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ABSTRACT 
In this paper we introduce Resizable Data Composer-Cache 
(RDC-Cache). This novel cache architecture operates correctly at 
sub 500 mV in 65 nm technology tolerating large number of 
Manufacturing Process Variation induced defects. Based on a 
smart relocation methodology, RDC-Cache decomposes the data 
that is targeted for a defective cache way and relocates one or few 
word to a new location avoiding a write to defective bits. Upon a 
read request, the requested data is recomposed through an inverse 
operation. For the purpose of fault tolerance at low voltages the 
cache size is reduced, however, in this architecture the final cache 
size is considerably higher compared to previously suggested 
resizable cache organizations [2][3]. The following three features 
a) compaction of relocated words, b)ability to use defective words 
for fault tolerance and c) “linking” (relocating the defective word 
to any row in the next bank),  allows this architecture to achieve 
far larger fault tolerance in comparison to [2][3]. In high voltage 
mode, the fault tolerant mechanism of RDC-Cache is turned-off 
with minimal (0.91%) latency overhead compared to a traditional 
cache.  
 

  Categories and Subject Descriptors 
B.3.1 [Semiconductor Memories]: Static Memory (SRAM) 

B.3.2 [Design Styles] Cache Memories,  

B.1.3 [Control Structure Reliability, Testing and Fault-Tolerance]: 
Error Checking, Redundant Design.  

 General Terms 
Algorithm, Design, Reliability, Theory 

Keywords 
Remapping Cache, Variation Aware Cache, Low Power Cache, 
low power memory organization, low power design, Fault 
Tolerance, VFS, Memory organization.   
 

1. INTRODUCTION 
With migration of fabrication technology to nanoscale transistor 
dimensions, CMOS circuits suffer from performance and power 
yield losses due to short channel effects that exacerbate process 
variation effects [1]. Due to the random nature of local process 

variation, resulting defects exhibit a random and uniform 
distribution [1] that adversely affect the expected system yield. 
This in turns leads to higher defect rates especially in memory 
intensive devices that are sensitive to changes in operation 
parameters including temperature, voltage and frequency. 
Furthermore, voltage scaling exponentially increases the impact of 
process variation on memory cell reliability, resulting in an 
exponential increase in the fault rate [4-8]. This introduces a 
tradeoff between cache yield and minimum achievable voltage 
Vcc[3]. In order to improve the cache yield and/or lower the 
minimum achievable voltage scaling bound many fault tolerant 
mechanisms are suggested. By tolerating a number of defects, a 
fault tolerant mechanism allows operation in lower voltages 
and/or improves the production yield. Having an error tolerant 
mechanism in place, usually require spending some extra power 
for supporting logic, introduces a certain area overhead, and might 
result in changing some system parameters. In case of caches and 
SRAMs this could be a change in the effective cache size, cache 
cycle time and/or its latency. At the same time each fault tolerance 
mechanism is capable of tolerating a certain defect rate. In this 
paper we address the process variation defects. As it is shown 
later in this paper, the number of these defects grows 
exponentially as the voltage is reduced. Since our target is 
achieving the lowest possible Vcc (sub 500mV range) we should 
be able to tolerate a very large number of defects. The larger the 
number of tolerated defects, the lower the achievable bound of 
Vcc is.  We propose a fault tolerant architecture for caches that 
detect and correct the memory defects via resizing the cache. Due 
to its ability to compress defective locations, the proposed 
architecture, shows much higher fault coverage when compared to 
previous fault tolerant resizable caches reported in the literature 
[2][3]. While the compression of defect locations tends to slow 
down the process of cache resizing, the effective cache size is 
higher (or equal in worse case) as compared to prior work [2][3].  

 

2. Related & Prior Work 
The simplest solutions for providing moderate fault tolerance 
against process variation, is changing the SRAM basic cell size 
and design. Increasing the size of the transistor within the memory 
cell reduces the effects of gate width and length variation and 
reduces impact of random Dopant fluctuation. This results in a 
narrower distribution of access and write time in different 
voltages which in turn lowers the defect rate at each voltage. In 
addition using 8-T, 10-T and Schmidt Trigger ST-Cells [9] could 
also reduce the impact of process variation on the cell behavior. 
However such changes to the cell sizing and design result in a fast 
increase in the memory area. Kulkari et al [9] compared the 6T, 
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8T and 10T cell with their proposed ST 10T-cell and showed 
better low voltage reliability compared to other designs, however 
using ST-Cell incurs a 100% increase in the memory array area. 
In addition improving the reliability by changing the cell design 
reduces the statistical chances of failure and improves yield. A 
drawback of this approach is that after production, the system will 
not be able to tolerate new defects due to temperature variation, 
aging, and etc. Usually such pre-layout designs for reliability 
improvement should be coupled with an additional architectural 
detection and correction mechanism to increase life time 
reliability in addition to the yield.   

Traditionally, a more general approach is the use of row and 
column redundancy [10][11], which is widely practiced. 
Redundancy is a good mechanism with low performance and area 
overhead for tolerating few manufacturing defects. With 
migration to nanometer regimes and the resulting exponential rise 
in the process variation induced defects, row and column 
redundancy fall short of tolerating this large number of defects. At 
lower voltages, where every cache row is likely to contain defects, 
the row and column redundancy are practically useless.   

On a system level approach, a wide range of Error Detection Code 
(EDC) and Error Correcting codes (ECC) could be used.  ECC is 
proven as an effective mechanism for handling soft errors.  
However using ECC alone for tolerating process variation induced 
defects has several major limitations: First is the increased 
vulnerability against soft errors. Any row that utilizes the ECC 
mechanism for detection and correction of a process variation 
induced defect is vulnerable and defenseless against soft error 
occurrence. This encourages using multi bit Error Detection and 
Correction codes. Secondly, using ECC codes incurs a high 
overhead in terms of storage for the correction code, large latency, 
slow and complex decoding [12].  

The fault tolerant issue is also addressed from an organization 
stand point of view. In [13] the authors present the concept of 
using a victim cache, referenced to as the Inquisitive Defect 
Cache (IDC), as a small direct or associative cache that works in 
parallel with L1 cache and provides a defect free view of the 
cache for the processor in the current window of execution. 
However, in this work the basic assumption is that the data, if lost, 
could be recovered from lower level cache or memory and thus 
could only work for hierarchical structures. The concept of RDC-
Cache (this work) however is applicable to any memory structure.  
A recent paper from Intel’s microprocessor technology lab [3] 
suggested the use of fault tolerant mechanisms trading off the 
cache capacity and associatively for fault tolerance. The proposed 
approaches (assuming similar Probability of cell failure in 65nm 
and 130nm and using 130 nm probability of failure curve) allow 
scaling the voltage from a nominal 0.9 v down to 500mV in a 
65nm technology. The cache size is reduced to 75% or 50% 
depending on the mechanism that is used.  When compared to our 
proposed architecture, the RDC-Cache fault tolerance is 
considerably higher. This is due to the fact that the relocated 
defective words are saved in the RDC-cache in a compressed 
form. In addition the cache size is reduced just enough to provide 
the necessary fault coverage and therefore for all configurations, 
the RDC-Cache experience larger effective cache size in compare 
to that suggested in [3]. In fact the lower bound of cache size, in 
the worse case in RDC-Cache is equal to that offered in [3]. The 
work in [2] suggested resizable caches. In this technique it is 
assumed that in a cache layout, two or more blocks are laid in one 
row, therefore the column decoders are altered to choose another 

block in the same row if the original block is defective. Not only 
is the effective cache size in this case quickly reduced, the limit of 
fault tolerance is much lower than that achievable by RDC-Cache. 
In addition, this method interferes with temporal locality of the 
data.  
In this paper we introduce a resizable fault tolerant cache 
organization that provide larger effective cache size in lower 
voltages compared to previously suggested organizations[2][3].   

 

3. Voltage Scaling & Memory Failures 
3.1 Classification of Memory Errors 
Classically, failures in embedded memory cells are categorized as 
either of a transient nature, dependent on operating conditions, or 
of a fixed nature due to manufacturing errors. Symptoms of these 
failures are expressed as either: (1) an increase in cell access time, 
or (2) unstable read/write operations. In process technologies 
greater than 100nm, fixed errors are predominant, with a minority 
of the errors introduced due to transient effects. As technology 
scaling progresses,  due to the random nature of the fluctuation of 
Dopant atom distributions and variation in gate length, this model  
cannot be sustained. In fact, in sub 100nm design, Random 
Dopant Fluctuation (RDF) has a dominant impact on the 
transistors’ strength mismatch and is the most noticeable type of 
intra-die variation that can lead to cell instability and failure in 
embedded memories [12]. This Manufacturing Induced Process 
Variation (MPV) results in mismatch in the intrinsic threshold 
voltage (Vth) of neighboring transistors. When applied to memory 
cells, due to the analog nature of memory operation, the Vth 
variation results in large variation in access and write time to the 
memory cells. Dependence of Vth to the temperature makes the 
write/access time sensitive to the die temperature. In addition 
since the transistor’s speed is a strong non-linear function of the 
separation between Vth and Vdd, the access/read time is strongly 
and non-linearly dependent on the supply voltage. 

 

Table 1:  Change in the mean and access time with Vdd 
Voltage Mean(ps)  Standard 

Deviation (ps) 
0.9 43.77 7.504 
0.8 65.75 13.873 
0.7 91.6 19.987 
0.6 136.9 26.35 
0.5 197.54 37.038 

 

3.2 Memory Access Time & Process Variation 
To model the access/write time distribution as a result of MPV, a 
simulation was setup where MPV effects are lumped into an 
independent Gaussian distribution characterizing the Vth 
fluctuations of each transistor [14]. The circuit under test is a 
standard six transistor SRAM memory bit cell. The SPICE models 
used for the simulation were obtained from the Predictive 
Technology Model (PTM) [14] website in 32nm.  

Due to the random and uniform distribution of Vth , it is expected 
and verified by Monte-Carlo simulation that the access/write time 
to the cache follows a “Gaussian like” distribution. However as 
the supply voltage to the memory changes, the characteristic of 
access/write distribution is expected to change. We repeated 10K 
Monte-Carlo Simulation for each voltage point. By fitting the 
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obtained iteration points at each voltage to the closest Gaussian 
distribution, we obtained the associated mean and standard 
deviation. The data is presented in Table 1. As illustrated, at lower 
voltages not only does the mean access time change, but also the 
standard deviation from mean widens 

 

3.3 Defining System Access Time, Safety 
Margin (SM) and its Implications on Memory 
Cell Failure Rate 
The conventional model for defining an access time at a voltage 
point when the access distribution is known is to choose an access 
time large enough that the probability of the distribution function 
tail that exceed the defined access time is very small. This is 
illustrated in Figure 1. This probability is determined by the 
designer depending on expected yield of the structure and the 
amount of dedicated redundancy available. The gap between 
mean access/write time and defined cycle time is referred to as 
‘Safety Margin’ (SM). Choosing a large SM will result in higher 
yield however it adversely degrades the system’s performance. In 
addition as the SM is increased, the power consumption of the 
memory device is also increased. A larger safety margin implies 
always expecting a larger differential voltage between the word-
lines and therefore a larger waste in dynamic power (design based 
on worse case and for smallest differential voltage between 
bitlines). 

 

Figure 1:  Voltage scaling and change in the mean, and 
standard deviation of access time distribution and change in 
safety margin for an FFVS policy with cycle time of 150ps 

As the supply voltage is scaled, the mean (µ ) and standard 

deviation (σ ) of the access/write time grow larger. It is however 
still possible to define the cycle time at each voltage such that the 
probability of failure stays constant,  but moving to lower voltages 
increases the mean and standard deviation quickly and trying to 
maintain the same probability of failure results in extremely long 
access time and extremely poor performance. On the other hand if 
the cycle time is chosen such that failure probability is traded for 
the performance, the failure rate will increase thus necessitating a 
fault tolerant architecture. 

In order to obtain a mapping for the probability of failure to 
voltage, we chose an architecture that controls the sense amplifier 
activation via a delay buffer unit. The SM is practically added to 
the delay model by choosing a delay unit that ideally (i.e. no 
process variations are present) activates the bitlines whenever a 
differential voltage of 26mV is developed given that the sense 
amplifier is capable of detecting the signal with only 14mV 
differential voltage between its word-lines. At lower voltages the 
extra propagation delay of the control signal through the delay 
unit extends and defines the SM. Monte Carlo Simulation results 
of ��� iterations were used for obtaining the failure probability 
across different voltages. Using this methodology for defining SM 
at each voltage level results in the failure curve illustrated in 
Figure 2. This curve represents the combined rates of memory 
read, write and access failures. 
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Figure 2:  Probability of cell failure 

We note here that our results are merely a “case study” to capture 
the trend of change in failure rate as supply voltage is scaled. The 
relationship between failure probability and  voltage is affected 
significantly by several  design variables such as  technology size,  
cell design, cell size, bitline and wordline organization, sense 
amplifier specification and/or design, to name but a few.  Even 
when considering the effect of all these “degrees of freedom”, the 
scaling of the supply voltage will always result in an exponential 
change in the number of defective cells. In order to compare 
“apples-to-apples” the effectiveness of our architecture against 
some previously proposed architecture [2,3] we use the failure 
rate trend reported in [3] for 65 nm technology. This curve is also 
reproduced in Figure 2. It is interesting to note that the failure rate 
in 32nm is almost two orders of magnitude higher than that in 
65nm, however the trend of failure response to voltage scaling is 
similar. 
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4. Proposed Architecture: RDC-Cache  
The RDC-Cache is designed to provide tolerance for defects rates 
in sub 500mV voltage range.  The proposed RDC-Cache could be 
turned on or off based on operating voltage level. When at higher 
voltages turning off the Fault Tolerance Mechanism (FTM) of 
RDC-Cache lowers both access time and power consumption. The 
delay associated with gating mechanism for switching the FTM to 
be active/gated is studied and as it will be discussed is very small 
compared to the overall cache latency (around 0.28%).   

 

4.1 RDC-Cache Concept & Organization 
In the RDC approach, banks are arranged in a circular chain, with 
each bank providing fault tolerance for the previous bank in the 
chain and the first bank providing tolerance for the last bank. This 
is illustrated in Figure 3. 

 
Figure 3: Banks are organized in a circular chain; for each 

bank, its next-bank will provide fault tolerance 
 

RDC-Cache provides a word level fault tolerance. It generates and 
keeps a special defect map that has the defect information at a word 
level granularity. In RDC-Cache the last cache way in each row is 
used for fault tolerance (FT-way). If a cache way contain a 
defective word, the information that are mapped to that defective 
word are relocated and saved in FT-way in its next bank in the 
circular chain. RDC-Cache uses a mechanism that allows saving 
the relocated words of two or more ways in one or more rows in a 
single FT-Way. A FT-way that all its words are used as a 
destination for relocated words is called “saturated”. Similar to [3], 
the proposed defect handling mechanism (DHM) provides 
tolerance for defects in data, and not for tag bits. Tag bits at lower 
voltages could be protected by a combination of upsizing the tag 
cells and using ST-Cells [9]. In addition, the proposed DHM could 
be combined with ECC to achieve even lower limits of voltage 
scaling and tolerance against soft errors.  

 
Figure 4: access to a RDC-Cache in low voltage mode 

 

When choosing the destination FT-Way for relocated 
words, the RDC-Cache first uses unsaturated FT-ways that 
contain defective word(s). Then it uses the unsaturated previously 
used FT-ways that are not yet saturated and finally the defect free 
FT-ways. This allows us to keep the maximum possible number 
of defect free FT-ways. Finally, if these FT-ways are not used 
they are released and used as ordinary ways in the cache. This 
increases the final RDC-cache size compare to previously 
suggested resizable caches [2][3]. The process of associating a 

FT-Way in the next bank to a defective cache way is referred to 
as “linking”. The proposed structure allows linking of any 
defective way to any FT-way in its next bank. 

 
Figure 5: access flowchart to a RDC-Cache in low voltage mode 

 

At low voltage, when reading from a defective cache way, as it is 
illustrated in Figure 4, the RDC-Cache first identifies the location 
of relocated words from defect map, and then accesses both banks 
(addressed bank and one containing relocated words) at the same 
time. Then through logical operations (combining logic), based 
on the defect map of an accessed cache way, FT-way etc., it 
combines the information in both cache ways and generates the 
defect free fetch group which is sent back to the requesting unit. 
The usage of another memory bank for remapping of defective 
words is a means to avoid designing multi-port caches to improve 
area and delay of the cache. The access scenario to a RDC-Cache 
is illustrated in the flowchart in Figure 5.  

 
 Figure 6: different fields in each row of RADM 

 

4.2 Generating a Relocation Aware Defect 
Map 
A raw defect map is generated at boot time. During the boot time, 
using the memory Built In Self Test (BIST) unit, the L1 and L2 
cache(s) are tested under low voltage conditions. The output of 
the BIST is a raw defect map containing one bit per each word in 
the cache.  If there are multiple operating points for different 
combination of Voltage, Temperature and Frequency, the BIST 
operation is repeated for each of these settings. The obtained 
defect map is then modified and processed to be usable with 
RDC-Cache. Processing the defect map is done at full voltage 
and through a complied assembly program that realizes the 
pseudo code in Figure 8 and is explained next.  

Each entry in Relocation Aware Defect Map (RADM) of a cache 
with associativity of 4 that uses one of its ways (last) for fault 
tolerance contains the fields shown in Figure 6.  From the 
following discussion it will be trivial to extend the RADM to 
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cover caches of any associativity and any number of FT-ways per 
row. 

 
Figure 7: an example illustrating how RADM of two cache lines  
that are mapped to the same FT-Way in the next bank looks 

like. 

 

A raw defect map has to be processed and converted to RADM 
format. Figure 7 illustrate an example of how RADM fields are 
generated. This figure illustrates the RADM or two rows that use 
the same row in the next bank for the fault tolerance. The first 
row [R#: “0011011”] contain a defect in the third word of its 
second associative way. The second row [R#: “1101110”] contain 
two defective ways one at the first way and the second one at its 
third way.  The FT-way that is chosen in row [R#:0101110] of the 
next bank also has one defect in its FT-way. However the total 
number of available words is equal to that needed for tolerance of 
defects in rows “0011011” & “1101110”.  Figure 7 also shows 
the RADM for each of these rows. Each RADM entry includes 
the defect map of the first 3 associative ways, the address of the 
row containing the FT-way in the next bank, the defect map of 
the FT-way in the next bank followed by three 2-bit Starting 
Word Location Indexi (SWLIi) fields. Each SWLIi index points 
to the location of the first relocated word in the cache way “i”.  
Equation (1) generalizes the size of RADM entry based on cache 
configuration. In Equation (1) A: is the associatively of the cache, 
W: is the number of words in each cache way, and R is the 
number of rows in each memory bank. 

 1log)1( 22 +×−++×= WR
RADM ALogWAsize    (1) 

The ability to use a defective FT-Way for fault tolerance of 
defective ways in the main bank allows us to preserve the non 
defective FT-ways to be used only if no other defective FT-way 
was available. Therefore, if after RADM generation some of the 
FT-ways were unused they could be released increasing the cache 
associativity in that row by one and its capacity.  In order to build 
RADM from a plain defect map the algorithm in Figure 8 is used. 
The input to this algorithm is the raw defect map and the output is 
the RADM.  After BIST has generated a Raw Defect Map the 
core runs the assembly realization of pseudo code algorithm in 
Figure 8, processing the RADM. If there are multiple operating 
points (sets of Voltage, Temperature and Frequency) for each set, 

a separate RADM is generated. The resulting defect map is saved 
in a non-volatile memory and is loaded to cache’s defect map 
when voltage is lowered to that associated to the generated 
RADM. The RADM is to be generated once, however if a new 
failure or defect is detected the RADM could be quickly updated. 
In order to enable quick updates to RADM, along with RADM a 
Fault Tolerant List (FTL) which is the list of unused FT-ways is 
also saved.   

 

Structure LnkLE* { row,  index }  

//  link list also contain remove and add operations 

RDM[][][]=March()*;    
// raw defect map 

Create_FTL(RDM[][][]){ 
Wy = total number of cache way in each row. 
    For B = 0 To size(B) 
        For R = 0 to size(R) 
            count = defect count in RDM[B][R][Wy];  
            LnkLE LL; LL.row = R; LL.index = 0;     // link List  
            FTL[B][count].add(LL); 

Generage_RADM( RDM[ ][ ][ ] ){ 
FTL[ ][ ][ ] = create_FTL( RDM[ ][ ][ ]);   // fault tolerant 
locations 
cnt = 0; Wy = total number of cache way in each row.  
For B = 0 To size(B) 
    For R = 0 to size(R) 
        For  W = 0 to [size(W) – 1] 
            RADM[B][R][W] = RDM [B][R][W]; 
            count[W] = number of defective words in way W; 
            cnt = cnt + count[W]; 
        LL = Find_FT_Row( FTL[(B+!)%size(B)][],cnt); 
        ft_row = LL.row 
        RADM[B][R][wy-1] = ft_row; 
        RADM[B][R][wy]= RDM [B+1][R][Wy]; 
        swli = index of the first non defective bit in FT-way; 
        For  W = 0 to [size(W) – 1] 
            field_index = wy+1+W; 
            RADM[B][R][field_index] = swli; 
            swli = swli + count[W] + number of defects in  
               FT way from bit swli to bit 
swli+count[W]+LL.index ; 
 For B = 0 To size(B) 
      for LL=0 size of link list in FTL[B][wy] 
      LL = FTL[B][Wy].remove(); 
     RADM[B][LL.row][2*wy+2] = 1; 

Find_FT_Row( FTL[B][ ], cnt){ 
          unused_space = 0; 
           while (FTL[B][cnt+unused_space] is an empty link    
list) 
                      unused_space ++; 
           LnkLE  LL = FTL[B][cnt].remove(); 
           if unused_space != 0; { 
                      LL.index = cnt-unused_space; 
    FTL[B][unused_space].add(LL);  
           return LL 

Figure 8: The RADM generation algorithm 
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When scaling the cache voltage, we avoid scaling the RADM 
voltage. RADM sits on the critical path of the read and writes 
operation in lower voltages. The size of the RADM is fairly small 
compared to the cache (about 3.5%) however since its voltage is 
kept at high voltage, its contribution to the power consumption at 
lower voltages increases relative to the overall cache power. 
Having the RADM at higher voltage, requires designing dual 
voltage rails and/or voltage islands, which is standard practice in 
today’s reference design flow [18]. Alternatively, the RADM 
power overhead could be reduced, at the cost of extra area and 
latency penalty if the RADM is realized via ST-Cells [4] allowing 
a single Vccmin  across the chip. 

 

4.3 Reading from RDC-Cache 
Reading a way containing defective words from RDC-Cache 
involves reading the addressed bank, reading the FT-way from the 
next bank, and then passing the data through a Combining Logic 
Unit (CLU). The CLU also needs the defect map of the accessed 
cache way, and the FT-way. With this information provided, CLU 
will process and combine the words in the defective way with those 
obtained from FT-Way and produce the final defect free group of 
words to be sent back to the requesting unit. A simple realization of 
the combining logic for a 4 way associative cache is illustrated in 
Figure 9.  

 
Figure 9: Combinational Logic Unit (CLU) 

 

As explained previously, the relocated words to the FT-way are 
saved in a compact form. This means that one FT-way might be 
used to store defect-free copies of defective words located in more 
than one row in the previous bank. The first 2bits of the SWLI field 
in the defect map are used to realize the starting location (offset) of 
the first relocated word.  It is possible that more than one defective 
word is in a cache way, however, we know that all these words 
regardless of their location in the original cache way are compacted 
next to each other. For the example, in Figure 9 the words B1 and 
B3 are defective and they are compacted and saved in locations A1 
and A2 in a FT-way. In this case SWLI index is “01” meaning the 
first word is either defective or used for fault tolerance of another 
cache way. The combination of (s0,s1) bits and defect map of the 
FT-way could be used to generate an array of bits (a0,a1,a2,a3) that 
indicate the locations of relocated words in the FT-way.  A simple 
realization of such a circuit is provided in Figure 9.   This array of 
indexes along with defect map of the currently accessed defective 
cache way (b0,b1,b2,b3), its data (B0,B1,B2,B3) and finally the 
data of the FT-way (A0,A1,A2,A3) is the input to the Combining 
Mesh Grid (CMG). CMG is a matrix of M boxes. The functionality 
of each M box is very simple; M boxes help with routing the data 
words such that the relocated data words in the FT-way would find 

the proper location in the final fetch group. The logic of each M-
box is fairly simple as following: 

 AbbBBAAbababa nextnextnextnext +==+== ,,,  (2)  

The defect information and SWLI indexes are available much earlier 
than the data in the accessed way and FT-way are available; 
therefore the effective delay that the entire combining logic 
introduces (in case of 4 way associative caches) is only 4 levels of 
MUX propagation delays. This delay linearly increases as the cache 
ways increases 

 

4.4 Writing to RDC-Cache 
Writing to a defective cache way in the RDC-Cache involves 
regrouping and compacting the words mapped to defective 
locations in the accessed way to their corresponding location in 
their associated FT-way. Before writing the information in the FT-
way we should identify in which cache-way in the accessed bank, 
will the data be saved. Writing to the FT-way involves 
compacting the defective words together, shifting the compacted 
words to the appropriate starting word suggested by SLWI index 
in the defect map, and then going through a muxing stage to make 
sure data will not be saved in the defective locations in the FT-
way. This process is simply achieved by a Decomposition Logic 
Unit (DLU) similar to that used for combining. Note that in this 
case writing to the FT-way is on the critical path of the write 
operation. Furthermore, writing to the FT-way cannot start until 
data has propagated through the decomposition matrix (in case of 
a 4 way associative cache, it is propagation delay of 4 
multiplexer). Normally, the cache is designed so that, the write 
time is shorter than the read time. Thus, although writing to the 
FT-way extends the delay of write critical path, the write time is 
still expected to be much lower than the read time 

Table2: System operating parameters for different voltages. 

 High Voltage Low Voltage 
Processor Frequency 3GHz 500MHz 
Memory Latency 300 Cycles 50 Cycles 
Voltage 1.3 V 500mV 

4.5 Access Delay Analysis 
When the voltage is lowered, both analog (word-line fire to sense 
amplifier detection) and digital sections (decoding, comparison, 
hit signal generation, buffering and propagating through inverter 
chain in the output driver) of the cache operation take longer time. 
In addition to that in the proposed architecture every access to the 
cache is extended by the latency introduced by reading the defect 
map as well as the propagation delay through the combining logic.  
As a tradeoff, this increase in the access latency enables the cache 
to tolerate a higher defect rate. Viewing the same problem from 
another perspective, by tolerating a higher defect rate, the 
proposed cache architecture achieves the same cache yield at 
lower voltages. 

In order to determine the excess delay introduced by CLU 
processing and RADM lookup, we simulated the post-layout 
structure of a cache in 65nm technology.  Using synthesis tools 
and considering 20FO4 [3] delay per cycle, we determined the 
excess delay introduced by RADM lookup and CLU. In case of 
our 32KB cache with access time of 3 cycles, the access time was 
extended by 0.92 cycles, effectively allowing access time to be 
done in 4 cycles. For a cache size of 2MB arranged in 8 banks and 

256



8 ways per row, the access time was extended by 1.89 cycles. We 
repeated the simulation using 32nm PTM[16] model and achieved 
similar results (0.97 and 1.91 cycles for 32KB and 2MB caches 
respectively) allowing us to effectively simulate the 32KB and 
2MB caches with 1 and 2 cycle overhead.  In our simulation setup 
explained in section 5, in lower voltages the delay of the 32KB L1 
and 2MB L2 caches are increased by this excess amount to 
account for CLU and RADM lookup delays 
 

Table 3: SimpleScalar configuration   

ROB size 256 
Register File Size 256 FP, 256 INT 
Fetch/schedule/retire/width 6/5/5 
Scheduling Window Size 32FP,  32 Int, 32 Mem 
Memory Disambiguation Perfect 
Load/Store Buffer Size 32/32 
Branch Predictor 16KB 
Cache Line Size 64 Byte 
L1 Data and Inst Cache Size 32 KB, 8Way, 3 Cycles 
 L2 Unified Cache 2MB, 8Way, 20 Cycles 
Execution Length 2B Fast Forward, 2B 

execution 

5. Simulation Methodology 
We used SimpleScalar [17] to simulate the SPEC2000 binaries when 
L1 and L2 cache access latencies are defined to those appropriate for 
RDC-Cache. Table 3 illustrates the setup of SimpleScalar for this 
simulation which is similar to that used in [3] and reflective of 
Intel® CoreTM 2 Duo processor on 65 nm technology [3]. The 
results are compared to an ideal cache capable of defect free 
operation in low voltage with no performance and delay penalty or 
capacity loss. This also enables us to compare the architecture to that 
given in [3].  Although our 32KB cache is able to work at 440mV 
and our L2 cache in 475mV with still passing the 999 in 1000 yield 
test, we used the supply voltage point to be 500mV so we could 
compare the architecture to that in [3]. 

 
Figure 9: Probability of cache failure for different fault tolerant 

mechanisms 

 

6. Results & Discussion  
The probability of a 32KB RDC-Cache failure is illustrated in 
Figure 9. This figure also compares the Failure probability of 
other caches with the same size realized by different Fault 

tolerant Means.  We adopt the definition for Vcc-min as the 
voltage at which 1 out of every 1000 cache instances is defective 
[3]. With no fault tolerant mechanism in place, a 32KB cache 
composed of 6T SRAMS, based of failure probability provided in 
Figure 2, have a Vcc-min of 0.87V. Introducing a 1 Bit ECC 
reduces the Vcc-min to 0.68V. On the other hand if memory array 
is realized via ST-Cells the Vcc-min  is effectively reduced to 
500mV. However an area penalty of 2X in the array size incurs. 
The Word-Fix Fault Tolerance mechanism suggested in [3] also 
reduces the Vcc-min lower but close to 500mV. The Bit-Fix 
mechanism in [3] further reduces the Vcc-min to 480mV. 
However the cache size is both of methods suggested in [3] is 
lower than that realized by RDC-Cache. Finally the RDC-Cache 
realizes the Vcc-min at only 450mV.  

Figure 10 compares the RDC-Cache size to those suggested in [2] 
and [3] across different voltages (different failure rates). In the 
Word-Fix[3] and Bit-Fix[3] mechanism the cache size at lower 
voltages is constant. For our case study of a 8 way associative 
32KB cache, Word-Fix scheme uses 2 out of the 8 ways for 
masking the defective words resulting in 25% loss in the cache 
size. The Bit Fix mechanism on the other hand incurs a 50% loss 
since it uses 4 out of every 8 ways for saving the needed defect 
tolerance information (patches and pointers). The Resizable 
Cache suggested in [2] have a higher cache size in lower defect 
rates however in lower voltages quickly downsize reaching 50% 
loss at 0.62V. The RDC-Cache However is able to constantly 
realize a higher effective cache size compare to other schemes.  

 

Table 4:  Low voltage properties of RDC-Cache for 32KB and 
2MB cache 

 

Table 4 summarizes the cost related to RDC-Cache. The area 
overhead of the RDC-Cache for a 32KB cache including RADM, 
CLU and DLU obtained after layout analysis is ~6.72% in 65nm 
technology.  In higher voltages the RADM, DLU and CLU are 
power gated and by muxing they are removed from critical access 
path but still the access time is increased by 0.91% in L1 cache 
and %0.18 in L2 Cache. The percentage increase in the access 
time of the L2 cache is larger since the L2 cache is designed for 
20 cycle access time where as L1 cache has a 3 cycle access time.  
In lower voltages the RADM, CLU and DLU are in the critical 
path and they increase the access time by 32.1% and 9.8% for L1 
and L2 cache respectively. This results in an increase in the 
access time of the L1 from 3 to 4 cycles and in L2 from 20 to 22 
cycles.  Table 4 also lists the Vccmin for a 32KB and a 2MB 

L1 & L2  are 8 way associative. Cache size 
32 KB  2 MB 

Area Overhead 6.72% 6.83% 
increase in access time in high Vdd 0.91% 0.18% 
increase in access time in low Vdd 32.1% 9.8% 
Reduction in leakage in 
500mV  

1.3V 86.26% 85.42% 
0.87V 61.37% 60.14% 

Reduction in dynamic 
Power at  500mV 

1.3V 79.2% 78.36% 
0.87V 59.39% 57.92% 

Total Power reduction at 
500mV 

1.3V 83.79% 82.64% 
0.87V 60.68% 59.16 

Vccmin to get 999 in 1000 yield* 450mV 485mV 
Power reduction at 
Vccmin  

1.3V 85.54% 83.06% 
0.87V 61.23% 59.93% 
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cache to be ~450mV and ~485mV.   The reduction in dynamic, 
leakage and total power consumption of both cache instances is 
reported. For obtaining the percentage power reduction we have 
compared them to a cache operating at 1.3V ( Fast-Fast corner in 
65nm) and one at 0.87V ( which is the Vccmin of a 6T with no 
fault tolerance in place).  The reduction in power when each 
cache instance is operating at 500mV and also when it operates in 
its Vccmin is reported.   
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Figure 10: Effective cache size after resizing to cover all defects. 
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 Figure 11: Normalized number of access from L1 to L2 Cache 
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 Figure 12: Normalized IPC of SPEC2000 benchmarks 
 

Figures 11 and 12 illustrate the results of SimpleScalar 
simulation. For obtaining the figures the binaries are fast-
forwarded for 2Billion instructions and executed for 2Billion 
instructions. Figure 11 illustrates the normalized number of 
accesses from L1 to L2 Cache (i.e. increase in access to lower 
level memory), and Figure 12 illustrates the normalized IPC. 

Comparing the figures side by side reveals a non-linear 
relationship between increase in the number of L1 to L2 cache 
access and decrease in the IPC for each benchmark. Increase in 
the number of accesses to lower level memories is due to 
reduction in the cache size. If the cache size is further reduced (to 
the limits of [2] or [3]) This results in quick reduction in the IPC. 
This in turn increases the execution time which is followed by 
increased energy consumption for doing more work (dynamic 
power) and leaking over a longer period. Since RDC-Cache 
achieves the target sub 500mV voltage with larger effective cache 
size compared to that of [2] or [3], even if they are operated at the 
same voltage, or if RDC-Cache has slightly higher power 
consumption, it incurs lower final energy cost. Our simulation 
results reported 61% reduction in the Energy consumed Per 
executed Instruction (EPI). Which is higher than that of [3] (53%) 
and [4] (55%). 

 

7. Conclusion  
In this paper, we presented a novel, process variation-tolerant 
cache architecture. This architecture outperforms previously 
published designs due to the finer granularization of faults and 
enhanced packing of fault-free redundant regions, which increases 
the effective cache size. This technique is not limited to one 
memory hierarchy and can be extended to model any cache-based 
memory structure. Many other degrees of freedom can 
complement the proposed technique to achieve an even more 
diverse design space exploration and tradeoff between area, 
power, performance and reliability. 
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