay overhead fits in the remaining time in 2

nd
 cycle, resulting in total 2 cycle 

latency and no penalty b) worst case (MC
2
-W): Error detection/correction delay is long 

enough such that total 3 cycles is needed for every access. From our discussion in Section 

5, the cache delay is increased only slightly (< 3%) in nominal Vdd. However, 

considering the increase in logic delay due to Vdd scaling, we assume that in the worst 

case, the latency of the cache would be increased by one full cycle. Similarly, the 

estimate of dynamic energy is specific to cache miss energy, assumed to be 5 times cache 

hit energy, according to [35].  

Figure 5.5: CC and MC2 latencies 
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6. EXPERIMENTAL RESULTS 

     The experiments are designed to evaluate the MC
2
 architecture in terms of energy and 

performance for standard embedded benchmarks.  

Table 6.1 & Table 6.2 outline our experimental setup for the base processor configuration 

and benchmarks respectively. The processor is ARM-11-like configured with a 16K 8-

way set associative cache. We modified Simplescalar 3.0 [32] extensively to support MC
2
 

architecture. The embedded benchmarks are from the MiBench suite [9]. All benchmarks 

are compiled with Compaq alpha compiler using –O4 flag for Alpha 21264 ISA.  

Table 6.1: Base processor configuration (ARM-11 

like) 

I-cache 16KB, 2 cycle 

L2 cache 256KB, 15 cycles 

Fetch, dispatch 1 wide 

Issue In-order, non blocking 

Execution Out-of-order 

Memory 30 cycles 

Instr Fetch Queue 4 

Ld/Str Queue 16 

RUU size 8 

Execution units 1 INT, 1 FP simple & mult/div  

Pipeline 8 stages 

Frequency 1 GHz 

Table 6.2: Benchmarks  (all with large input sets 

from MiBench) 

Automotive basicmath, bitcnt,  qsort, 

susan (smooth, edges, 

corners) 

Consumer jpeg-encode, jpeg-decode, 
lame, mad, tiff2bw, tiff2rgba, 

tiffdither, tiffmedian 

Networking dijkstra, patricia 

Office ghostscript, stringsearch 

Security sha, pgp.sign, pgp.verify  

Telecom crc32, fft, ifft, gsm-encode 

 

We carried out following six experiments to evaluate MC
2
 architecture:  

1. Circuit Simulation and Analytical Calculations:  We carry out SPICE 

simulation to measure probability of failure for SRAM cell, followed by 

analytical calculations to determine the probability of failures for conventional 

cache and MC
2
 architectures. 

2. Comparison with Conventional Cache at Nominal Vdd: We compare 

performance and energy consumption of a conventional cache (CC) running at 

nominal Vdd with that of an MC
2 

running with scaled Vdd for two different 

SRAM cells. 

3. Comparison with Conventional Cache at Different Yields: We compare a 

conventional cache with MC
2
 architecture, each being operated at their 

respective minimum Vdd for a specified set of yields.  

4. Miss Energy Sensitivity Analysis:  We carry out a sensitivity analysis by 

increasing the energy of cache misses and observe the impact on MC
2
 in 

comparison to a conventional cache. 

5. Comparison with other ECC cache:  In this experiment, we compare a 

conventional cache with and without traditional ECC mechanism (SECDED) 
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versus MC
2 

architecture. All three caches are constrained to have almost the 

same area and same failure rate. 

6. Comparison with Voltage Frequency Scaling:  Finally, we compare voltage 

scaling on MC
2
 architecture with traditional voltage frequency scaling on a 

conventional cache. 

A. Circuit Simulation and Analytical Modeling  

We carried out a Monte Carlo SPICE simulation using PTM models [43] for 65nm with 

read/write access time of 250 ps. The results show drastic increase in failure probability 

due to process variation as Vdd is scaled down. The general trend of this data is 

corroborated with the SRAM failure probability data for 65nm used by Wilkerson et al. 

[6], as shown in Figure 6.1. Based on these two sets of SRAM cell failure data from [6], 

we used analytical models of failure, as shown in Equations (6.1-6.4), to estimate the 

probabilities of failure for CC and MC
2

 with 16KB size. In the equations (6.1-4), p(V) = 

probability of failure of each SRAM cell at voltage V; and N = number of SRAM cells; n 

= data bitwidth; ncw and ndw are numbers of clean and dirty words respectively in MC
2
. 

<Explain briefly the equations below> 

Probability of failure of CC:   pfcc(V) =1 – (1-p(V))
N
           (6.1) 

Probability of failure of each clean data word:    

pfcw(V) = 

ini
n

i

n ppC 222

1

1 )1( 




             <TBfixed>           (6.2) 

 Probability of failure of each dirty data word: 

          pfdw(V) = 
npp )21(1 32 

                          (6.3) 

Probability of failure of MC
2
: 

         pfmc2(V) = 
ndwncw pfdwpfcw )1()1(1 

       (6.4) 
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Figure 6.1: Prob of Failure vs Vdd for SRAM cell 
from SPICE simulation and from [6] 

 

Figure 6.2: Prob of Failure vs Vdd for a 16KB 

cache for SRAM cell B 

 

 

Figure 6.3: Prob of Failure vs Vdd for a 16KB 

cache using SRAM cell A 

The failure probability of CC and MC
2
 is shown under two conditions: a) all clean: all 

data in cache are clean b) maximally dirty: the cache has maximum possible dirty data. 

The results clearly show MC
2
 architecture achieves significantly higher reliability than 

CC. For the SRAM cell used by Wilkerson et al. [6], minimum Vdd Vddmin at 

probability of failure of 1e-3 is 0.55V; while for the SRAM cell used for our SPICE 

simulation, Vddmin for same failure probability is 0.75V. Henceforth, the former SRAM 

cell is referred to as SRAM cell A, while latter is referred to as SRAM cell B.  

 

B. Comparison with Conventional Cache at nominal Vdd  

Recall that a conventional cache (CC) is tied to the processor’s nominal Vdd (Figure 3.3) 

whereas for MC
2
, the data side can exploit voltage scaling (low Vdd in Figure 3.4).  In 

this experiment, for SRAM cell A, we scale down the data side Vdd of MC
2 

till 0.55V (for 

a failure rate of 10
-3

) and measure IPC loss and reduction in total energy (dynamic and 

leakage), measured w.r.t performance and energy of a CC at nominal Vdd, which is 

assumed to be 1.1V for 65nm LSTP process according to ITRS [27].    
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Figure 6.4 shows the working set size (WSS) for each benchmark (as explained in 

Section 2) and corresponding IPC loss for MC
2
-B (best case) at 1.05V and 0.55V. As 

expected, benchmarks with low WSS (<=8KB) show low IPC degradation (< 2% at 

1.05V). This is due to decrease in effective cache size/ associativity in MC
2
. Some 

benchmarks with even high WSS (>=16KB) (e.g., jpeg-encode, lame, ghostscript) have 

relatively low performance loss because of latency hiding due to out-of-order execution.  

When Vdd is further scaled down to 0.55V (inducing large number of SRAM errors), 

some benchmarks (e.g., tiffmedian and stringsearch) experience high reduction in IPC 

relative to 1.05V, while  some others (e.g., dijkstra, fft) have almost same IPC as at 

1.05V. This is because each benchmark is affected differently depending upon the actual 

location of the errors and the memory access pattern.  

<Add a figure on Miss Rate vs Vdd for MC2; explain the figure> Figure 6.5 shows 

performance degradation and energy savings, averaged for all benchmarks, as Vdd is 

scaled down: note that we observe a modest reduction in IPC, but rapid reduction in 

energy consumption. At lowest Vdd, average IPC losses for MC
2
 are 1% and 3.5% for 

the best and worst cases respectively, while the corresponding reductions in energy are 

61.5% and 59.5%. We repeated the above experiment using SRAM failure data obtained 

by our SPICE/Matlab simulation. The results, as shown in Figure 6.6, follow the trend 

observed previously. The average loss in IPC is about 2-4.5% at Vccmin. The reduction 

in EDP is about 45%. Thus MC
2
 architecture results in high reduction in energy with 

low performance degradation. 

 

Figure 6.4:  Working Set Size for each benchmark and % IPC loss (for 1.05V, 0.55V) with 16KB MC2 
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Figure 6.5: IPC loss and Energy Savings of MC2 
vs Vdd  (w.r.t  CC at 1.1V) (average of all 

benchmarks) 

 

Figure 6.6: IPC loss and Energy Savings of 

MC2 vs Vdd  (w.r.t  CC at 1.1V) (average of 

all benchmarks) 

C. Comparison with Conventional Cache at Different Yields 

 

In this experiment, we operate both the CC and MC
2
 at their respective Vccmin for the 

desired yield point. In this case, we assume the critical path of the processor-L1cache 

core complex lies in the cache access. The nominal Vdd of the cache is constrained by its 

own access delay. Under such a condition, cache Vdd can be scaled down to a level 

sufficient to ensure memory reliability according to the desired yield point. Based on the 

probability of cache failures obtained using analytical models, minimum Vdd for CC 

(Vccmin_cc) and minimum Vdd for MC
2
 (Vccmin_mc2) are obtained for different yield 

points, as shown in Figure 6.7. The CC is operated at Vccmin_cc while the MC
2
 is 

operated with its data side at Vccmin_mc2 and the tag side at nominal Vdd. We used the 

SRAM cell A [6] for this experiment. 

First, we observe that the difference in Vccmin for CC and MC
2
 is significant at about 

200-300 mV (Figure 6.8). The difference increases as the desired yield is increased. The 

performance loss for MC
2
 is low at different yield points; loss in IPC is less than 1% for 

MC2-B and less than 3.5% for MC2-W ([44]). On the other hand, energy and EDP for 

MC
2
 is about 20 to 40% lower than CC depending upon the yield point (Figure 6.9). The 

results show that MC
2
 achieves high reduction in energy with low performance loss for a 

wide range of yields. 
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Figure 6.7: Vccmin for CC and MC2 using analytical models 
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Figure 6.8: Vccmin for CC and MC2 for different 

failure rates 
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Figure 6.9: Difference in EDP for MC2-B and 

MC2-W w.r.t CC 

D. Miss Energy Sensitivity Analysis  

   We expect that MC
2
 will have more misses than a CC of the same size, because of 

decrease in effective cache size and SRAM errors at low Vdd. Thus the energy savings 

from aggressive voltage scaling may be offset by increased energy from additional 

memory accesses due to higher miss rates. To study this phenomenon, we conduct a 

sensitivity analysis by varying the cache miss energy. We define normalized miss energy 

(NME) as the ratio of read miss energy to read hit energy for a CC of same size. Energies 

of other miss events such as read error miss and clean write miss are also increased 

proportionately. In this experiment, NME is varied from 5 to 100. Though the exact value 

of NME depends on the implementation, typically for L1 cache, NME of 5 indicates an 

on-chip L2 cache [35], while NME of 100 or more is likely if the L2 cache is off-chip [3].  

  Figure 6.10 shows % reduction in Energy-Delay-Product (EDP) of MC
2 

at 0.55V 

(measured w.r.t. CC at nom Vdd) for the top 8 benchmarks with highest number of 

misses. We observe that for some benchmarks (e.g., tiffmedian & dijsktra), EDP 

increases significantly when cache miss energy increases.  We also measure the trend in 

EDP reduction, averaged over all benchmarks, for different Vdd and different NME, as 

shown in Figure 6.11. We observe that for even high NME (50-100), MC
2
 consumes less 

energy than CC, when operated at Vdd 0.95V or lower. Therefore, for a wide range of 

NME and hence with both offchip and onchip L2 cache, there exists a wide range of Vdd 
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for which energy and EDP of MC
2
 are significantly less than that of CC at nominal 

Vdd.  

 

Figure 6.10: % Savings in EDP at 0.55V for 

varying normalized miss energy 

 

 

Figure 6.11: % Reduction in EDP for 

different Vdd and different NME (average 

of all benchmarks) 

E. Comparison with SECDED Cache with Equal Area 

In this experiment, we compare MC
2
 with SECDED ECC, which is commonly used in 

caches for dynamic error detection and correction. Use of SECDED ECC for caches leads 

to significant area overhead because of extra parity bit storage (8 parity bits for 64 data 

bits) and associated logic. It also increases cache access timing significantly due to 

SECDED decoding logic on every read access. For a 16KB 8-way associative cache, 

based on synthesis results for 65nm and estimates from CACTI 4.1, SEDED ECC logic 

increases the delay of output mux/driver by 135% and total cache delay by 65%. Area 

overhead of the SECDED cache is 45% over conventional cache without any ECC.  

In order to carry out a fair comparison, we scale up SRAM transistor width, such that 

total area of the SECDED cache with smaller transistors is equal to the area of a CC and 

MC
2
 with bigger transistors. We determined failure probabilities of both SRAM cells 

(bigger and smaller) using a Monte Carlo SPICE simulation with PTM models [43] for 

65nm. Then, we used our analytical models of failure to determine the failure probability 

of 1) SECDED cache 2) CC and 3) MC
2
, all with equal area. The results, as shown in 

Figure 6.6, demonstrate that, at given voltage, MC
2
 is the most reliable cache, while 

SECDED is the least reliable cache.  In fact, we observe that, SECDED cache is worse 

than a CC of equal area for process variation-induced failures.  
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Figure 6.12: Probability of failure vs Vdd for 

SECDED cache, CC and MC2 under iso-area 

constraint 

 

Figure 6.13: % IPC loss  and % reduction in EDP 

(average of all benchmarks for MC2 and SECDED 

cache, normalized to CC of equal area and equal 
probability of failure 

 

In order to compare performance and energy, we further constrain that all three caches 

(SECDED, CC, MC
2
) have equal failure rate. Since SECDED is least reliable, it is run at 

nominal Vdd 1.1V while aggressive voltage reduction is applied to CC and MC
2
, such 

that probabilities of failure of all three caches are same at the respective Vdd. We assume 

the data side Vdd of CC can be scaled, like MC
2
, as explained in Section 3. The latency 

of CC is assumed to be 2 cycles while that of SECDED cache is assumed to be 3 cycles, 

because of the timing overhead of ECC logic. For MC
2
, like previous experiments, we 

consider two different cases – 2 cycles (best case: MC
2
-B) and 3 cycles (worst case: MC

2
-

W), as discussed earlier. 

Fig 6.7 shows %IPC loss and % difference in Energy-Delay-Product (EDP), averaged for 

all benchmarks, for MC
2
 and SECDED cache, when normalized to CC with equal area 

and at same probability of failure. We find the IPC loss for MC
2
 is ~0.5% for the best 

case (MC
2
-B) and ~3% for the worst case (MC

2
-W). Performance of SECDED cache is 

slightly less than that of MC
2
 worst case. The EDP of MC

2
 is 30-35% lower than that of 

SECDED cache. And MC
2
 achieves greater than 20% reduction in EDP over CC, even 

when both are subject to aggressive voltage scaling for iso-failure-rate. Hence, given an 

area budget and a failure rate, SECDED cache will consume more energy than CC. We 

also established that MC
2 

will consume significantly less energy than CC with a low loss 

in performance. <Explain intuition why SECDED is worse than CC> 

F. Comparison with traditional Voltage Frequency Scaling  

<Rewrite this explaining why we see only 3% increase in delay> In this experiment, we 

compare a conventional cache (CC) for which voltage / frequency is scaled down with a 

MC2 for which only Vdd is scaled down at fixed frequency. We assume after [36], the 

frequency scales linearly with voltage. Fig 6.6.1 shows the average increase in execution 

time for 25 Mibench applications for CC with voltage frequency scaling (VFS) and MC2 
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with Vdd scaling. Fig 6.6.2 shows the average EDP for these two architectures. It is 

evident that the performance penalty for VFS is very high (about 45% at lowest Vdd), 

while the performance penalty for MC2 is only modest (at about 3%). It is also observed 

for a wide rage of voltage, MC2 has significantly lower EDP than CC with VFS. 
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Figure 6.14: Increase in Execution Time for VFS 

and MC2 
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Figure 6.15: Reduction in EDP for MC2 and VFS 

 

G. Discussion 

The MC
2
 architecture exploits redundancy for fault tolerance and thus could be viewed as 

an error-correcting mechanism embedded in the cache array. For a wide range of 

embedded applications, we have shown that MC
2
 incurs only modest loss in performance, 

with significant reduction in energy, with only negligible area overhead. Under equal area 

constraints, MC
2
 provides significantly higher error tolerance than SECDED ECC, 

leading to higher reduction in Vdd and energy.   

Furthermore, we note that MC
2
 is a complementary technique that can be used with any 

existing cache architecture. For instance, it can be combined with SECDED to further 

increase the error tolerance leading to even lower Vdd subject to device limitation. MC
2
 

can also be potentially combined with error map based error correction techniques or 

with redundant rows/columns to increase the performance, for performance-critical 

applications.  

The extent of energy/EDP reduction by use of MC
2
 architecture depends on three factors: 

a) SRAM cell and its inherent probability of failure at the given frequency, b) desired 

yield point, and c) memory hierarchy (onchip vs offchip next level of memory) and miss 

energy. <Explain Fig 7.1 and “yield point”> Fig 7.1 shows the failure probability of CC 

and MC
2
 for two different SRAM cell. It clearly shows that the percentage reduction in 

minimum Vdd in using MC
2
 instead of CC depends on the desired yield point. In Table 

7.1, we show the performance loss and energy reduction for MC
2
 in comparison with CC 

for these two SRAM cells at two different yield point using NME of 5. As NME is 

increased, reduction in energy will reduce further. Though performance loss remains 
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similar for different SRAM cells and yield points, the reduction in energy is clearly 

dependent on the SRAM cell used and the yield point. Therefore, for a given SRAM cell 

and for a given yield, MC
2
 architecture may be very useful, while that may not be true for 

another SRAM cell for either same or different yield.    

Yield Y2

Yield Y1 Yield Y1

Yield Y2

 

Fig 7.1: Improvement in Reliability of the cache for two different SRAM cells 
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   Table 7.1: IPC degradation and reduction in 

energy for two different SRAM cells at different yield points 

 

Multi-copy cache can be treated as a superset of single-copy cache. MC
2
 can be used a 

conventional single copy cache with a minor change in hardware. By assuming all the 

data as clean, the MC
2
 data correction logic, as described in Section 3, would essentially 

work as multiplexer in a CC, outputting the single copy of the data accessed. Therefore a 

multi-copy cache can be used in two modes: a) single copy conventional mode with a 

single copy per data, and b) a multi-copy mode with multiple copies per data. In the 

single copy mode, the cache runs at high Vdd with higher energy consumption and higher 

performance. In multi-copy mode the cache runs at lower Vdd with lower energy 

consumption and lower performance. In multi-copy mode, as Vdd is scaled down from 

nominal Vdd to Vccmin, performance and energy consumption is also scaled down. 

Furthermore, in multi-copy mode, the actual Vdd of operation may be chosen based on 

the acceptable loss in performance and desired energy consumption.    

 

Finally we note that MC
2
 is a cache architecture that is effective against all kinds of 

SRAM failures including soft errors and hard failures. While in this paper we have 
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studied the RDT policy for MC
2
, many other policies can be examined to yield different 

levels of power savings and overheads in delay/area.   

 

7. CONCLUSION 

In this work, we presented MC
2
: a novel cache architecture that allows low Vdd 

operation for energy savings without affecting the reliability of the system. MC
2
 

maintains multiple copies of each data item, exploiting the fact that many embedded 

applications have unused cache space resulting from small working set sizes. On every 

cache access, MC
2
 detects and corrects errors using these multiple copies. We have 

shown the MC
2
 architecture is efficient, incurring negligible area overhead, and only 

modest performance penalty (<3.5%), but achieving significant energy savings for 

embedded applications. We have also shown that MC
2
 exhibits high levels of error 

tolerance; thus we can exploit aggressive voltage scaling for high reductions in energy 

consumption and energy-delay-product for on-chip caches. Our experiments on 

embedded benchmarks demonstrate that MC
2
 reduces total energy consumption by up to 

60% over conventional caches.  Future work will investigate integration of MC
2
 with 

other cache architectures and also other policies than RDT for MC
2
.<Mention further 

refinements possible in MC2 operation: as suggested by reviewer> 
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