

ABSTRACT
Caches are known to consume a large part of total microprocessor
power. Traditionally, voltage scaling has been used to reduce both
dynamic and leakage power in caches. However, aggressive
voltage reduction causes process-variation-induced failures in
cache SRAM arrays, which compromise cache reliability. We
present Multi-Copy Cache (MC2), a new cache architecture that
achieves significant reduction in energy consumption through
aggressive voltage scaling, while maintaining high error resilience
(reliability) by exploiting multiple copies of each data item in the
cache. Unlike many previous approaches, MC2 does not require
any error map characterization and therefore is responsive to
changing operating conditions (e.g., Vdd-noise, temperature and
leakage) of the cache. MC2 also incurs significantly lower
overheads compared to other ECC-based caches. Our experimental
results on embedded benchmarks demonstrate that MC2 achieves
up to 60% reduction in energy and energy-delay product (EDP)
with only 3.5% reduction in IPC and no appreciable area
overhead.

Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: Static Memory (SRAM)
B.3.2 [Design Styles] Cache Memories,
B.1.3 [Control Structure Reliability, Testing and Fault-Tolerance]:
Error Checking, Redundant Design.

General Terms
Algorithm, Design, Reliability, Theory

Keywords
Variation Aware Cache, Low Power Cache, Low Power Memory
Organization, Low Power Design, Fault Tolerance

1. INTRODUCTION
As ITRS roadmap predicts [1] [4], in the continued pursuit
of Moore’s law, power densities will continue to affect reliability
of both embedded SoCs and high performance desktop/server
processors. Although the logic content and throughput of the
systems will continue to increase exponentially, a flat curve must
be maintained for dynamic and leakage power in order to prolong
battery life, maintain cooling costs and mitigate the adverse effects

of increased power densities on reliability. The resulting Power
Management Gap must be addressed through various means
including architectural techniques. Caches are already known to
consume a large portion (about 30-70%) of total processor power
[2] [3] and on-chip cache size will continue to grow due to device
scaling coupled with performance requirements. Therefore, in
order to manage total power consumption and reliability of the
system, it is important to manage power and reliability of the
caches.

Traditionally, voltage scaling has been used to reduce the
dynamic and leakage power consumption of the cache. However,
aggressive voltage scaling causes process-variation-induced
failures in SRAM cells such as read access failures, destructive
read failures and write failures [5] [19]. Since executing
applications may not be tolerant to even a single bit error, caches
must be operated at a high Vdd with a very low probability of
failure leading to high energy consumption. However, by
exploiting mechanisms that allow a cache to become inherently
resilient to large number of cell failures, we can operate the cache
at a lower Vdd and thus gain significant energy savings.
 In this work, we propose Multi-Copy Cache (MC2), a novel
cache architecture that significantly enhances the reliability of the
cache by maintaining multiple copies of every data item.
Whenever a data is accessed, multiple copies of the accessed data
are processed to detect and correct errors. MC2 is particularly
useful for embedded applications since their working set sizes are
often much smaller than existing cache sizes, and the unused
cache space can be effectively used for storing multiple copies,
achieving error resiliency through redundancy. Such a cache has
high reliability and can be subject to aggressive voltage scaling
resulting in significant reduction in energy consumption.
Moreover, since errors are dynamically detected and corrected,
MC2 does not need any apriori error characterization of the cache.
Also, compared to other existing cache architectures exploiting
redundancy (e.g., ECC), MC2 incurs minimal performance and
area overheads. Our experimental results on embedded
benchmarks show that, compared to a conventional cache at
nominal Vdd, MC2 reduces energy consumption by up to 60%,
with only about 3.5% loss in performance and no appreciable area
overhead.

The rest of the paper is organized as follows: Section 2
discusses the opportunity for efficiently increasing cache
reliability and some background related to SRAM reliability.
Section 3 introduces the MC2 architecture and Section 4 discusses
the related work. In Section 5 presents the hardware
implementation and its overheads. Section 6 evaluates the
architecture in terms of performance and energy for a set of
embedded applications, and Section 7 concludes the paper.

E < MC2: Less Energy through Multi-Copy Cache

Arup Chakraborty, Houman Homayoun, Amin Khajeh, Nikil Dutt, Ahmed Eltawil, Fadi Kurdahi

 Center for Embedded Computer Systems, University of California, Irvine, CA, USA
{arup, hhomayou, akhajed, dutt, aeltawil, kurdahi}@uci.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10...$10.00.

237

2. BACKGROUND

A. Opportunity: Small Working Set Sizes
We exploit the fact that the working set sizes of many

embedded applications are much lower than available cache space
in modern embedded processors. Fritts et al., [8] showed that for
multimedia applications, working set size for instructions is less
than 8KB and that for data is less than 32 KB. Guthaus et al., [9]
showed that for most embedded applications, instruction and data
working set size is less than 4-8KB. Our own investigation for
MiBench embedded suite (Figure 2.1) shows that although there
are a few benchmarks with a working set size of 16-32K, most of
the benchmarks have a working set size of 8K or less, with about
50% of the applications having less than 2K as working set size.
On the other hand, as Table 2.1 shows, modern SoCs and
processors typically have L1 cache of sizes 16-64KB and L2 cache
sizes up to 2MB, demonstrating a significant portion of the cache
– outside of the working set -- is not used for many embedded
applications.
 We exploit this opportunity to utilize the extra cache space to
create an efficient error control mechanism embedded in the cache
by maintaining multiple copies of each data item. A number of
techniques have been previously proposed to increase reliability of
caches and SRAM memories. Some of these techniques like parity
and ECC [10] [11] [12] have the ability to dynamically detect and
correct only a limited number of errors but incur high penalty in
access latency and area. Other techniques [6] [13] [14] [15] [16]
[17] [27] provide high error tolerance but require a cache error-
map of various resolutions (per-byte to per-cache line) that must
be generated by BIST whenever there is a change in operating
conditions such as Vdd and frequency. Since SRAM failures are
highly dynamic and influenced by several conditions beyond the
control of users, such failures may not be captured by infrequent
BIST characterizations (as explained later). In contrast to previous
and related works, our MC2 architecture:

• can dynamically detect a very high number of errors in
SRAM arrays,

• does not require any BIST characterization,
• is responsive to dynamic changes in SRAM error pattern.
• unlike SECDED, incurs only a minimal impact on both

access latency and SRAM area and yet has high error
tolerance, and

• enables aggressive Vdd scaling, yielding significant
reduction in energy consumption.

Table 2.1: L1 and L2 cache sizes for modern microprocessors
Processor Intel

Xscale
ARM

Cortex A8
ARM

Cortex A9
Freescale
QorIQ P2

L1 size 32K 16-32K 16-64K 32K
L2 size 512K 2M 2M 512K

B. Process Variation and SRAM Reliability
 A dominant cause of SRAM cell failures is process variation
[14] [20] [21]. Random intra-die variations, mostly caused by
Random Dopant Fluctuations (RDF), lead to mismatches between
neighboring transistors resulting in failures in SRAM cells. Due to
process variation, SRAM cell failures may be of different types:
a) read access failure: reduction in bitline voltage differential
during read within the allowed read time, b) write access failure:

unsuccessful write within the allowed write time, c) read stability
failure: an increase in the pmos/nmos node voltage beyond the trip
voltage of the inverter pair causing a bit flip during read, and d)
hold failure: bit flip while in standby mode caused by decrease in
data retention voltage. Our proposed MC2 architecture is effective
against all such failures.

Figure 2.1: Minimum cache size with assoc. 8 needed for < 2% miss rate

Figure 2.2: Unexpected increase in failure as Vdd is increased due to
interaction between leakage power and temperature [22]

Figure 2.3: Interrelationship of Vdd, frequency, temperature,
leakage/dynamic power, etc and their effect on SRAM failure probability
(based on [22])

 Dynamic nature of SRAM failures: As shown by Khajeh et al.
[22], the probability of SRAM failure is highly dependent on Vdd,
frequency of operation, and temperature. It is well known that a
decrease in Vdd increases failure probability of SRAM failures
[14] [20]. However, an increase in Vdd increases the dynamic and
leakage power dissipation, which in turn increases the
temperature. Increase in temperature causes an increase in cell
delay resulting in a higher probability of failure. Moreover, the
increase in temperature increases the leakage power further
resulting in a positive feedback loop between the two [22].
Therefore, as Vdd is increased, temperature as well as leakage and
dynamic powers may increase in an interdependent fashion,
increasing the failure probability unexpectedly. Additionally, if a
set of SRAM cells are accessed very frequently or if they are
located near hotspots such as execution units, the dynamic power
dissipation of those cells will increase, leading to an increase in
temperature and inducing the cells towards failure [40]. Figure 2.3
(based on [22]) pictorially depicts the relationships between Vdd,

238

frequency, temperature, memory activity, power dissipation and
probability of failure. From the above discussion, we note that
SRAM failures are very dynamic: not only affected by user-
controlled operating conditions such as Vdd and frequency, but
also by other conditions such as voltage irregularities, leakage,
temperature, nearby hotspots, memory access pattern, drift in
frequency -- all of which may be constantly changing and are
beyond the control of the user. It is therefore crucial that any
error control mechanism in SRAM caches be responsive to
dynamic changes in error patterns, without being dependent on
static error maps – which MC2 accomplishes.

3. MC2 ARCHITECTURE

A. Basic Mechanism
The basic idea behind multi-copy cache (MC2) is to maintain

multiple copies of each data item in the cache. Such a mechanism
makes the cache resilient to a high number of SRAM failures. As
long as same bit-position of every copy is not affected by failures,
the errors can always be detected and may also be corrected1

In this paper, we present the RDT (Redundancy through
Duplication and Triplication) policy for MC2. We assume a
writeback data cache with write-allocate policy and true LRU
replacement policy. MC2 with RDT policy maintains 2 copies of
each clean data and 3 copies of each dirty data in the same set. If
a data in the cache is clean (i.e, unmodified by the processor), a
correct copy of that data is also available in the lower level of
memory (LLM). Therefore only 2 copies of the clean data need to
be maintained in the cache. Whenever a clean data is read by the
processor, both copies are compared with each other. If there is
any mismatch, an error is detected and the requested data is read
from the LLM and is forwarded to the processor. On the other
hand, if the requested data in the cache is dirty (i.e., modified by
processor), the most updated version of that data is in the cache
and not in the LLM. Hence for dirty data, 3 copies are be
maintained in the cache so that in the event of error(s), the correct
data can be generated by majority voting logic using all 3 copies.
Thus, the use of RDT policy would result in 2 or 3 cache lines
with same data in a given set.

. This
high error-resiliency technique allows the cache to operate under
aggressive low Vdd leading to reduction in energy and power
consumption. The multi-copy mechanism may be implemented in
many different ways, depending on cache organization, type of
cache (instruction or data), write policy (write-through or write-
back), write-miss policy (write-allocate or no write-allocate) and
replacement policy of the cache; each implementation of MC2 will
incur some overhead and potentially some performance
degradation. Thus the MC2 architecture must be designed
carefully to minimize these overheads while achieving low energy
with high resiliency.

Example: Figure 3.1 shows the physical contents of a particular
set s of an 8 way set associative MC2 for a sequence of reads and
writes. Each of the eight rectangles represents a cache line in the
given set. Initially the cache is cold and the set is empty. Then
four cache lines A, B, C and D, belonging to set s, are read one

1 It is very rare that same bit-positions of more than one copy will be

affected by failures. For a bit failure rate of 10-6, failure rate for two copies of
a 32-bit word is over 1 million times lower than that with single copy.

after another from the memory and placed in the set. At that point,
the set s contains 4 clean data, each with two adjacent copies.
Assume that there are multiple read accesses such that D becomes
the LRU data (marked by dots). Now the processor writes to data
A. After the write is completed, A would become dirty. Hence, it
would need 3 copies instead of its present 2 copies, requiring a
new copy of A to be created. This is done by evicting both copies
of LRU data D and using one of the freed cache lines to store the
3rd copy of A. Next, the processor writes to data C. A new copy of
C is created using the empty cache line present in the set s. As the
example shows, all copies of a given data may not be physically
adjacent. We now describe the detailed MC2 RDT cache
architecture operation and overheads.

Figure 3.1: Example of Reads and Writes to MC2

Figure 3.2: Conventional cache architecture

Figure 3.3: Multi-Copy cache architecture

239

B. Cache Architecture and Operation
In a conventional N-way associative cache (Figure 3.2), there

are N tag comparators producing N way-select signals (WS1-N).
During cache read, the way-select signals drive the output
multiplexer /driver which outputs the requested data from the
selected way. During cache write, way-select signals are also used
to write the data to the selected way. In the MC2 architecture
(Figure 3.3), the output multiplexer is replaced by data error
detection and correction logic. Using the way-select signals, this
logic compares multiple copies of the requested data and
accordingly, detects and corrects errors. It outputs the corrected
data and the read error signal, indicating if there is any error in the
accessed data. The write demultiplexers of the MC2 allow
simultaneous writing to multiple cache lines in the data and the
tag array of the set. Additionally there may be an optional check
logic that processes the cache flags (clean/dirty) and the way-
select signals to ensure that the RDT policy is being followed (i.e.,
2 copies for every clean data, 3 copies for every dirty data). The
flags logic will raise a machine check interrupt if it finds any
policy violation.

Furthermore, in the conventional cache (CC), the entire cache is
run on one Vdd domain, typically connected to the processor Vdd
(nominal Vdd) for L1 caches. Similarly, in MC2, the tag side of
the cache (tag SRAM array, comparators, decoder and write
demultiplexer) is connected to nominal Vdd. However, MC2’s the
data side (data array, error detect/correct logic, decoder and write
demultiplexer) is run on a separate Vdd that can be aggressively
scaled down. Level shifters are required while going from low to
high Vdd only (i.e., for data side output to processor) [41] and
generates negligible overheads as shown in Sections 5 & 6.

Figure 3.4: Flow chart of MC2 RDT operation (TM represents Tag
Matches)

Figure 3.4 shows the flowchart of the MC2 RDT cache
operation. The address tag bits from the processor are compared
with the tag bits stored for each cache line of the selected set. The

RDT policy ensures that, for any given address, there can be: no
tag match (cache miss); exactly two matches (cache hit for clean
data); exactly three matches (cache hit for dirty data). In case of a
miss (referred to as conventional miss), a new cache line is
fetched from the LLM. Depending upon the type of access (read or
write), either two or three cache lines in the selected set are
evicted and are replaced by the newly fetched line. For write
accesses, all three copies must be updated. For cache hits for clean
data, the type of access may be either read or write. For read
accesses, both copies of the clean data are compared with each
other. If there is a match, the data is forwarded to the processor.
This is referred to as clean read hit. If there is no match, read
error miss has happened and the correct copy of the requested data
is fetched from LLM. Write accesses to any clean data always
result in clean write misses. This event represents clean to dirty
transition (top right corner of Figure 3.4). The cache line
corresponding to the accessed address is fetched from the LLM.
An existing line in the selected set is evicted and replaced with
the newly fetched line, resulting in three copies of the accessed
data. Now all three copies are marked dirty and updated with the
data from the processor. If there are 3 tag matches during tag
comparison, this must be a cache hit for dirty data. If the access is
a read operation, the correct data is generated by majority voting
logic among all 3 copies. This is referred to as dirty read hit. If the
access is a write operation, all 3 copies must be updated with the
data from the processor. This is referred to as dirty write hit.
Whenever there is a dirty data writeback, all three copies are
identified using a secondary tag search and processed and then,
the correct data is written to LLM.

The MC2 RDT2

4. RELATED WORK

 cache will incur overheads in delay, area and
energy due to error detect/ correct logic, check logic, level shifters
and additional operations required during cache access (such as
writing to multiple lines and tags). Sections 5 & 6 examine these
overheads and establish that these overheads are minimal.

There are several previous works related to improving SRAM
reliability in face of process variation and soft errors especially for
low voltage operation. A number of these works approach the
problem from a circuit perspective, improving reliability of each
SRAM cell. Apart from the familiar 6T SRAM cell, 8T SRAM
cell [23] and 10T SRAM cell [25] have been proposed. Both 8T
and 10T SRAM cells improve read stability, though the stability of
the inverter pair remains unchanged. Kulkarni et al. [24] proposed
a Schmidt trigger based 10T SRAM cell with inherent tolerance
towards process variation using a feedback-based mechanism.
However, this SRAM cell requires a 100% increase in area and
about 42% increase in access time for low voltage operation.

Several architectural techniques have also been proposed to
improve reliability of on-chip cache by using redundancy. It is
typical in the industry to have redundant rows and columns in the
SRAM cache. Any defective row or column may be detected
before shipping and is replaced by a redundant row or column
using laser fuses [26]. While this technique is effective against
manufacturing defects, it does not protect against process variation
induced errors, which depend heavily on operating conditions such

2 For the rest of this paper, we use the terms MC2 with RDT policy and MC2
interchangeably.

240

as Vdd. A number of other techniques have been proposed to
improve SRAM array reliability against process variation failures.
Wilkerson et al. [6] proposed multiple techniques using part of a
cache line as a redundancy for defective bits for the rest of cache
lines in the same set. It disables the faulty words and replaces
them with non-faulty words in the same set. Agarwal et al. [13]
proposed a fault tolerant cache architecture in which the column
multiplexers are programmed to select non-faulty block in the
same row, if the accessed block is faulty. A similar work is PADed
caches [17] which use programmable address decoders that are
programmed to select non-faulty blocks as replacements of faulty
blocks. Makzhan et al. [15] and Sasan et al.,[16] [27] proposed a
number of cache architectures in which the error-prone part of the
cache is fixed using either a separate redundancy cache or parts of
the same cache or using charge pumps to increase Vdd of the
defective wordlines. However all the techniques proposed in these
works [6] [13] [15] [16] [17] [27] require BIST characterization of
the cache and generation of some form of a cache error map with
various levels of granularity: per wordline, per cache line, per byte
etc. Whenever Vdd is scaled up or down, the BIST engine is run
and the entire cache memory is characterized generating an error
map. Every time BIST characterization is run, the cache has to be
flushed of its current contents followed by writing, reading and
comparing by the BIST engine before the cache is ready for use.
The time overhead of the BIST characterization would limit the
frequency at which Vdd can be scaled up or down. The storage of
error map, depending upon its granularity, also increases the area
overhead of the cache. Even with these costs, a basic assumption
behind the above works is that, once the BIST characterization is
done, the error map perfectly describes the locations of process
variation errors until the next change in Vdd. As discussed in
Section 2, this assumption is not valid because of the dynamic
nature of SRAM failures.

In order to improve SRAM reliability against such dynamic
failures, dynamic error detection and correction ability is required
without using any static error map. One of most popular
mechanism for such dynamic error detection/correction is error
control coding (ECC), which is widely used in caches and
memories. The simplest form of ECC is one-bit parity which
detects odd number of errors in the data and is often used in L1
caches [28]. Since such one-bit parity mechanisms do not have any
correction capability, it is not useful except for instruction caches
or data caches with write through policy. Another form of ECC
used in caches is SECDED (single error correction, double errors
detection). Hsiao et al. [10] proposed an optimal minimum-odd
weight column SECDED code that is suitable for fast
implementation in memory. However, inspite of its optimality, the
Hsaio code incurs multiple clock cycle latencies for caches and
significant area overhead (about 30%), as we show later in the
results. Kim et al. [29] and Naseer et al. [30] have proposed ECC
schemes to correct multiple error bits and further improve
reliability beyond SECDED. However, as it has been shown by
Mazumder [31] and Agarwal et al. [13], ECC mechanism beyond
one-bit correction capability cannot be implemented in memory
because of the area and delay overheads. Zhang et al. [18] used
replication of some “hot” frequently used cache lines to mitigate
soft errors. Such a technique has non-uniform error tolerance and
is ineffective towards process variation-induced failures.
Moreover, it requires additional error control mechanism such as

parity for its operation. A recent work uses configurable part of the
cache for storing multiple ECC check bits for different segments
of cache line using an elaborate Orthogonal Latin Square Code
ECC [42] to enable dynamic error correction. This requires upto 8
levels of XOR gates for decoding, resulting in significant increase
in cache critical path delay.

In contrast to previous works, our MC2 architecture which can
detect and correct errors dynamically without requiring any BIST
characterization and error map storage. MC2 provides better
reliability than SECDED cache with minimal area overhead and
much less latency to detect/correct errors. Compared to elaborate
ECC mechanisms such as [42], MC2 architecture has a simple
detection/correction mechanism resulting in much lower delay
overhead. Indeed, as we show in the next section, MC2 incurs less
than 3% overhead in cache delay and less than 2% increase in
read hit dynamic energy with negligible area overhead.

5. HARDWARE IMPLEMENTATION AND
OVERHEADS
 The MC2 architecture has three main changes over a
conventional cache (CC): a) the output mux of the CC (Figure 5.1)
is replaced by the data detection & correction logic (Figure 5.2),
b) level shifters are needed only when signals travel from low to
high Vdd domains (data side output to the processor), and c)
additional operations are required during cache access (writing to
multiple lines and tags during cache write, extra line-fill during
clean write miss). For level shifting, we use dual Vdd/Vth logic
gates with built-in level shifting [41] at the data side output of the
cache. Such gates use a higher threshold voltage for PMOS
transistors driven by low Vdd inputs and have only a slightly
increased delay (< 10ps) and almost no additional overhead in
power consumption compared by conventional single Vdd gates,
as discussed in our technical report [44]. The analysis in this
section covers the MC2 architecture using the RDT policy.

The data error detection & correction logic is constituted by a
number of Bit Error Detect/Correct (BEDC) logic blocks, one for
each data bit (Figure 5.2). BEDCi for ith data bit outputs the
following signals: a) REi, read error signal b) NE-Di, no-error data
bit c) C-Di, corrected data bit. REi indicates if there is any error
and is relevant only for clean data. NE-Di is the correct output bit
if there is no error while C-Di is the corrected output bit selected
using majority voting of three copies. The BEDC block essentially
consists of two parallel parts – one for error detection and the
other for error correction. The error detection logic uses N-input
OR and AND gates to produce outputs REi and NE-Di. The error
correction logic uses an N-input XOR gate to produce output C-Di
(Figure 5.3). To enable quantitative comparisons, we synthesized
the output logic for MC2 (error detect/correct logic and the check
logic) as well as the multiplexer & output driver of CC using
Synopsys Design Compiler for TSMC 65nm typical library for a
16K 8-way associative cache. We found that the delay of MC2
output logic is increased only by 5% compared to CC output mux
while area and power consumption are lower than CC mux.

To put these overheads in perspective of the entire cache, we
used CACTI 4.1 [39] and estimated that for a 16K 8-way
associative cache, the output mux/driver contributes to 48% of
total delay, 8% of dynamic power, 10% of leakage power and 3%
of area for CC. Recall that the MC2 architecture replaces CC’s

241

output mux with MC2 output logic; we expect that the multi-copy
mechanism will increase the delay of the cache nominally
(estimated < 3%). Since the area of MC2 output logic is less than
CC mux area, we conclude that MC2 has no appreciable area
overhead. In order to account for additional operations in MC2, we
developed an elaborate dynamic energy model for each cache
event, as described in [44]. In this paper, we have assumed that
techniques such as horizontal and vertical sharing of sleep
transistor sharing for wordline drivers, input and output drivers
and decoder leakage [45][46] are in place. The results of this
model are shown in Figure 5.4. For example, there is only 2%
increase in dynamic energy for read hit and about 17% increase
for write miss. Since there is negligible area overhead, we assume
there is no change in leakage power. The total energy overhead of
MC2 is application dependent and is examined in the next section.

 The estimate of delay overhead is specific to the base cache
size, associativity and the synthesis library used. There may be
further delay of the cache logic pipeline due to Vdd scaling, some
of which may be reduced by using dual-Vth caches [34]. In
general, the impact on the cache access timing would vary,
depending on a number of factors such as cache associativity,
organization, logic implementation and process (technology node
and use of dual-Vth). Hence, rather than examining random design
configurations, we evaluate MC2 architecture for the design corner
cases; i.e. the best and the worst case timing scenarios. Similarly,
the estimate of dynamic energy is specific to cache miss energy,
assumed to be 5 times cache hit energy, according to [35].

Figure 5.1: Output multiplexer / driver of conventional cache (16K 8
way cache)

Figure 5.2: Data error detection and correction logic of MC2 (16K 8 way
cache)

……

8 input OR

……

8 input AND

……
WS1 D1 WS8 D8 WS1bar D1 WS8bar D8 WS1 D1 WS8 D8

NE-DataOut ReadError

C-DataOut

OROut ANDOut 8 input XOR

Figure 5.3: Bit error detection & correction (BEDC) logic

Figure 5.4: Normalized dynamic energy of CC and MC2 events (all
normalized to CC Read Hit)

6. EXPERIMENTAL RESULTS
 The experiments are designed to evaluate the MC2 architecture
in terms of energy and performance for standard embedded
benchmarks.

A. Experimental Setup
Table 6.1 & Table 6.2 outline our experimental setup for the

base processor configuration and benchmarks respectively. The
processor is ARM-11-like configured with a 16K 8-way set
associative cache. We modified Simplescalar 3.0 [32] extensively
to support MC2 RDT architecture. The embedded benchmarks are
from the MiBench suite [9]. All benchmarks are compiled with
Compaq alpha compiler using –O4 flag for Alpha 21264 ISA.

The load/store latency of 2 cycles is assumed to be broken into
actual cache access taking place in cycle 1, while the bus access
taking only a part of the next cycle. Based on this, we assume two
scenarios for MC2 cache access: a) best case (MC2-B): MC2 delay
overhead fits in the remaining time in 2nd cycle, resulting in total 2
cycle latency and no penalty c) worst case (MC2-W): Error
detection/correction delay is long enough such that total 3 cycles
is needed for every access. From our discussion in Section 5, the
cache delay is increased only slightly (< 3%) in nominal Vdd.
However, considering the increase in logic delay due to Vdd
scaling, we assume that in the worst case, the latency of the cache
would be increased by one full cycle.

Table 6.1: Base processor configuration (ARM-11 like)

I-cache 16KB, 2 cycle
L2 cache 256KB, 15 cycles
Fetch, dispatch 1 wide
Issue In-order, non blocking
Execution Out-of-order
Memory 50 cycles
Instr Fetch Queue 4
Ld/Str Queue 16
RUU size 8
Execution units 1 INT, 1 FP simple & mult/div
Pipeline 8 stages
Frequency 1 GHz

242

Table 6.2: Benchmarks (all with large input sets from MiBench)
Automotive basicmath, bitcnt, qsort, susan (smooth,

edges, corners)
Consumer jpeg-encode, jpeg-decode, lame, mad,

tiff2bw, tiff2rgba, tiffdither, tiffmedian
Networking dijkstra, patricia
Office ghostscript, stringsearch
Security sha, pgp.sign, pgp.verify
Telecom crc32, fft, ifft, gsm-encode

Probability of Failure for Caches: For estimating cache failure

probability, we used the data for failure probability of each SRAM
cell for 65nm from [6]. The general trend of this data is
corroborated by a Monte Carlo SPICE simulation using PTM
models [43] for 65nm with read/write access time of 250 ps. Using
the SRAM cell failure data from [6] and analytical models of
failure, as shown in Equations (6.1-6.4), we estimated the
probabilities of failure for CC and MC2

 with 16KB size. In the
equations (6.1-4), p(V) = probability of failure of each SRAM cell
at voltage V; and N = number of SRAM cells; n = data bitwidth;
ncw and ndw are numbers of clean and dirty words respectively in
MC2.
Probability of failure of CC: pfcc(V) =1 – (1-p(V))N (6.1)
Probability of failure of each clean data word:
 pfcw(V) = ini

n

i

n ppC 222

1
1)1(−

=

−∑

(6.2)

 Probability of failure of each dirty data word:

 pfdw(V) = npp)21(1 32 +−− (6.3)
Probability of failure of MC2:

 pfmc2(V) = ndwncw pfdwpfcw)1()1(1 −−− (6.4)
 Figure 6.1 shows the failure probability of CC and MC2 under
two conditions: a) all clean: all data in cache are clean b)
maximally dirty: the cache has maximum possible dirty data. The
results clearly show MC2 architecture achieves significantly
higher reliability than CC.
 In the following subsections, we carry out three experiments.
First, we compare a conventional cache running at nominal Vdd
versus a MC2 with Vdd scaled down. In second experiment, we
carry out a sensitivity analysis by varying L1 cache miss energy. In
the last experiment, we compare a conventional cache (CC) with
and without traditional ECC mechanism (SECDED) versus MC2.
We conclude this section with a discussion based on the results of
the experiments

Figure 6.1: Probability of failure vs Vdd for CC and MC2

B. Comparison with CC at nominal Vdd
Recall that a conventional cache is tied to the processor’s

nominal Vdd (Figure 3.2) whereas for MC2, the data side can
exploit voltage scaling (low Vdd in Figure 3.3). In this
experiment, we scale down the data side Vdd of MC2 till 0.55V
(for a failure rate of 10-3) and measure IPC loss and reduction in
total energy (dynamic and leakage), measured with .respect to
performance and energy of a CC at 1.1V.

Figure 6.2 shows the working set size (WSS) for each
benchmark (as explained in Section 2) and corresponding IPC loss
for MC2-B (best case) at 1.05V and 0.55V. As expected,
benchmarks with low WSS (<=8KB) show low IPC degradation (<
2% at 1.05V). This is due to decrease in effective cache size/
associativity in MC2. Some benchmarks with even high WSS
(>=16KB) (e.g., jpeg-encode, lame, ghostscript) have relatively
low performance loss because of latency hiding due to out-of-order
execution. When Vdd is further scaled down to 0.55V (inducing
large number of SRAM errors), some benchmarks (e.g., tiffmedian
and stringsearch) experience high reduction in IPC relative to
1.05V, while some others (e.g., dijkstra, fft) have almost same
IPC as at 1.05V. This is because each benchmark is affected
differently depending upon the actual location of the errors and the
memory access pattern.

 Figure 6.3 shows performance degradation and energy savings,
averaged for all benchmarks, as Vdd is scaled down: note that we
observe a modest reduction in IPC, but rapid reduction in energy
consumption. At lowest Vdd, average IPC losses for MC2 are 1%
and 3.5% for the best and worst cases respectively, while the
corresponding reductions in energy are 61.5% and 59.5%. Thus
MC2 architecture results in high reduction in energy with low
performance degradation.

Figure 6.2: Working Set Size for each benchmark and % IPC loss (for
1.05V, 0.55V) with 16KB MC2

C. Miss Energy Sensitivity Analysis
 We expect that MC2 will have more misses than a CC of the
same size, because of decrease in effective cache size and SRAM
errors at low Vdd. Thus the energy savings from aggressive
voltage scaling may be offset by increased energy from additional
memory accesses due to higher miss rates. To study this
phenomenon, we conduct a sensitivity analysis by varying the
cache miss energy. We define normalized miss energy (NME) as
the ratio of read miss energy to read hit energy for a CC of same
size. Energies of other miss events such as read error miss and
clean write miss are also increased proportionately. In this

243

experiment, NME is varied from 5 to 100. Though the exact value
of NME depends on the implementation, typically for L1 cache,
NME of 5 indicates an on-chip L2 cache [35], while NME of 100
or more is likely if the L2 cache is off-chip [3].

Figure 6.3: IPC loss and Energy Savings of MC2 vs Vdd (w.r.t CC at
1.1V) (average of all benchmarks)

 Figure 6.4 shows % reduction in Energy-Delay-Product (EDP) of
MC2 at 0.55V (measured w.r.t. CC at nom Vdd) for the top 8
benchmarks with highest number of misses. We observe that for
some benchmarks (e.g., tiffmedian & dijsktra), EDP increases
significantly when cache miss energy increases. We also measure
the trend in EDP reduction, averaged over all benchmarks, for
different Vdd and different NME, as shown in Figure 6.5. We
observe that for even high NME (50-100), MC2 consumes less
energy than CC, when operated at Vdd 0.95V or lower. Therefore,
for a wide range of NME and hence with both offchip and onchip
L2 cache, there exists a wide range of Vdd for which energy and
EDP of MC2 are significantly less than that of CC at nominal
Vdd.

Figure 6.4: % Savings in EDP at 0.55V for varying normalized miss
energy

D. Comparison with SECDED Cache with Equal Area
In this experiment, we compare MC2 with SECDED ECC,

which is commonly used in caches for dynamic error detection and
correction. Use of SECDED ECC for caches leads to significant
area overhead because of extra parity bit storage (8 parity bits for
64 data bits) and associated logic. It also increases cache access
timing significantly due to SECDED decoding logic on every read
access. For a 16KB 8-way associative cache, based on synthesis

results for 65nm and estimates from CACTI 4.1, SEDED ECC
logic increases the delay of output mux/driver by 135% and total
cache delay by 65%. Area overhead of the SECDED cache is 45%
over conventional cache without any ECC.

Figure 6.5: % Reduction in EDP for different Vdd and different NME
(average of all benchmarks)

In order to carry out a fair comparison, we scale up SRAM

transistor width, such that total area of the SECDED cache with
smaller transistors is equal to the area of a CC and MC2 with
bigger transistors. We determined failure probabilities of both
SRAM cells (bigger and smaller) using a Monte Carlo SPICE
simulation with PTM models [43] for 65nm. Then, we used our
analytical models of failure to determine the failure probability of
1) SECDED cache 2) CC and 3) MC2, all with equal area. The
results, as shown in Figure 6.6, demonstrate that, at given voltage,
MC2 is the most reliable cache, while SECDED is the least
reliable cache. In fact, we observe that, SECDED cache is worse
than a CC of equal area for process variation-induced failures.

Figure 6.6: Probability of failure vs Vdd for SECDED cache, CC and
MC2 under iso-area constraint

In order to compare performance and energy, we further
constrain that all three caches (SECDED, CC, MC2) have equal
failure rate. Since SECDED is least reliable, it is run at nominal
Vdd 1.1V while aggressive voltage reduction is applied to CC and
MC2, such that probabilities of failure of all three caches are same
at the respective Vdd. We assume the data side Vdd of CC can be
scaled, like MC2, as explained in Section 3. The latency of CC is
assumed to be 2 cycles while that of SECDED cache is assumed to
be 3 cycles, because of the timing overhead of ECC logic. For
MC2, like previous experiments, we consider two different cases –

244

2 cycles (best case: MC2-B) and 3 cycles (worst case: MC2-W), as
discussed earlier.

Fig 6.7 shows %IPC loss and % difference in Energy-Delay-
Product (EDP), averaged for all benchmarks, for MC2 and
SECDED cache, when normalized to CC with equal area and at
same probability of failure. We find the IPC loss for MC2 is
~0.5% for the best case (MC2-B) and ~3% for the worst case
(MC2-W). Performance of SECDED cache is slightly less than that
of MC2 worst case. The EDP of MC2 is 30-35% lower than that of
SECDED cache. And MC2 achieves greater than 20% reduction in
EDP over CC, even when both are subject to aggressive voltage
scaling for iso-failure-rate. Hence, given an area budget and a
failure rate, SECDED cache will consume more energy than CC.
We also established that MC2 will consume significantly less
energy than CC with a low loss in performance.

Figure 6.7: % IPC loss and % reduction in EDP (average of all
benchmarks for MC2 and SECDED cache, normalized to CC of equal
area and equal probability of failure

E. Discussion
The MC2 architecture exploits redundancy for fault tolerance

and thus could be viewed as an error-correcting mechanism
embedded in the cache array. For a wide range of embedded
applications, we have shown that MC2 RDT incurs only modest
loss in performance, with significant reduction in energy, with
only negligible area overhead. Under equal area constraints, MC2
RDT provides significantly higher error tolerance than SECDED
ECC, leading to higher reduction in Vdd and energy.

Furthermore, we note that MC2 is a complementary technique
that can be used with any existing cache architecture. For instance,
it can be combined with SECDED to further increase the error
tolerance leading to even lower Vdd subject to device limitation.
MC2 can also be potentially combined with error map based error
correction techniques or with redundant rows/columns to increase
the performance, for performance-critical applications.

Finally we note that MC2 is a cache architecture that is effective
against all kinds of SRAM failures including soft errors and hard
failures. While in this paper we have studied the RDT policy for
MC2, many other policies can be examined to yield different levels
of power savings and overheads in delay/area.

7. CONCLUSION
In this work, we presented MC2: a novel cache architecture that

allows low Vdd operation for energy savings without affecting the

reliability of the system. MC2 maintains multiple copies of each
data item, exploiting the fact that many embedded applications
have unused cache space resulting from small working set sizes.
On every cache access, MC2 detects and corrects errors using these
multiple copies. We introduced the MC2 with RDT policy
architecture and demonstrated its efficiency, incurring negligible
area overhead, and only modest performance penalty (<3.5%), but
achieving significant energy savings for embedded applications.
We have also shown that MC2 RDT exhibits high levels of error
tolerance; thus we can exploit aggressive voltage scaling for high
reductions in energy consumption and energy-delay-product for
on-chip caches. Our experiments on embedded benchmarks
demonstrate that MC2 RDT reduces total energy consumption by
up to 60% over conventional caches. Future work will investigate
integration of MC2 with other cache architectures and also
policies other than RDT for MC2.

ACKNOWLEDGMENT
The authors would like to thank Aseem Gupta for his valuable
inputs. This work was partially supported by NSF grant CCF
0702797.

REFERENCES
[1] International Technology Roadmap for Semiconductors, 2008.

www.itrs.net
[2] W. Wong, C. Koh, et al., "VOSCH: Voltage scaled cache

hierarchies," in Proc. ICCD 2007.
[3] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable

cache for low energy embedded systems,” ACM TECS, vol.
4, 2005.

[4] F. Behmann, “Embedded.com - The ITRS process roadmap
and nextgen embedded multicore SoC design,” Mar. 2009.

[5] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of
failure probability and statistical design of SRAM array for
yield enhancement in nanoscaled CMOS,” IEEE TCAD, vol.
24, 2005.

[6] C. Wilkerson, H. Gao, et al., “Trading off Cache Capacity
for Reliability to Enable Low Voltage Operation,” in Proc.
ISCA 2008.

[7] J. Fritts and W. Wolf, “Multi-level cache hierarchy
evaluation for programmable media processors,” in Proc.
IEEE SiPS 2000.

[8] J. Fritts, W. Wolf, and B. Liu, “Understanding Multimedia
Application Characteristics for Designing Programmable
Media Processors,” in Proc. SPIE 1999.

[9] M. Guthaus, J. Ringenberg, et al., “A free, commercially
representative embedded benchmark suite,” in Proc. IEEE
WWC 2001.

[10] M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-
column SEC-DED Codes,” IBM JRD, 1970.

[11] ARM Inc., “ARM Cortex-A8 Technical Reference Manual.”
http://www.arm.com/products/CPUs/ARM_Cortex-A8.html

[12] G. Sohi, “Cache memory organization to enhance the yield of
high performance VLSI processors,” IEEE TC, vol. 38, 1989.

245

[13] A. Agarwal, B. Paul, et al., “A process-tolerant cache
architecture for improved yield in nanoscale technologies,”
IEEE TVLSI, vol. 13, 2005.

[14] A.K. Djahromi, A.M. Eltawil, et al., “Cross Layer Error
Exploitation for Aggressive Voltage Scaling,” in Proc. ISQED
2007.

[15] M. Makhzan, A. Khajeh, et al., “Limits on voltage scaling for
caches utilizing fault tolerant techniques,” in Proc. ICCD
2007.

[16] A. Sasan, H. Homayoun, et al., “A fault tolerant cache
architecture for sub 500mV operation: resizable data
composer cache (RDC-cache),” in Proc. CASES 2009.

[17] P. Shirvani and E. McCluskey, “PADded cache: a new fault-
tolerance technique for cache memories,” in Proc. IEEE VTS,
1999.

[18] Wei Zhang, S. Gurumurthi, et al., “ICR: in-cache replication
for enhancing data cache reliability,” in Proc. IEEE DSN
2003.

[19] Q. Chen, H. Mahmoodi, et al., “Modeling and testing of
SRAM for new failure mechanisms due to process variations
in nanoscale CMOS,” in Proc. IEEE VTS 2005.

[20] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of
failure probability and statistical design of SRAM array for
yield enhancement in nanoscaled CMOS,” IEEE TCAD vol.
24, 2005.

[21] B. Calhoun and A. Chandrakasan, “A 256kb Sub-threshold
SRAM in 65nm CMOS,” in Proc. ISSCC 2006.

[22] A. Khajeh, A. Gupta, et al., “TRAM: A tool for Temperature
and Reliability Aware Memory Design,” in Proc. DATE
2009.

[23] L. Chang, D. Fried, et al., “Stable SRAM cell design for the
32 nm node and beyond,” in Proc. VLSI Tech 2005.

[24] J. Kulkarni, K. Kim, and K. Roy, “A 160 mV Robust
Schmitt Trigger Based Subthreshold SRAM,” IEEE JSSC,
vol. 42, 2007.

[25] B. Calhoun and A. Chandrakasan, “A 256kb Sub-threshold
SRAM in 65nm CMOS,” in Proc. ISSCC 2006.

[26] S. Schuster, “Multiple word/bit line redundancy for
semiconductor memories,” IEEE JSSC, vol. 13, 1978.

[27] A. Sasan, H. Homayoun, et al., “Process Variation Aware
SRAM/Cache for aggressive voltage-frequency scaling,” in
Proc. DATE 2009.

[28] P. Genua, “A Cache Primer,” Application Note, Freescale
Semiconductors, 2004.

[29] J. Kim, N. Hardavellas, et al.., “Multi-bit Error Tolerant
Caches Using Two-Dimensional Error Coding,” in Proc.
MICRO 2007.

[30] R. Naseer and J. Draper, “Parallel double error correcting
code design to mitigate multi-bit upsets in SRAMs,” in Proc.
ESSCIRC 2008.

[31] P. Mazumder, “Design of a Fault-Tolerant Three-
Dimensional Dynamic Random-Access Memory with On-
Chip Error-Correcting Circuit,” IEEE TC, vol. 42, 1993.

[32] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an
infrastructure for computer system modeling,” IEEE
Computer, vol. 35, 2002.

[33] W. Zhao and Y. Cao, “Predictive technology model for nano-
CMOS design exploration,” J. Emerg. Technol. Comput.
Syst., vol. 3, 2007.

[34] M. Mamidipaka and N. Dutt, “eCACTI: An enhanced power
estimation model for on-chip caches,” in Technical Report R-
04-28, CECS, UCI, 2004.

[35] M. Huang, J. Renau, et al., “L1 data cache decomposition for
energy efficiency,” in Proc. ISLPED, 2001.

[36] N. AbouGhazaleh, A. Ferreira, et al., “Integrated CPU and L2
cache voltage scaling using machine learning,” in Proc.
LCTES 2007.

[37] S. Lin and D.J. Costello, Error control coding: fundamentals
and applications, Prentice Hall, 1983.

[38] M. Khellah, D. Somasekhar, et al., “A 256-Kb Dual-VCC
SRAM Building Block in 65-nm CMOS Process With
Actively Clamped Sleep Transistor,” IEEE JSSC, vol. 42,
2007.

[39] D. Tarjan, S. Thoziyoor, and N.P. Jouppi, “CACTI 4.0,” HP
Laboratories, Technical Report, 2006.

[40] M. Meterelliyoz, J. P. Kulkarni, et al., “Thermal analysis of
8-T SRAM for nano-scaled technologies”, in Proc. ISLPED
2008.

[41] A. Diril, Y.S. Dhillon, et al., “Level-Shifter Free Design of
Low Power Dual Supply Voltage CMOS Circuits Using Dual
Threshold Voltages”, in Proc. VLSID 2005.

[42] Z. Chishti, A. Alameldeen, et al., “Improving cache lifetime
reliability at ultra-low voltages”, in Proc. MICRO 2009.

[43] Predictive Technology Model (PTM) http://ptm.asu.edu
[44] A. Chakraborty, H. Homayoun, et al., "Multi-Copy Cache: A

Highly Energy Efficient Cache Architecture" CECS, UC
Irvine, Technical Report CECS-TR-10-05, 2010

[45] H. Homayoun, Mohammad Makhzan, Alex Veidenbaum,
"Multiple sleep mode leakage control for cache peripheral
circuits in embedded processors", in Proc. CASES 2008

[46] H. Homayoun et al., ZZ-HVS: “Zig-Zag Horizontal and
Vertical Sleep Transistor Sharing to Reduce Leakage Power
in On-chip SRAM Peripheral Circuits”. In Proc. IEEE
International Conference on Computer Design, ICCD, 2008.

246

	Introduction
	Background
	Opportunity: Small Working Set Sizes
	Process Variation and SRAM Reliability

	MC2 Architecture
	Basic Mechanism
	Cache Architecture and Operation

	Related work
	Hardware Implementation And Overheads
	Experimental Results
	Experimental Setup
	Comparison with CC at nominal Vdd
	Miss Energy Sensitivity Analysis
	Comparison with SECDED Cache with Equal Area
	Discussion

	Conclusion
	Acknowledgment
	References

