
 
 

 
ABSTRACT 
Caches are known to consume a large part of total microprocessor 
power. Traditionally, voltage scaling has been used to reduce both 
dynamic and leakage power in caches. However, aggressive 
voltage reduction causes process-variation-induced failures in 
cache SRAM arrays, which compromise cache reliability. We 
present Multi-Copy Cache (MC2), a new cache architecture that 
achieves significant reduction in energy consumption through 
aggressive voltage scaling, while maintaining high error resilience 
(reliability) by exploiting multiple copies of each data item in the 
cache. Unlike many previous approaches, MC2 does not require 
any error map characterization and therefore is responsive to 
changing operating conditions (e.g., Vdd-noise, temperature and 
leakage) of the cache. MC2 also incurs significantly lower 
overheads compared to other ECC-based caches. Our experimental 
results on embedded benchmarks demonstrate that MC2 achieves 
up to 60% reduction in energy and energy-delay product (EDP) 
with only 3.5% reduction in IPC and no appreciable area 
overhead. 
 
Categories and Subject Descriptors 
B.3.1 [Semiconductor Memories]: Static Memory (SRAM) 
B.3.2 [Design Styles] Cache Memories, 
B.1.3 [Control Structure Reliability, Testing and Fault-Tolerance]: 
Error Checking, Redundant Design. 

General Terms 
Algorithm, Design, Reliability, Theory 

Keywords 
Variation Aware Cache, Low Power Cache, Low Power Memory 
Organization, Low Power Design, Fault Tolerance 

1. INTRODUCTION 
As ITRS roadmap predicts [1] [4], in the continued pursuit 
of Moore’s law, power densities will continue to affect reliability 
of both embedded SoCs and high performance desktop/server 
processors. Although the logic content and throughput of the 
systems will continue to increase exponentially, a flat curve must 
be maintained for dynamic and leakage power in order to prolong 
battery life, maintain cooling costs and mitigate the adverse effects  

 
of increased power densities on reliability. The resulting Power 
Management Gap must be addressed through various means 
including architectural techniques. Caches are already known to 
consume a large portion (about 30-70%) of total processor power 
[2] [3] and on-chip cache size will continue to grow due to device 
scaling coupled with performance requirements. Therefore, in 
order to manage total power consumption and reliability of the 
system, it is important to manage power and reliability of the 
caches.  

Traditionally, voltage scaling has been used to reduce the 
dynamic and leakage power consumption of the cache. However, 
aggressive voltage scaling causes process-variation-induced 
failures in SRAM cells such as read access failures, destructive 
read failures and write failures [5] [19]. Since executing 
applications may not be tolerant to even a single bit error, caches 
must be operated at a high Vdd with a very low probability of 
failure leading to high energy consumption. However, by 
exploiting mechanisms that allow a cache to become inherently 
resilient to large number of cell failures, we can operate the cache 
at a lower Vdd and thus gain significant energy savings.  
   In this work, we propose Multi-Copy Cache (MC2), a novel 
cache architecture that significantly enhances the reliability of the 
cache by maintaining multiple copies of every data item. 
Whenever a data is accessed, multiple copies of the accessed data 
are processed to detect and correct errors. MC2 is particularly 
useful for embedded applications since their working set sizes are 
often much smaller than existing cache sizes, and the unused 
cache space can be effectively used for storing multiple copies, 
achieving error resiliency through redundancy. Such a cache has 
high reliability and can be subject to aggressive voltage scaling 
resulting in significant reduction in energy consumption. 
Moreover, since errors are dynamically detected and corrected, 
MC2 does not need any apriori error characterization of the cache. 
Also, compared to other existing cache architectures exploiting 
redundancy (e.g., ECC), MC2 incurs minimal performance and 
area overheads. Our experimental results on embedded 
benchmarks show that, compared to a conventional cache at 
nominal Vdd, MC2 reduces energy consumption by up to 60%, 
with only about 3.5% loss in performance and no appreciable area 
overhead.  

The rest of the paper is organized as follows: Section 2 
discusses the opportunity for efficiently increasing cache 
reliability and some background related to SRAM reliability. 
Section 3 introduces the MC2 architecture and Section 4 discusses 
the related work. In Section 5 presents the hardware 
implementation and its overheads. Section 6 evaluates the 
architecture in terms of performance and energy for a set of 
embedded applications, and Section 7 concludes the paper. 
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2. BACKGROUND 

A. Opportunity: Small Working Set Sizes 
We exploit the fact that the working set sizes of many 

embedded applications are much lower than available cache space 
in modern embedded processors. Fritts et al., [8] showed that for 
multimedia applications, working set size for instructions is less 
than 8KB and that for data is less than 32 KB. Guthaus et al., [9] 
showed that for most embedded applications, instruction and data 
working set size is less than 4-8KB. Our own investigation for 
MiBench embedded suite (Figure 2.1) shows that although there 
are a few benchmarks with a working set size of 16-32K, most of 
the benchmarks have a working set size of 8K or less, with about 
50% of the applications having less than 2K as working set size. 
On the other hand, as Table 2.1 shows, modern SoCs and 
processors typically have L1 cache of sizes 16-64KB and L2 cache 
sizes up to 2MB, demonstrating a significant portion of the cache 
– outside of the working set -- is not used for many embedded 
applications.   
   We exploit this opportunity to utilize the extra cache space to 
create an efficient error control mechanism embedded in the cache 
by maintaining multiple copies of each data item. A number of 
techniques have been previously proposed to increase reliability of 
caches and SRAM memories. Some of these techniques like parity 
and ECC [10] [11] [12] have the ability to dynamically detect and 
correct only a limited number of errors but incur high penalty in 
access latency and area. Other techniques [6] [13] [14] [15] [16] 
[17] [27] provide high error tolerance but require a cache error-
map of various resolutions (per-byte to per-cache line) that must 
be generated by BIST whenever there is a change in operating 
conditions such as Vdd and frequency.  Since SRAM failures are 
highly dynamic and influenced by several conditions beyond the 
control of users, such failures may not be captured by infrequent 
BIST characterizations (as explained later). In contrast to previous 
and related works, our MC2 architecture: 

• can dynamically detect a very high number of errors in 
SRAM arrays, 

• does not require any BIST characterization, 
• is responsive to dynamic changes in SRAM error pattern.  
• unlike SECDED, incurs only a minimal impact on both 

access latency and SRAM area and yet has high error 
tolerance, and 

• enables aggressive Vdd scaling, yielding significant 
reduction in energy consumption. 
 

Table 2.1: L1 and L2 cache sizes for modern microprocessors 
Processor Intel 

Xscale 
ARM 

Cortex A8 
ARM 

Cortex A9 
Freescale 
QorIQ P2 

L1 size 32K 16-32K 16-64K 32K 
L2  size 512K 2M 2M 512K 

B. Process Variation and SRAM Reliability 
    A dominant cause of SRAM cell failures is process variation 
[14] [20] [21]. Random intra-die variations, mostly caused by 
Random Dopant Fluctuations (RDF), lead to mismatches between 
neighboring transistors resulting in failures in SRAM cells. Due to 
process variation, SRAM cell failures may be of different types:  
a) read access failure: reduction in bitline voltage differential 
during read within the allowed read time, b) write access failure: 

unsuccessful write within the allowed write time, c) read stability 
failure: an increase in the pmos/nmos node voltage beyond the trip 
voltage of the inverter pair causing a bit flip during read, and  d) 
hold failure: bit flip while in standby mode caused by decrease in 
data retention voltage. Our proposed MC2 architecture is effective 
against all such failures.  
 

 
Figure 2.1: Minimum cache size with assoc. 8 needed for < 2% miss rate 

 
Figure 2.2: Unexpected increase in failure as Vdd is increased due to 
interaction between leakage power and temperature [22] 
 

 
Figure 2.3: Interrelationship of Vdd, frequency, temperature, 
leakage/dynamic power, etc and their effect on SRAM failure probability 
(based on [22]) 
 
  Dynamic nature of SRAM failures: As shown by Khajeh et al. 
[22], the probability of SRAM failure is highly dependent on Vdd, 
frequency of operation, and temperature. It is well known that a 
decrease in Vdd increases failure probability of SRAM failures 
[14] [20]. However, an increase in Vdd increases the dynamic and 
leakage power dissipation, which in turn increases the 
temperature. Increase in temperature causes an increase in cell 
delay resulting in a higher probability of failure. Moreover, the 
increase in temperature increases the leakage power further 
resulting in a positive feedback loop between the two [22]. 
Therefore, as Vdd is increased, temperature as well as leakage and 
dynamic powers may increase in an interdependent fashion, 
increasing the failure probability unexpectedly. Additionally, if a 
set of SRAM cells are accessed very frequently or if they are 
located near hotspots such as execution units, the dynamic power 
dissipation of those cells will increase, leading to an increase in 
temperature and inducing the cells towards failure [40]. Figure 2.3 
(based on [22]) pictorially depicts the relationships between Vdd, 
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frequency, temperature, memory activity, power dissipation and 
probability of failure. From the above discussion, we note that 
SRAM failures are very dynamic: not only affected by user-
controlled operating conditions such as Vdd and frequency, but 
also by other conditions such as voltage irregularities, leakage, 
temperature, nearby hotspots, memory access pattern, drift in 
frequency -- all of which may be constantly changing and are 
beyond the control of the user.  It is therefore crucial that any 
error control mechanism in SRAM caches be responsive to 
dynamic changes in error patterns, without being dependent on 
static error maps – which MC2 accomplishes. 

3. MC2 ARCHITECTURE 

A. Basic Mechanism 
The basic idea behind multi-copy cache (MC2) is to maintain 

multiple copies of each data item in the cache. Such a mechanism 
makes the cache resilient to a high number of SRAM failures. As 
long as same bit-position of every copy is not affected by failures, 
the errors can always be detected and may also be corrected1

In this paper, we present the RDT (Redundancy through 
Duplication and Triplication) policy for MC2. We assume a 
writeback data cache with write-allocate policy and true LRU 
replacement policy. MC2 with RDT policy maintains 2 copies of 
each clean data and 3 copies of each dirty data in the same set. If 
a data in the cache is clean (i.e, unmodified by the processor), a 
correct copy of that data is also available in the lower level of 
memory (LLM). Therefore only 2 copies of the clean data need to 
be maintained in the cache. Whenever a clean data is read by the 
processor, both copies are compared with each other. If there is 
any mismatch, an error is detected and the requested data is read 
from the LLM and is forwarded to the processor. On the other 
hand, if the requested data in the cache is dirty (i.e., modified by 
processor), the most updated version of that data is in the cache 
and not in the LLM. Hence for dirty data, 3 copies are be 
maintained in the cache so that in the event of error(s), the correct 
data can be generated by majority voting logic using all 3 copies. 
Thus, the use of RDT policy would result in 2 or 3 cache lines 
with same data in a given set.  

. This 
high error-resiliency technique allows the cache to operate under 
aggressive low Vdd leading to reduction in energy and power 
consumption. The multi-copy mechanism may be implemented in 
many different ways, depending on cache organization, type of 
cache (instruction or data), write policy (write-through or write-
back), write-miss policy (write-allocate or no write-allocate) and 
replacement policy of the cache; each implementation of MC2 will 
incur some overhead and potentially some performance 
degradation. Thus the MC2 architecture must be designed 
carefully to minimize these overheads while achieving low energy 
with high resiliency. 

Example: Figure 3.1 shows the physical contents of a particular 
set s of an 8 way set associative MC2 for a sequence of reads and 
writes. Each of the eight rectangles represents a cache line in the 
given set. Initially the cache is cold and the set is empty. Then 
four cache lines A, B, C and D, belonging to set s, are read one 

 
1 It is very rare that same bit-positions of more than one copy will be 

affected by failures. For a bit failure rate of 10-6, failure rate for two copies of 
a 32-bit word is over 1 million times lower than that with single copy. 

after another from the memory and placed in the set. At that point, 
the set s contains 4 clean data, each with two adjacent copies. 
Assume that there are multiple read accesses such that D becomes 
the LRU data (marked by dots). Now the processor writes to data 
A. After the write is completed, A would become dirty. Hence, it 
would need 3 copies instead of its present 2 copies, requiring a 
new copy of A to be created. This is done by evicting both copies 
of LRU data D and using one of the freed cache lines to store the 
3rd copy of A. Next, the processor writes to data C. A new copy of 
C is created using the empty cache line present in the set s. As the 
example shows, all copies of a given data may not be physically 
adjacent. We now describe the detailed MC2 RDT cache 
architecture operation and overheads. 

 

 
Figure 3.1: Example of Reads and Writes to MC2 

 

 
Figure 3.2: Conventional cache architecture 

 
Figure 3.3: Multi-Copy cache architecture  

239



 
 

B. Cache Architecture and Operation 
In a conventional N-way associative cache (Figure 3.2), there 

are N tag comparators producing N way-select signals (WS1-N). 
During cache read, the way-select signals drive the output 
multiplexer /driver which outputs the requested data from the 
selected way. During cache write, way-select signals are also used 
to write the data to the selected way. In the MC2 architecture 
(Figure 3.3), the output multiplexer is replaced by data error 
detection and correction logic. Using the way-select signals, this 
logic compares multiple copies of the requested data and 
accordingly, detects and corrects errors. It outputs the corrected 
data and the read error signal, indicating if there is any error in the 
accessed data. The write demultiplexers of the MC2 allow 
simultaneous writing to multiple cache lines in the data and the 
tag array of the set. Additionally there may be an optional check 
logic that processes the cache flags (clean/dirty) and the way-
select signals to ensure that the RDT policy is being followed (i.e., 
2 copies for every clean data, 3 copies for every dirty data). The 
flags logic will raise a machine check interrupt if it finds any 
policy violation.   

Furthermore, in the conventional cache (CC), the entire cache is 
run on one Vdd domain, typically connected to the processor Vdd 
(nominal Vdd) for L1 caches. Similarly, in MC2, the tag side of 
the cache (tag SRAM array, comparators, decoder and write 
demultiplexer) is connected to nominal Vdd. However, MC2’s the 
data side (data array, error detect/correct logic, decoder and write 
demultiplexer) is run on a separate Vdd that can be aggressively 
scaled down. Level shifters are required while going from low to 
high Vdd only (i.e., for data side output to processor) [41] and 
generates negligible overheads as shown in Sections 5 & 6.   

 

 
 
Figure 3.4: Flow chart of MC2 RDT operation (TM represents Tag 
Matches)  
 

Figure 3.4 shows the flowchart of the MC2 RDT cache 
operation. The address tag bits from the processor are compared 
with the tag bits stored for each cache line of the selected set. The 

RDT policy ensures that, for any given address, there can be:   no 
tag match (cache miss); exactly two matches (cache hit for clean 
data); exactly three matches (cache hit for dirty data). In case of a 
miss (referred to as conventional miss), a new cache line is 
fetched from the LLM. Depending upon the type of access (read or 
write), either two or three cache lines in the selected set are 
evicted and are replaced by the newly fetched line. For write 
accesses, all three copies must be updated. For cache hits for clean 
data, the type of access may be either read or write. For read 
accesses, both copies of the clean data are compared with each 
other. If there is a match, the data is forwarded to the processor. 
This is referred to as clean read hit. If there is no match, read 
error miss has happened and the correct copy of the requested data 
is fetched from LLM. Write accesses to any clean data always 
result in clean write misses. This event represents clean to dirty 
transition (top right corner of Figure 3.4). The cache line 
corresponding to the accessed address is fetched from the LLM. 
An existing line in the selected set is evicted and replaced with 
the newly fetched line, resulting in three copies of the accessed 
data. Now all three copies are marked dirty and updated with the 
data from the processor. If there are 3 tag matches during tag 
comparison, this must be a cache hit for dirty data. If the access is 
a read operation, the correct data is generated by majority voting 
logic among all 3 copies. This is referred to as dirty read hit. If the 
access is a write operation, all 3 copies must be updated with the 
data from the processor. This is referred to as dirty write hit. 
Whenever there is a dirty data writeback, all three copies are 
identified using a secondary tag search and processed and then, 
the correct data is written to LLM.  

The MC2 RDT2

4. RELATED WORK 

 cache will incur overheads in delay, area and 
energy due to error detect/ correct logic, check logic, level shifters 
and additional operations required during cache access (such as 
writing to multiple lines and tags). Sections 5 & 6 examine these 
overheads and establish that these overheads are minimal.    

There are several previous works related to improving SRAM 
reliability in face of process variation and soft errors especially for 
low voltage operation. A number of these works approach the 
problem from a circuit perspective, improving reliability of each 
SRAM cell. Apart from the familiar 6T SRAM cell, 8T SRAM 
cell [23] and 10T SRAM cell [25] have been proposed. Both 8T 
and 10T SRAM cells improve read stability, though the stability of 
the inverter pair remains unchanged. Kulkarni et al. [24] proposed 
a Schmidt trigger based 10T SRAM cell with inherent tolerance 
towards process variation using a feedback-based mechanism. 
However, this SRAM cell requires a 100% increase in area and 
about 42% increase in access time for low voltage operation.  

Several architectural techniques have also been proposed to 
improve reliability of on-chip cache by using redundancy. It is 
typical in the industry to have redundant rows and columns in the 
SRAM cache. Any defective row or column may be detected 
before shipping and is replaced by a redundant row or column 
using laser fuses [26]. While this technique is effective against 
manufacturing defects, it does not protect against process variation 
induced errors, which depend heavily on operating conditions such 
 

2 For the rest of this paper, we use the terms MC2 with RDT policy and MC2 
interchangeably.  
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as Vdd. A number of other techniques have been proposed to 
improve SRAM array reliability against process variation failures. 
Wilkerson et al. [6] proposed multiple techniques using part of a 
cache line as a redundancy for defective bits for the rest of cache 
lines in the same set. It disables the faulty words and replaces 
them with non-faulty words in the same set. Agarwal et al. [13] 
proposed a fault tolerant cache architecture in which the column 
multiplexers are programmed to select non-faulty block in the 
same row, if the accessed block is faulty. A similar work is PADed 
caches [17] which use programmable address decoders that are 
programmed to select non-faulty blocks as replacements of faulty 
blocks.  Makzhan et al. [15] and Sasan et al.,[16] [27]  proposed a 
number of cache architectures in which the error-prone part of the 
cache is fixed using either a separate redundancy cache or parts of 
the same cache or using charge pumps to increase Vdd of the 
defective wordlines. However all the techniques proposed in these 
works [6] [13] [15] [16] [17] [27] require BIST characterization of 
the cache and generation of some form of a cache error map with 
various levels of granularity: per wordline, per cache line, per byte 
etc. Whenever Vdd is scaled up or down, the BIST engine is run 
and the entire cache memory is characterized generating an error 
map. Every time BIST characterization is run, the cache has to be 
flushed of its current contents followed by writing, reading and 
comparing by the BIST engine before the cache is ready for use. 
The time overhead of the BIST characterization would limit the 
frequency at which Vdd can be scaled up or down. The storage of 
error map, depending upon its granularity, also increases the area 
overhead of the cache. Even with these costs, a basic assumption 
behind the above works is that, once the BIST characterization is 
done, the error map perfectly describes the locations of process 
variation errors until the next change in Vdd. As discussed in 
Section 2, this assumption is not valid because of the dynamic 
nature of SRAM failures.  

In order to improve SRAM reliability against such dynamic 
failures, dynamic error detection and correction ability is required 
without using any static error map. One of most popular 
mechanism for such dynamic error detection/correction is error 
control coding (ECC), which is widely used in caches and 
memories. The simplest form of ECC is one-bit parity which 
detects odd number of errors in the data and is often used in L1 
caches [28]. Since such one-bit parity mechanisms do not have any 
correction capability, it is not useful except for instruction caches 
or data caches with write through policy. Another form of ECC 
used in caches is SECDED (single error correction, double errors 
detection). Hsiao et al. [10] proposed an optimal minimum-odd 
weight column SECDED code that is suitable for fast 
implementation in memory. However, inspite of its optimality, the 
Hsaio code incurs multiple clock cycle latencies for caches and 
significant area overhead (about 30%), as we show later in the 
results. Kim et al. [29] and Naseer et al. [30] have proposed ECC 
schemes to correct multiple error bits and further improve 
reliability beyond SECDED. However, as it has been shown by 
Mazumder [31] and Agarwal et al. [13], ECC mechanism beyond 
one-bit correction capability cannot be implemented in memory 
because of the area and delay overheads. Zhang et al. [18] used 
replication of some “hot” frequently used cache lines to mitigate 
soft errors. Such a technique has non-uniform error tolerance and 
is ineffective towards process variation-induced failures. 
Moreover, it requires additional error control mechanism such as 

parity for its operation. A recent work uses configurable part of the 
cache for storing multiple ECC check bits for different segments 
of cache line using an elaborate Orthogonal Latin Square Code 
ECC [42] to enable dynamic error correction. This requires upto 8 
levels of XOR gates for decoding, resulting in significant increase 
in cache critical path delay.  

In contrast to previous works, our MC2 architecture which can 
detect and correct errors dynamically without requiring any BIST 
characterization and error map storage. MC2 provides better 
reliability than SECDED cache with minimal area overhead and 
much less latency to detect/correct errors. Compared to elaborate 
ECC mechanisms such as [42], MC2 architecture has a simple 
detection/correction mechanism resulting in much lower delay 
overhead. Indeed, as we show in the next section, MC2 incurs less 
than 3% overhead in cache delay and less than 2% increase in 
read hit dynamic energy with negligible area overhead. 

5. HARDWARE IMPLEMENTATION AND 
OVERHEADS 
    The MC2 architecture has three main changes over a 
conventional cache (CC): a) the output mux of the CC (Figure 5.1) 
is replaced by the data detection & correction logic (Figure 5.2), 
b) level shifters are needed only when signals travel from low to 
high Vdd domains (data side output to the processor), and c) 
additional operations are required during cache access (writing to 
multiple lines and tags during cache write, extra line-fill during 
clean write miss). For level shifting, we use dual Vdd/Vth logic 
gates with built-in level shifting [41] at the data side output of the 
cache. Such gates use a higher threshold voltage for PMOS 
transistors driven by low Vdd inputs and have only a slightly 
increased delay (< 10ps) and almost no additional overhead in 
power consumption compared by conventional single Vdd gates, 
as discussed in our technical report [44]. The analysis in this 
section covers the MC2 architecture using the RDT policy.    

The data error detection & correction logic is constituted by a 
number of Bit Error Detect/Correct (BEDC) logic blocks, one for 
each data bit (Figure 5.2). BEDCi for ith data bit outputs the 
following signals: a) REi, read error signal b) NE-Di, no-error data 
bit c) C-Di, corrected data bit. REi indicates if there is any error 
and is relevant only for clean data. NE-Di is the correct output bit 
if there is no error while C-Di is the corrected output bit selected 
using majority voting of three copies. The BEDC block essentially 
consists of two parallel parts – one for error detection and the 
other for error correction. The error detection logic uses N-input 
OR and AND gates to produce outputs REi and NE-Di. The error 
correction logic uses an N-input XOR gate to produce output C-Di 
(Figure 5.3). To enable quantitative comparisons, we synthesized 
the output logic for MC2 (error detect/correct logic and the check 
logic) as well as the multiplexer & output driver of CC using 
Synopsys Design Compiler for TSMC 65nm typical library for a 
16K 8-way associative cache.  We found that the delay of MC2 
output logic is increased only by 5% compared to CC output mux 
while area and power consumption are lower than CC mux.  

To put these overheads in perspective of the entire cache, we 
used CACTI 4.1 [39] and estimated that for a 16K 8-way 
associative cache, the output mux/driver contributes to 48% of 
total delay, 8% of dynamic power, 10% of leakage power and 3% 
of area for CC. Recall that the MC2 architecture replaces CC’s 
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output mux with MC2 output logic; we expect that the multi-copy 
mechanism will increase the delay of the cache nominally 
(estimated < 3%). Since the area of MC2 output logic is less than 
CC mux area, we conclude that MC2 has no appreciable area 
overhead. In order to account for additional operations in MC2, we 
developed an elaborate dynamic energy model for each cache 
event, as described in [44]. In this paper, we have assumed that 
techniques such as horizontal and vertical sharing of sleep 
transistor sharing for wordline drivers, input and output drivers 
and decoder leakage [45][46] are in place. The results of this 
model are shown in Figure 5.4. For example, there is only 2% 
increase in dynamic energy for read hit and about 17% increase 
for write miss. Since there is negligible area overhead, we assume 
there is no change in leakage power. The total energy overhead of 
MC2 is application dependent and is examined in the next section. 

 The estimate of delay overhead is specific to the base cache 
size, associativity and the synthesis library used. There may be 
further delay of the cache logic pipeline due to Vdd scaling, some 
of which may be reduced by using dual-Vth caches [34]. In 
general, the impact on the cache access timing would vary, 
depending on a number of factors such as cache associativity, 
organization, logic implementation and process (technology node 
and use of dual-Vth). Hence, rather than examining random design 
configurations, we evaluate MC2 architecture for the design corner 
cases; i.e. the best and the worst case timing scenarios. Similarly, 
the estimate of dynamic energy is specific to cache miss energy, 
assumed to be 5 times cache hit energy, according to [35].  

 
Figure 5.1:  Output multiplexer / driver of conventional cache (16K 8 
way cache) 

 
Figure 5.2: Data error detection and correction logic of MC2 (16K 8 way 
cache)  
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Figure 5.3: Bit error detection & correction (BEDC) logic 

 
Figure 5.4:  Normalized dynamic energy of CC and  MC2 events (all 
normalized to CC Read Hit) 

6. EXPERIMENTAL RESULTS 
     The experiments are designed to evaluate the MC2 architecture 
in terms of energy and performance for standard embedded 
benchmarks. 

A. Experimental Setup 
Table 6.1 & Table 6.2 outline our experimental setup for the 

base processor configuration and benchmarks respectively. The 
processor is ARM-11-like configured with a 16K 8-way set 
associative cache. We modified Simplescalar 3.0 [32] extensively 
to support MC2 RDT architecture. The embedded benchmarks are 
from the MiBench suite [9]. All benchmarks are compiled with 
Compaq alpha compiler using –O4 flag for Alpha 21264 ISA.  

The load/store latency of 2 cycles is assumed to be broken into 
actual cache access taking place in cycle 1, while the bus access 
taking only a part of the next cycle. Based on this, we assume two 
scenarios for MC2 cache access: a) best case (MC2-B): MC2 delay 
overhead fits in the remaining time in 2nd cycle, resulting in total 2 
cycle latency and no penalty c) worst case (MC2-W): Error 
detection/correction delay  is long enough such that total 3 cycles 
is needed for every access. From our discussion in Section 5, the 
cache delay is increased only slightly (< 3%) in nominal Vdd. 
However, considering the increase in logic delay due to Vdd 
scaling, we assume that in the worst case, the latency of the cache 
would be increased by one full cycle. 

 
Table 6.1: Base processor configuration (ARM-11 like) 

I-cache 16KB, 2 cycle 
L2 cache 256KB, 15 cycles 
Fetch, dispatch 1 wide 
Issue In-order, non blocking 
Execution Out-of-order 
Memory 50 cycles 
Instr Fetch Queue 4 
Ld/Str Queue 16 
RUU size 8 
Execution units 1 INT, 1 FP simple & mult/div  
Pipeline 8 stages 
Frequency 1 GHz 
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Table 6.2: Benchmarks  (all with large input sets from MiBench) 
Automotive basicmath, bitcnt,  qsort, susan (smooth, 

edges, corners) 
Consumer jpeg-encode, jpeg-decode, lame, mad, 

tiff2bw, tiff2rgba, tiffdither, tiffmedian 
Networking dijkstra, patricia 
Office ghostscript, stringsearch 
Security sha, pgp.sign, pgp.verify  
Telecom crc32, fft, ifft, gsm-encode 

 
Probability of Failure for Caches: For estimating cache failure 

probability, we used the data for failure probability of each SRAM 
cell for 65nm from [6]. The general trend of this data is 
corroborated by a Monte Carlo SPICE simulation using PTM 
models [43] for 65nm with read/write access time of 250 ps. Using 
the SRAM cell failure data from [6] and analytical models of 
failure, as shown in Equations (6.1-6.4), we estimated the 
probabilities of failure for CC and MC2

 with 16KB size. In the 
equations (6.1-4), p(V) = probability of failure of each SRAM cell 
at voltage V; and N = number of SRAM cells; n = data bitwidth; 
ncw and ndw are numbers of clean and dirty words respectively in 
MC2.  
Probability of failure of CC:   pfcc(V) =1 – (1-p(V))N           (6.1) 
Probability of failure of each clean data word:      
          pfcw(V) = ini

n

i

n ppC 222

1
1 )1( −

=

−∑
                        

(6.2) 

 Probability of failure of each dirty data word: 

          pfdw(V) = npp )21(1 32 +−−                           (6.3) 
Probability of failure of MC2: 

         pfmc2(V) = ndwncw pfdwpfcw )1()1(1 −−−        (6.4) 
   Figure 6.1 shows the failure probability of CC and MC2 under 
two conditions: a) all clean: all data in cache are clean b) 
maximally dirty: the cache has maximum possible dirty data. The 
results clearly show MC2 architecture achieves significantly 
higher reliability than CC. 
   In the following subsections, we carry out three experiments. 
First, we compare a conventional cache running at nominal Vdd 
versus a MC2 with Vdd scaled down. In second experiment, we 
carry out a sensitivity analysis by varying L1 cache miss energy. In 
the last experiment, we compare a conventional cache (CC) with 
and without traditional ECC mechanism (SECDED) versus MC2. 
We conclude this section with a discussion based on the results of 
the experiments 

 
Figure 6.1: Probability of failure vs Vdd for CC and MC2 

B. Comparison with CC at nominal Vdd  
Recall that a conventional cache is tied to the processor’s 

nominal Vdd (Figure 3.2) whereas for MC2, the data side can 
exploit voltage scaling (low Vdd in Figure 3.3).  In this 
experiment, we scale down the data side Vdd of MC2 till 0.55V 
(for a failure rate of 10-3) and measure IPC loss and reduction in 
total energy (dynamic and leakage), measured with .respect to 
performance and energy of a CC at 1.1V.    

Figure 6.2 shows the working set size (WSS) for each 
benchmark (as explained in Section 2) and corresponding IPC loss 
for MC2-B (best case) at 1.05V and 0.55V. As expected, 
benchmarks with low WSS (<=8KB) show low IPC degradation (< 
2% at 1.05V). This is due to decrease in effective cache size/ 
associativity in MC2. Some benchmarks with even high WSS 
(>=16KB) (e.g., jpeg-encode, lame, ghostscript) have relatively 
low performance loss because of latency hiding due to out-of-order 
execution.  When Vdd is further scaled down to 0.55V (inducing 
large number of SRAM errors), some benchmarks (e.g., tiffmedian 
and stringsearch) experience high reduction in IPC relative to 
1.05V, while  some others (e.g., dijkstra, fft) have almost same 
IPC as at 1.05V. This is because each benchmark is affected 
differently depending upon the actual location of the errors and the 
memory access pattern.  

 Figure 6.3 shows performance degradation and energy savings, 
averaged for all benchmarks, as Vdd is scaled down: note that we 
observe a modest reduction in IPC, but rapid reduction in energy 
consumption. At lowest Vdd, average IPC losses for MC2 are 1% 
and 3.5% for the best and worst cases respectively, while the 
corresponding reductions in energy are 61.5% and 59.5%. Thus 
MC2 architecture results in high reduction in energy with low 
performance degradation. 

 

 
Figure 6.2:  Working Set Size for each benchmark and % IPC loss (for 
1.05V, 0.55V) with 16KB MC2 

C. Miss Energy Sensitivity Analysis  
   We expect that MC2 will have more misses than a CC of the 
same size, because of decrease in effective cache size and SRAM 
errors at low Vdd. Thus the energy savings from aggressive 
voltage scaling may be offset by increased energy from additional 
memory accesses due to higher miss rates. To study this 
phenomenon, we conduct a sensitivity analysis by varying the 
cache miss energy. We define normalized miss energy (NME) as 
the ratio of read miss energy to read hit energy for a CC of same 
size. Energies of other miss events such as read error miss and 
clean write miss are also increased proportionately. In this 
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experiment, NME is varied from 5 to 100. Though the exact value 
of NME depends on the implementation, typically for L1 cache, 
NME of 5 indicates an on-chip L2 cache [35], while NME of 100 
or more is likely if the L2 cache is off-chip [3].  
 

 
Figure 6.3: IPC loss and Energy Savings of MC2 vs Vdd  (w.r.t  CC at 
1.1V) (average of all benchmarks) 
 
  Figure 6.4 shows % reduction in Energy-Delay-Product (EDP) of 
MC2 at 0.55V (measured w.r.t. CC at nom Vdd) for the top 8 
benchmarks with highest number of misses. We observe that for 
some benchmarks (e.g., tiffmedian & dijsktra), EDP increases 
significantly when cache miss energy increases.  We also measure 
the trend in EDP reduction, averaged over all benchmarks, for 
different Vdd and different NME, as shown in Figure 6.5. We 
observe that for even high NME (50-100), MC2 consumes less 
energy than CC, when operated at Vdd 0.95V or lower. Therefore, 
for a wide range of NME and hence with both offchip and onchip 
L2 cache, there exists a wide range of Vdd for which energy and 
EDP of MC2 are significantly less than that of CC at nominal 
Vdd.     
 

Figure 6.4: % Savings in EDP at 0.55V for varying normalized miss 
energy 

D. Comparison with SECDED Cache with Equal Area 
In this experiment, we compare MC2 with SECDED ECC, 

which is commonly used in caches for dynamic error detection and 
correction. Use of SECDED ECC for caches leads to significant 
area overhead because of extra parity bit storage (8 parity bits for 
64 data bits) and associated logic. It also increases cache access 
timing significantly due to SECDED decoding logic on every read 
access. For a 16KB 8-way associative cache, based on synthesis 

results for 65nm and estimates from CACTI 4.1, SEDED ECC 
logic increases the delay of output mux/driver by 135% and total 
cache delay by 65%. Area overhead of the SECDED cache is 45% 
over conventional cache without any ECC.  

 

 
Figure 6.5: % Reduction in EDP for different Vdd and different NME 
(average of all benchmarks) 

 
In order to carry out a fair comparison, we scale up SRAM 

transistor width, such that total area of the SECDED cache with 
smaller transistors is equal to the area of a CC and MC2 with 
bigger transistors. We determined failure probabilities of both 
SRAM cells (bigger and smaller) using a Monte Carlo SPICE 
simulation with PTM models [43] for 65nm. Then, we used our 
analytical models of failure to determine the failure probability of 
1) SECDED cache 2) CC and 3) MC2, all with equal area. The 
results, as shown in Figure 6.6, demonstrate that, at given voltage, 
MC2 is the most reliable cache, while SECDED is the least 
reliable cache.  In fact, we observe that, SECDED cache is worse 
than a CC of equal area for process variation-induced failures.  

 
Figure 6.6: Probability of failure vs Vdd for SECDED cache, CC and 
MC2 under iso-area constraint 

In order to compare performance and energy, we further 
constrain that all three caches (SECDED, CC, MC2) have equal 
failure rate. Since SECDED is least reliable, it is run at nominal 
Vdd 1.1V while aggressive voltage reduction is applied to CC and 
MC2, such that probabilities of failure of all three caches are same 
at the respective Vdd. We assume the data side Vdd of CC can be 
scaled, like MC2, as explained in Section 3. The latency of CC is 
assumed to be 2 cycles while that of SECDED cache is assumed to 
be 3 cycles, because of the timing overhead of ECC logic. For 
MC2, like previous experiments, we consider two different cases – 
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2 cycles (best case: MC2-B) and 3 cycles (worst case: MC2-W), as 
discussed earlier. 

Fig 6.7 shows %IPC loss and % difference in Energy-Delay-
Product (EDP), averaged for all benchmarks, for MC2 and 
SECDED cache, when normalized to CC with equal area and at 
same probability of failure. We find the IPC loss for MC2 is 
~0.5% for the best case (MC2-B) and ~3% for the worst case 
(MC2-W). Performance of SECDED cache is slightly less than that 
of MC2 worst case. The EDP of MC2 is 30-35% lower than that of 
SECDED cache. And MC2 achieves greater than 20% reduction in 
EDP over CC, even when both are subject to aggressive voltage 
scaling for iso-failure-rate. Hence, given an area budget and a 
failure rate, SECDED cache will consume more energy than CC. 
We also established that MC2 will consume significantly less 
energy than CC with a low loss in performance. 

 

 
Figure 6.7: % IPC loss  and % reduction in EDP (average of all 
benchmarks for MC2 and SECDED cache, normalized to CC of equal 
area and equal probability of failure 

E. Discussion 
The MC2 architecture exploits redundancy for fault tolerance 

and thus could be viewed as an error-correcting mechanism 
embedded in the cache array. For a wide range of embedded 
applications, we have shown that MC2 RDT incurs only modest 
loss in performance, with significant reduction in energy, with 
only negligible area overhead. Under equal area constraints, MC2 
RDT provides significantly higher error tolerance than SECDED 
ECC, leading to higher reduction in Vdd and energy.   

Furthermore, we note that MC2 is a complementary technique 
that can be used with any existing cache architecture. For instance, 
it can be combined with SECDED to further increase the error 
tolerance leading to even lower Vdd subject to device limitation. 
MC2 can also be potentially combined with error map based error 
correction techniques or with redundant rows/columns to increase 
the performance, for performance-critical applications.  

Finally we note that MC2 is a cache architecture that is effective 
against all kinds of SRAM failures including soft errors and hard 
failures. While in this paper we have studied the RDT policy for 
MC2, many other policies can be examined to yield different levels 
of power savings and overheads in delay/area.   

7. CONCLUSION 
In this work, we presented MC2: a novel cache architecture that 

allows low Vdd operation for energy savings without affecting the 

reliability of the system. MC2 maintains multiple copies of each 
data item, exploiting the fact that many embedded applications 
have unused cache space resulting from small working set sizes. 
On every cache access, MC2 detects and corrects errors using these 
multiple copies. We introduced the MC2 with RDT policy 
architecture and demonstrated its efficiency, incurring negligible 
area overhead, and only modest performance penalty (<3.5%), but 
achieving significant energy savings for embedded applications. 
We have also shown that MC2 RDT exhibits high levels of error 
tolerance; thus we can exploit aggressive voltage scaling for high 
reductions in energy consumption and energy-delay-product for 
on-chip caches. Our experiments on embedded benchmarks 
demonstrate that MC2 RDT reduces total energy consumption by 
up to 60% over conventional caches.  Future work will investigate 
integration of MC2 with other cache architectures and also  
policies other than RDT for MC2. 
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