
A Fault Tolerant Cache Architecture for Sub 500mV
Operation: Resizable Data Composer Cache (RDC-Cache)

Avesta Sasan (Mohammad A. Makhzan), Houman Homayoun, Ahmed Eltawil, Fadi Kurdahi
Electrical Engineering and Computer Science Department

University of California Irvine

{mmakhzan, hhomayou, aeltawil,kurdahi}@uci.edu

ABSTRACT
In this paper we introduce Resizable Data Composer-Cache
(RDC-Cache). This novel cache architecture operates correctly at
sub 500 mV in 65 nm technology tolerating large number of
Manufacturing Process Variation induced defects. Based on a
smart relocation methodology, RDC-Cache decomposes the data
that is targeted for a defective cache way and relocates one or few
word to a new location avoiding a write to defective bits. Upon a
read request, the requested data is recomposed through an inverse
operation. For the purpose of fault tolerance at low voltages the
cache size is reduced, however, in this architecture the final cache
size is considerably higher compared to previously suggested
resizable cache organizations [2][3]. The following three features
a) compaction of relocated words, b)ability to use defective words
for fault tolerance and c) “linking” (relocating the defective word
to any row in the next bank), allows this architecture to achieve
far larger fault tolerance in comparison to [2][3]. In high voltage
mode, the fault tolerant mechanism of RDC-Cache is turned-off
with minimal (0.91%) latency overhead compared to a traditional
cache.

 Categories and Subject Descriptors
B.3.1 [Semiconductor Memories]: Static Memory (SRAM)

B.3.2 [Design Styles] Cache Memories,

B.1.3 [Control Structure Reliability, Testing and Fault-Tolerance]:
Error Checking, Redundant Design.

 General Terms
Algorithm, Design, Reliability, Theory

Keywords
Remapping Cache, Variation Aware Cache, Low Power Cache,
low power memory organization, low power design, Fault
Tolerance, VFS, Memory organization.

1. INTRODUCTION
With migration of fabrication technology to nanoscale transistor
dimensions, CMOS circuits suffer from performance and power
yield losses due to short channel effects that exacerbate process
variation effects [1]. Due to the random nature of local process

variation, resulting defects exhibit a random and uniform
distribution [1] that adversely affect the expected system yield.
This in turns leads to higher defect rates especially in memory
intensive devices that are sensitive to changes in operation
parameters including temperature, voltage and frequency.
Furthermore, voltage scaling exponentially increases the impact of
process variation on memory cell reliability, resulting in an
exponential increase in the fault rate [4-8]. This introduces a
tradeoff between cache yield and minimum achievable voltage
Vcc[3]. In order to improve the cache yield and/or lower the
minimum achievable voltage scaling bound many fault tolerant
mechanisms are suggested. By tolerating a number of defects, a
fault tolerant mechanism allows operation in lower voltages
and/or improves the production yield. Having an error tolerant
mechanism in place, usually require spending some extra power
for supporting logic, introduces a certain area overhead, and might
result in changing some system parameters. In case of caches and
SRAMs this could be a change in the effective cache size, cache
cycle time and/or its latency. At the same time each fault tolerance
mechanism is capable of tolerating a certain defect rate. In this
paper we address the process variation defects. As it is shown
later in this paper, the number of these defects grows
exponentially as the voltage is reduced. Since our target is
achieving the lowest possible Vcc (sub 500mV range) we should
be able to tolerate a very large number of defects. The larger the
number of tolerated defects, the lower the achievable bound of
Vcc is. We propose a fault tolerant architecture for caches that
detect and correct the memory defects via resizing the cache. Due
to its ability to compress defective locations, the proposed
architecture, shows much higher fault coverage when compared to
previous fault tolerant resizable caches reported in the literature
[2][3]. While the compression of defect locations tends to slow
down the process of cache resizing, the effective cache size is
higher (or equal in worse case) as compared to prior work [2][3].

2. Related & Prior Work
The simplest solutions for providing moderate fault tolerance
against process variation, is changing the SRAM basic cell size
and design. Increasing the size of the transistor within the memory
cell reduces the effects of gate width and length variation and
reduces impact of random Dopant fluctuation. This results in a
narrower distribution of access and write time in different
voltages which in turn lowers the defect rate at each voltage. In
addition using 8-T, 10-T and Schmidt Trigger ST-Cells [9] could
also reduce the impact of process variation on the cell behavior.
However such changes to the cell sizing and design result in a fast
increase in the memory area. Kulkari et al [9] compared the 6T,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’09, October 11–16, 2009, Grenoble, France.
Copyright 2009 ACM 978-1-60558-626-7/09/10 ...$10.00.

251

8T and 10T cell with their proposed ST 10T-cell and showed
better low voltage reliability compared to other designs, however
using ST-Cell incurs a 100% increase in the memory array area.
In addition improving the reliability by changing the cell design
reduces the statistical chances of failure and improves yield. A
drawback of this approach is that after production, the system will
not be able to tolerate new defects due to temperature variation,
aging, and etc. Usually such pre-layout designs for reliability
improvement should be coupled with an additional architectural
detection and correction mechanism to increase life time
reliability in addition to the yield.

Traditionally, a more general approach is the use of row and
column redundancy [10][11], which is widely practiced.
Redundancy is a good mechanism with low performance and area
overhead for tolerating few manufacturing defects. With
migration to nanometer regimes and the resulting exponential rise
in the process variation induced defects, row and column
redundancy fall short of tolerating this large number of defects. At
lower voltages, where every cache row is likely to contain defects,
the row and column redundancy are practically useless.

On a system level approach, a wide range of Error Detection Code
(EDC) and Error Correcting codes (ECC) could be used. ECC is
proven as an effective mechanism for handling soft errors.
However using ECC alone for tolerating process variation induced
defects has several major limitations: First is the increased
vulnerability against soft errors. Any row that utilizes the ECC
mechanism for detection and correction of a process variation
induced defect is vulnerable and defenseless against soft error
occurrence. This encourages using multi bit Error Detection and
Correction codes. Secondly, using ECC codes incurs a high
overhead in terms of storage for the correction code, large latency,
slow and complex decoding [12].

The fault tolerant issue is also addressed from an organization
stand point of view. In [13] the authors present the concept of
using a victim cache, referenced to as the Inquisitive Defect
Cache (IDC), as a small direct or associative cache that works in
parallel with L1 cache and provides a defect free view of the
cache for the processor in the current window of execution.
However, in this work the basic assumption is that the data, if lost,
could be recovered from lower level cache or memory and thus
could only work for hierarchical structures. The concept of RDC-
Cache (this work) however is applicable to any memory structure.
A recent paper from Intel’s microprocessor technology lab [3]
suggested the use of fault tolerant mechanisms trading off the
cache capacity and associatively for fault tolerance. The proposed
approaches (assuming similar Probability of cell failure in 65nm
and 130nm and using 130 nm probability of failure curve) allow
scaling the voltage from a nominal 0.9 v down to 500mV in a
65nm technology. The cache size is reduced to 75% or 50%
depending on the mechanism that is used. When compared to our
proposed architecture, the RDC-Cache fault tolerance is
considerably higher. This is due to the fact that the relocated
defective words are saved in the RDC-cache in a compressed
form. In addition the cache size is reduced just enough to provide
the necessary fault coverage and therefore for all configurations,
the RDC-Cache experience larger effective cache size in compare
to that suggested in [3]. In fact the lower bound of cache size, in
the worse case in RDC-Cache is equal to that offered in [3]. The
work in [2] suggested resizable caches. In this technique it is
assumed that in a cache layout, two or more blocks are laid in one
row, therefore the column decoders are altered to choose another

block in the same row if the original block is defective. Not only
is the effective cache size in this case quickly reduced, the limit of
fault tolerance is much lower than that achievable by RDC-Cache.
In addition, this method interferes with temporal locality of the
data.
In this paper we introduce a resizable fault tolerant cache
organization that provide larger effective cache size in lower
voltages compared to previously suggested organizations[2][3].

3. Voltage Scaling & Memory Failures
3.1 Classification of Memory Errors
Classically, failures in embedded memory cells are categorized as
either of a transient nature, dependent on operating conditions, or
of a fixed nature due to manufacturing errors. Symptoms of these
failures are expressed as either: (1) an increase in cell access time,
or (2) unstable read/write operations. In process technologies
greater than 100nm, fixed errors are predominant, with a minority
of the errors introduced due to transient effects. As technology
scaling progresses, due to the random nature of the fluctuation of
Dopant atom distributions and variation in gate length, this model
cannot be sustained. In fact, in sub 100nm design, Random
Dopant Fluctuation (RDF) has a dominant impact on the
transistors’ strength mismatch and is the most noticeable type of
intra-die variation that can lead to cell instability and failure in
embedded memories [12]. This Manufacturing Induced Process
Variation (MPV) results in mismatch in the intrinsic threshold
voltage (Vth) of neighboring transistors. When applied to memory
cells, due to the analog nature of memory operation, the Vth
variation results in large variation in access and write time to the
memory cells. Dependence of Vth to the temperature makes the
write/access time sensitive to the die temperature. In addition
since the transistor’s speed is a strong non-linear function of the
separation between Vth and Vdd, the access/read time is strongly
and non-linearly dependent on the supply voltage.

Table 1: Change in the mean and access time with Vdd
Voltage Mean(ps) Standard

Deviation (ps)
0.9 43.77 7.504
0.8 65.75 13.873
0.7 91.6 19.987
0.6 136.9 26.35
0.5 197.54 37.038

3.2 Memory Access Time & Process Variation
To model the access/write time distribution as a result of MPV, a
simulation was setup where MPV effects are lumped into an
independent Gaussian distribution characterizing the Vth
fluctuations of each transistor [14]. The circuit under test is a
standard six transistor SRAM memory bit cell. The SPICE models
used for the simulation were obtained from the Predictive
Technology Model (PTM) [14] website in 32nm.

Due to the random and uniform distribution of Vth , it is expected
and verified by Monte-Carlo simulation that the access/write time
to the cache follows a “Gaussian like” distribution. However as
the supply voltage to the memory changes, the characteristic of
access/write distribution is expected to change. We repeated 10K
Monte-Carlo Simulation for each voltage point. By fitting the

252

obtained iteration points at each voltage to the closest Gaussian
distribution, we obtained the associated mean and standard
deviation. The data is presented in Table 1. As illustrated, at lower
voltages not only does the mean access time change, but also the
standard deviation from mean widens

3.3 Defining System Access Time, Safety
Margin (SM) and its Implications on Memory
Cell Failure Rate
The conventional model for defining an access time at a voltage
point when the access distribution is known is to choose an access
time large enough that the probability of the distribution function
tail that exceed the defined access time is very small. This is
illustrated in Figure 1. This probability is determined by the
designer depending on expected yield of the structure and the
amount of dedicated redundancy available. The gap between
mean access/write time and defined cycle time is referred to as
‘Safety Margin’ (SM). Choosing a large SM will result in higher
yield however it adversely degrades the system’s performance. In
addition as the SM is increased, the power consumption of the
memory device is also increased. A larger safety margin implies
always expecting a larger differential voltage between the word-
lines and therefore a larger waste in dynamic power (design based
on worse case and for smallest differential voltage between
bitlines).

Figure 1: Voltage scaling and change in the mean, and
standard deviation of access time distribution and change in
safety margin for an FFVS policy with cycle time of 150ps

As the supply voltage is scaled, the mean (µ) and standard

deviation (σ) of the access/write time grow larger. It is however
still possible to define the cycle time at each voltage such that the
probability of failure stays constant, but moving to lower voltages
increases the mean and standard deviation quickly and trying to
maintain the same probability of failure results in extremely long
access time and extremely poor performance. On the other hand if
the cycle time is chosen such that failure probability is traded for
the performance, the failure rate will increase thus necessitating a
fault tolerant architecture.

In order to obtain a mapping for the probability of failure to
voltage, we chose an architecture that controls the sense amplifier
activation via a delay buffer unit. The SM is practically added to
the delay model by choosing a delay unit that ideally (i.e. no
process variations are present) activates the bitlines whenever a
differential voltage of 26mV is developed given that the sense
amplifier is capable of detecting the signal with only 14mV
differential voltage between its word-lines. At lower voltages the
extra propagation delay of the control signal through the delay
unit extends and defines the SM. Monte Carlo Simulation results
of ��� iterations were used for obtaining the failure probability
across different voltages. Using this methodology for defining SM
at each voltage level results in the failure curve illustrated in
Figure 2. This curve represents the combined rates of memory
read, write and access failures.

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0.4 0.5 0.6 0.7 0.8 0.9
Pr

ob
ab

ili
ty

 o
f

SR
AM

 ce
ll

fa
ilu

re Voltage

Figure 2: Probability of cell failure

We note here that our results are merely a “case study” to capture
the trend of change in failure rate as supply voltage is scaled. The
relationship between failure probability and voltage is affected
significantly by several design variables such as technology size,
cell design, cell size, bitline and wordline organization, sense
amplifier specification and/or design, to name but a few. Even
when considering the effect of all these “degrees of freedom”, the
scaling of the supply voltage will always result in an exponential
change in the number of defective cells. In order to compare
“apples-to-apples” the effectiveness of our architecture against
some previously proposed architecture [2,3] we use the failure
rate trend reported in [3] for 65 nm technology. This curve is also
reproduced in Figure 2. It is interesting to note that the failure rate
in 32nm is almost two orders of magnitude higher than that in
65nm, however the trend of failure response to voltage scaling is
similar.

253

4. Proposed Architecture: RDC-Cache
The RDC-Cache is designed to provide tolerance for defects rates
in sub 500mV voltage range. The proposed RDC-Cache could be
turned on or off based on operating voltage level. When at higher
voltages turning off the Fault Tolerance Mechanism (FTM) of
RDC-Cache lowers both access time and power consumption. The
delay associated with gating mechanism for switching the FTM to
be active/gated is studied and as it will be discussed is very small
compared to the overall cache latency (around 0.28%).

4.1 RDC-Cache Concept & Organization
In the RDC approach, banks are arranged in a circular chain, with
each bank providing fault tolerance for the previous bank in the
chain and the first bank providing tolerance for the last bank. This
is illustrated in Figure 3.

Figure 3: Banks are organized in a circular chain; for each

bank, its next-bank will provide fault tolerance

RDC-Cache provides a word level fault tolerance. It generates and
keeps a special defect map that has the defect information at a word
level granularity. In RDC-Cache the last cache way in each row is
used for fault tolerance (FT-way). If a cache way contain a
defective word, the information that are mapped to that defective
word are relocated and saved in FT-way in its next bank in the
circular chain. RDC-Cache uses a mechanism that allows saving
the relocated words of two or more ways in one or more rows in a
single FT-Way. A FT-way that all its words are used as a
destination for relocated words is called “saturated”. Similar to [3],
the proposed defect handling mechanism (DHM) provides
tolerance for defects in data, and not for tag bits. Tag bits at lower
voltages could be protected by a combination of upsizing the tag
cells and using ST-Cells [9]. In addition, the proposed DHM could
be combined with ECC to achieve even lower limits of voltage
scaling and tolerance against soft errors.

Figure 4: access to a RDC-Cache in low voltage mode

When choosing the destination FT-Way for relocated
words, the RDC-Cache first uses unsaturated FT-ways that
contain defective word(s). Then it uses the unsaturated previously
used FT-ways that are not yet saturated and finally the defect free
FT-ways. This allows us to keep the maximum possible number
of defect free FT-ways. Finally, if these FT-ways are not used
they are released and used as ordinary ways in the cache. This
increases the final RDC-cache size compare to previously
suggested resizable caches [2][3]. The process of associating a

FT-Way in the next bank to a defective cache way is referred to
as “linking”. The proposed structure allows linking of any
defective way to any FT-way in its next bank.

Figure 5: access flowchart to a RDC-Cache in low voltage mode

At low voltage, when reading from a defective cache way, as it is
illustrated in Figure 4, the RDC-Cache first identifies the location
of relocated words from defect map, and then accesses both banks
(addressed bank and one containing relocated words) at the same
time. Then through logical operations (combining logic), based
on the defect map of an accessed cache way, FT-way etc., it
combines the information in both cache ways and generates the
defect free fetch group which is sent back to the requesting unit.
The usage of another memory bank for remapping of defective
words is a means to avoid designing multi-port caches to improve
area and delay of the cache. The access scenario to a RDC-Cache
is illustrated in the flowchart in Figure 5.

 Figure 6: different fields in each row of RADM

4.2 Generating a Relocation Aware Defect
Map
A raw defect map is generated at boot time. During the boot time,
using the memory Built In Self Test (BIST) unit, the L1 and L2
cache(s) are tested under low voltage conditions. The output of
the BIST is a raw defect map containing one bit per each word in
the cache. If there are multiple operating points for different
combination of Voltage, Temperature and Frequency, the BIST
operation is repeated for each of these settings. The obtained
defect map is then modified and processed to be usable with
RDC-Cache. Processing the defect map is done at full voltage
and through a complied assembly program that realizes the
pseudo code in Figure 8 and is explained next.

Each entry in Relocation Aware Defect Map (RADM) of a cache
with associativity of 4 that uses one of its ways (last) for fault
tolerance contains the fields shown in Figure 6. From the
following discussion it will be trivial to extend the RADM to

254

cover caches of any associativity and any number of FT-ways per
row.

Figure 7: an example illustrating how RADM of two cache lines
that are mapped to the same FT-Way in the next bank looks

like.

A raw defect map has to be processed and converted to RADM
format. Figure 7 illustrate an example of how RADM fields are
generated. This figure illustrates the RADM or two rows that use
the same row in the next bank for the fault tolerance. The first
row [R#: “0011011”] contain a defect in the third word of its
second associative way. The second row [R#: “1101110”] contain
two defective ways one at the first way and the second one at its
third way. The FT-way that is chosen in row [R#:0101110] of the
next bank also has one defect in its FT-way. However the total
number of available words is equal to that needed for tolerance of
defects in rows “0011011” & “1101110”. Figure 7 also shows
the RADM for each of these rows. Each RADM entry includes
the defect map of the first 3 associative ways, the address of the
row containing the FT-way in the next bank, the defect map of
the FT-way in the next bank followed by three 2-bit Starting
Word Location Indexi (SWLIi) fields. Each SWLIi index points
to the location of the first relocated word in the cache way “i”.
Equation (1) generalizes the size of RADM entry based on cache
configuration. In Equation (1) A: is the associatively of the cache,
W: is the number of words in each cache way, and R is the
number of rows in each memory bank.

 1log)1(22 +×−++×= WR
RADM ALogWAsize (1)

The ability to use a defective FT-Way for fault tolerance of
defective ways in the main bank allows us to preserve the non
defective FT-ways to be used only if no other defective FT-way
was available. Therefore, if after RADM generation some of the
FT-ways were unused they could be released increasing the cache
associativity in that row by one and its capacity. In order to build
RADM from a plain defect map the algorithm in Figure 8 is used.
The input to this algorithm is the raw defect map and the output is
the RADM. After BIST has generated a Raw Defect Map the
core runs the assembly realization of pseudo code algorithm in
Figure 8, processing the RADM. If there are multiple operating
points (sets of Voltage, Temperature and Frequency) for each set,

a separate RADM is generated. The resulting defect map is saved
in a non-volatile memory and is loaded to cache’s defect map
when voltage is lowered to that associated to the generated
RADM. The RADM is to be generated once, however if a new
failure or defect is detected the RADM could be quickly updated.
In order to enable quick updates to RADM, along with RADM a
Fault Tolerant List (FTL) which is the list of unused FT-ways is
also saved.

Structure LnkLE* { row, index }

// link list also contain remove and add operations

RDM[][][]=March()*;
// raw defect map

Create_FTL(RDM[][][]){
Wy = total number of cache way in each row.
 For B = 0 To size(B)
 For R = 0 to size(R)
 count = defect count in RDM[B][R][Wy];
 LnkLE LL; LL.row = R; LL.index = 0; // link List
 FTL[B][count].add(LL);

Generage_RADM(RDM[][][]){
FTL[][][] = create_FTL(RDM[][][]); // fault tolerant
locations
cnt = 0; Wy = total number of cache way in each row.
For B = 0 To size(B)
 For R = 0 to size(R)
 For W = 0 to [size(W) – 1]
 RADM[B][R][W] = RDM [B][R][W];
 count[W] = number of defective words in way W;
 cnt = cnt + count[W];
 LL = Find_FT_Row(FTL[(B+!)%size(B)][],cnt);
 ft_row = LL.row
 RADM[B][R][wy-1] = ft_row;
 RADM[B][R][wy]= RDM [B+1][R][Wy];
 swli = index of the first non defective bit in FT-way;
 For W = 0 to [size(W) – 1]
 field_index = wy+1+W;
 RADM[B][R][field_index] = swli;
 swli = swli + count[W] + number of defects in
 FT way from bit swli to bit
swli+count[W]+LL.index ;
 For B = 0 To size(B)
 for LL=0 size of link list in FTL[B][wy]
 LL = FTL[B][Wy].remove();
 RADM[B][LL.row][2*wy+2] = 1;

Find_FT_Row(FTL[B][], cnt){
 unused_space = 0;
 while (FTL[B][cnt+unused_space] is an empty link
list)
 unused_space ++;
 LnkLE LL = FTL[B][cnt].remove();
 if unused_space != 0; {
 LL.index = cnt-unused_space;
 FTL[B][unused_space].add(LL);
 return LL

Figure 8: The RADM generation algorithm

255

When scaling the cache voltage, we avoid scaling the RADM
voltage. RADM sits on the critical path of the read and writes
operation in lower voltages. The size of the RADM is fairly small
compared to the cache (about 3.5%) however since its voltage is
kept at high voltage, its contribution to the power consumption at
lower voltages increases relative to the overall cache power.
Having the RADM at higher voltage, requires designing dual
voltage rails and/or voltage islands, which is standard practice in
today’s reference design flow [18]. Alternatively, the RADM
power overhead could be reduced, at the cost of extra area and
latency penalty if the RADM is realized via ST-Cells [4] allowing
a single Vccmin across the chip.

4.3 Reading from RDC-Cache
Reading a way containing defective words from RDC-Cache
involves reading the addressed bank, reading the FT-way from the
next bank, and then passing the data through a Combining Logic
Unit (CLU). The CLU also needs the defect map of the accessed
cache way, and the FT-way. With this information provided, CLU
will process and combine the words in the defective way with those
obtained from FT-Way and produce the final defect free group of
words to be sent back to the requesting unit. A simple realization of
the combining logic for a 4 way associative cache is illustrated in
Figure 9.

Figure 9: Combinational Logic Unit (CLU)

As explained previously, the relocated words to the FT-way are
saved in a compact form. This means that one FT-way might be
used to store defect-free copies of defective words located in more
than one row in the previous bank. The first 2bits of the SWLI field
in the defect map are used to realize the starting location (offset) of
the first relocated word. It is possible that more than one defective
word is in a cache way, however, we know that all these words
regardless of their location in the original cache way are compacted
next to each other. For the example, in Figure 9 the words B1 and
B3 are defective and they are compacted and saved in locations A1
and A2 in a FT-way. In this case SWLI index is “01” meaning the
first word is either defective or used for fault tolerance of another
cache way. The combination of (s0,s1) bits and defect map of the
FT-way could be used to generate an array of bits (a0,a1,a2,a3) that
indicate the locations of relocated words in the FT-way. A simple
realization of such a circuit is provided in Figure 9. This array of
indexes along with defect map of the currently accessed defective
cache way (b0,b1,b2,b3), its data (B0,B1,B2,B3) and finally the
data of the FT-way (A0,A1,A2,A3) is the input to the Combining
Mesh Grid (CMG). CMG is a matrix of M boxes. The functionality
of each M box is very simple; M boxes help with routing the data
words such that the relocated data words in the FT-way would find

the proper location in the final fetch group. The logic of each M-
box is fairly simple as following:

 AbbBBAAbababa nextnextnextnext +==+== ,,, (2)

The defect information and SWLI indexes are available much earlier
than the data in the accessed way and FT-way are available;
therefore the effective delay that the entire combining logic
introduces (in case of 4 way associative caches) is only 4 levels of
MUX propagation delays. This delay linearly increases as the cache
ways increases

4.4 Writing to RDC-Cache
Writing to a defective cache way in the RDC-Cache involves
regrouping and compacting the words mapped to defective
locations in the accessed way to their corresponding location in
their associated FT-way. Before writing the information in the FT-
way we should identify in which cache-way in the accessed bank,
will the data be saved. Writing to the FT-way involves
compacting the defective words together, shifting the compacted
words to the appropriate starting word suggested by SLWI index
in the defect map, and then going through a muxing stage to make
sure data will not be saved in the defective locations in the FT-
way. This process is simply achieved by a Decomposition Logic
Unit (DLU) similar to that used for combining. Note that in this
case writing to the FT-way is on the critical path of the write
operation. Furthermore, writing to the FT-way cannot start until
data has propagated through the decomposition matrix (in case of
a 4 way associative cache, it is propagation delay of 4
multiplexer). Normally, the cache is designed so that, the write
time is shorter than the read time. Thus, although writing to the
FT-way extends the delay of write critical path, the write time is
still expected to be much lower than the read time

Table2: System operating parameters for different voltages.

 High Voltage Low Voltage
Processor Frequency 3GHz 500MHz
Memory Latency 300 Cycles 50 Cycles
Voltage 1.3 V 500mV

4.5 Access Delay Analysis
When the voltage is lowered, both analog (word-line fire to sense
amplifier detection) and digital sections (decoding, comparison,
hit signal generation, buffering and propagating through inverter
chain in the output driver) of the cache operation take longer time.
In addition to that in the proposed architecture every access to the
cache is extended by the latency introduced by reading the defect
map as well as the propagation delay through the combining logic.
As a tradeoff, this increase in the access latency enables the cache
to tolerate a higher defect rate. Viewing the same problem from
another perspective, by tolerating a higher defect rate, the
proposed cache architecture achieves the same cache yield at
lower voltages.

In order to determine the excess delay introduced by CLU
processing and RADM lookup, we simulated the post-layout
structure of a cache in 65nm technology. Using synthesis tools
and considering 20FO4 [3] delay per cycle, we determined the
excess delay introduced by RADM lookup and CLU. In case of
our 32KB cache with access time of 3 cycles, the access time was
extended by 0.92 cycles, effectively allowing access time to be
done in 4 cycles. For a cache size of 2MB arranged in 8 banks and

256

8 ways per row, the access time was extended by 1.89 cycles. We
repeated the simulation using 32nm PTM[16] model and achieved
similar results (0.97 and 1.91 cycles for 32KB and 2MB caches
respectively) allowing us to effectively simulate the 32KB and
2MB caches with 1 and 2 cycle overhead. In our simulation setup
explained in section 5, in lower voltages the delay of the 32KB L1
and 2MB L2 caches are increased by this excess amount to
account for CLU and RADM lookup delays

Table 3: SimpleScalar configuration

ROB size 256
Register File Size 256 FP, 256 INT
Fetch/schedule/retire/width 6/5/5
Scheduling Window Size 32FP, 32 Int, 32 Mem
Memory Disambiguation Perfect
Load/Store Buffer Size 32/32
Branch Predictor 16KB
Cache Line Size 64 Byte
L1 Data and Inst Cache Size 32 KB, 8Way, 3 Cycles
 L2 Unified Cache 2MB, 8Way, 20 Cycles
Execution Length 2B Fast Forward, 2B

execution

5. Simulation Methodology
We used SimpleScalar [17] to simulate the SPEC2000 binaries when
L1 and L2 cache access latencies are defined to those appropriate for
RDC-Cache. Table 3 illustrates the setup of SimpleScalar for this
simulation which is similar to that used in [3] and reflective of
Intel® CoreTM 2 Duo processor on 65 nm technology [3]. The
results are compared to an ideal cache capable of defect free
operation in low voltage with no performance and delay penalty or
capacity loss. This also enables us to compare the architecture to that
given in [3]. Although our 32KB cache is able to work at 440mV
and our L2 cache in 475mV with still passing the 999 in 1000 yield
test, we used the supply voltage point to be 500mV so we could
compare the architecture to that in [3].

Figure 9: Probability of cache failure for different fault tolerant

mechanisms

6. Results & Discussion
The probability of a 32KB RDC-Cache failure is illustrated in
Figure 9. This figure also compares the Failure probability of
other caches with the same size realized by different Fault

tolerant Means. We adopt the definition for Vcc-min as the
voltage at which 1 out of every 1000 cache instances is defective
[3]. With no fault tolerant mechanism in place, a 32KB cache
composed of 6T SRAMS, based of failure probability provided in
Figure 2, have a Vcc-min of 0.87V. Introducing a 1 Bit ECC
reduces the Vcc-min to 0.68V. On the other hand if memory array
is realized via ST-Cells the Vcc-min is effectively reduced to
500mV. However an area penalty of 2X in the array size incurs.
The Word-Fix Fault Tolerance mechanism suggested in [3] also
reduces the Vcc-min lower but close to 500mV. The Bit-Fix
mechanism in [3] further reduces the Vcc-min to 480mV.
However the cache size is both of methods suggested in [3] is
lower than that realized by RDC-Cache. Finally the RDC-Cache
realizes the Vcc-min at only 450mV.

Figure 10 compares the RDC-Cache size to those suggested in [2]
and [3] across different voltages (different failure rates). In the
Word-Fix[3] and Bit-Fix[3] mechanism the cache size at lower
voltages is constant. For our case study of a 8 way associative
32KB cache, Word-Fix scheme uses 2 out of the 8 ways for
masking the defective words resulting in 25% loss in the cache
size. The Bit Fix mechanism on the other hand incurs a 50% loss
since it uses 4 out of every 8 ways for saving the needed defect
tolerance information (patches and pointers). The Resizable
Cache suggested in [2] have a higher cache size in lower defect
rates however in lower voltages quickly downsize reaching 50%
loss at 0.62V. The RDC-Cache However is able to constantly
realize a higher effective cache size compare to other schemes.

Table 4: Low voltage properties of RDC-Cache for 32KB and
2MB cache

Table 4 summarizes the cost related to RDC-Cache. The area
overhead of the RDC-Cache for a 32KB cache including RADM,
CLU and DLU obtained after layout analysis is ~6.72% in 65nm
technology. In higher voltages the RADM, DLU and CLU are
power gated and by muxing they are removed from critical access
path but still the access time is increased by 0.91% in L1 cache
and %0.18 in L2 Cache. The percentage increase in the access
time of the L2 cache is larger since the L2 cache is designed for
20 cycle access time where as L1 cache has a 3 cycle access time.
In lower voltages the RADM, CLU and DLU are in the critical
path and they increase the access time by 32.1% and 9.8% for L1
and L2 cache respectively. This results in an increase in the
access time of the L1 from 3 to 4 cycles and in L2 from 20 to 22
cycles. Table 4 also lists the Vccmin for a 32KB and a 2MB

L1 & L2 are 8 way associative. Cache size
32 KB 2 MB

Area Overhead 6.72% 6.83%
increase in access time in high Vdd 0.91% 0.18%
increase in access time in low Vdd 32.1% 9.8%
Reduction in leakage in
500mV

1.3V 86.26% 85.42%
0.87V 61.37% 60.14%

Reduction in dynamic
Power at 500mV

1.3V 79.2% 78.36%
0.87V 59.39% 57.92%

Total Power reduction at
500mV

1.3V 83.79% 82.64%
0.87V 60.68% 59.16

Vccmin to get 999 in 1000 yield* 450mV 485mV
Power reduction at
Vccmin

1.3V 85.54% 83.06%
0.87V 61.23% 59.93%

257

cache to be ~450mV and ~485mV. The reduction in dynamic,
leakage and total power consumption of both cache instances is
reported. For obtaining the percentage power reduction we have
compared them to a cache operating at 1.3V (Fast-Fast corner in
65nm) and one at 0.87V (which is the Vccmin of a 6T with no
fault tolerance in place). The reduction in power when each
cache instance is operating at 500mV and also when it operates in
its Vccmin is reported.

40%

50%

60%

70%

80%

90%

100%

0
.9

0
.8

8

0
.8

6

0
.8

4

0
.8

2

0
.8

0
.7

8

0
.7

6

0
.7

4

0
.7

2

0
.7

0
.6

8

0
.6

6

0
.6

4

0
.6

2

0
.6

0
.5

8

0
.5

6

0
.5

4

0
.5

2

0
.5

0
.4

8

Figure 10: Effective cache size after resizing to cover all defects.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a
m

m
p

a
p

p
lu

a
p

si
a

rt
b

zi
p

2
cr

a
ft

y
e

o
n

e
q

u
a

k
e

fa
ce

re
c

g
a

lg
e

l
g

a
p

g
cc

g
zi

p
lu

ca
s

m
cf

m
e

sa
m

g
ri

d
p

a
rs

e
r

p
e

rl
b

m
k

si
xt

ra
ck

sw
im

tw
o

lf
v

o
rt

e
x

v
p

r
w

u
p

w
is

e
A

v
e

ra
g

e

 Figure 11: Normalized number of access from L1 to L2 Cache

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

am
m

p
ap

p
lu

ap
si

ar
t

b
zi

p
2

cr
af

ty
eo

n
eq

u
ak

e
fa

ce
re

c
ga

lg
el

ga
p

gc
c

gz
ip

lu
ca

s
m

cf
m

es
a

m
gr

id
p

ar
se

r
p

er
lb

m
k

si
xt

ra
ck

sw
im

tw
o

lf
vo

rt
ex

vp
r

w
u

p
w

is
e

A
ve

ra
ge

 Figure 12: Normalized IPC of SPEC2000 benchmarks

Figures 11 and 12 illustrate the results of SimpleScalar
simulation. For obtaining the figures the binaries are fast-
forwarded for 2Billion instructions and executed for 2Billion
instructions. Figure 11 illustrates the normalized number of
accesses from L1 to L2 Cache (i.e. increase in access to lower
level memory), and Figure 12 illustrates the normalized IPC.

Comparing the figures side by side reveals a non-linear
relationship between increase in the number of L1 to L2 cache
access and decrease in the IPC for each benchmark. Increase in
the number of accesses to lower level memories is due to
reduction in the cache size. If the cache size is further reduced (to
the limits of [2] or [3]) This results in quick reduction in the IPC.
This in turn increases the execution time which is followed by
increased energy consumption for doing more work (dynamic
power) and leaking over a longer period. Since RDC-Cache
achieves the target sub 500mV voltage with larger effective cache
size compared to that of [2] or [3], even if they are operated at the
same voltage, or if RDC-Cache has slightly higher power
consumption, it incurs lower final energy cost. Our simulation
results reported 61% reduction in the Energy consumed Per
executed Instruction (EPI). Which is higher than that of [3] (53%)
and [4] (55%).

7. Conclusion
In this paper, we presented a novel, process variation-tolerant
cache architecture. This architecture outperforms previously
published designs due to the finer granularization of faults and
enhanced packing of fault-free redundant regions, which increases
the effective cache size. This technique is not limited to one
memory hierarchy and can be extended to model any cache-based
memory structure. Many other degrees of freedom can
complement the proposed technique to achieve an even more
diverse design space exploration and tradeoff between area,
power, performance and reliability.

8. REFERENCES
[1] Jaffari, J., Anis, M., "Variability-Aware Bulk-MOS Device

Design," Computer-Aided Design of Integrated Circuits and
Systems, IEEE TCAD, Feb. 2008

[2] Argawal, A. et. al. “Process Variation in Embedded
Memories: Failure Analysis and Variation Aware
Architecture” Solid State Circuits, Transaction on , vol.40,
no.9 Sep 2005.

[3] Wilkerson C. et. al.. “Trading off cache Capacity for
Reliability to Enable Low Voltage Operation.” ISCA 2008.

[4] S. R. Nassif “Modeling and Analysis of manufacturing
variation” in Proc. CICC, 2001

[5] S. Borkar, et. al. “Process Variation and impact on circuits
and micro architectures,” in Proc DAC 2003 pp338-342

[6] S. Mukhopadhyay et. al. “Modeling of Failure Probability
and Statistical Design of SRAM Array for Yield
Enhancement in NanoScaled CMOS” CADICS DEC 2005

[7] A. Bhavnagarwala, et. al. “ The impact of intrinsic device
fluctuation on CMOS SRAM cell stability,” IEEE J. Solid-
State Circuits vol.36, no.4 pp 658-665 Apr 2001

[8] H. Mahmoodi, at al.. “Modeling of failure probability and
statistical design of SRAM array for yield enhancement in
nano-scaled CMOS,” IEEE Trans CAD , 2003

[9] J. P. Kulkarni, et. al., “A 160 mV Robust Schmitt Trigger
Based Subthreshold SRAM,,” IEEE Journal off Solid-state
Circuits, Vol.. 42, no.. 10, pp. 2303-2313, October, 2007.

258

[10] S. E. Schuster, “Multiple word/bit line redundancy for
semiconductor memories,” IEEE J. Solid-State Circuits, vol.
SC-13, no. 5, pp. 698–703, Oct. 1978.

[11] M. Horiguchi, “Redundancy techniques for high-density
DRAMS,” in Proc. 2nd IEEE ICISS, Oct. 1997, pp. 22–29.

[12] J. Kim, et. al., “Multi-bit Error Tolerant Caches Using Two-
Dimensional Error Coding,,” Micro-40, December 2007.

[13] M. A. Makhzan (A. Sasan), A. Khajeh, A. Eltawil, F. J.

 Kurdahi, "Limits on voltage scaling for caches utilizing fault

tolerant techniques," Computer Design, 2007. ICCD 2007. 25th
 International Conference on , vol., no., pp.488-495, 7-10 Oct.
2007

[14] H. Mahmoodi, at al.. “Modeling of failure probability and
statistical design of sram array for yield enhancement in
nano-scaled CMOS,” IEEE TCAD , 2003

[15] A. Bhavnagarwala et. Al.. “The impact of intrinsic device
fluctuations on CMOS SRAM cell stability,” JSSC, April
2001.

[16] http://www.eas.asu.edu/~ptm/

[17] http://www.simplescalar.com/

[18] http://www.design-reuse.com/news/13813/tsmc-continues-
reference-flow-7-0.html

259

http://www.eas.asu.edu/~ptm
http://www.simplescalar.com/

	1. INTRODUCTION
	2. Related & Prior Work
	3. Voltage Scaling & Memory Failures
	3.1 Classification of Memory Errors
	3.2 Memory Access Time & Process Variation
	3.3 Defining System Access Time, Safety Margin (SM) and its Implications on Memory Cell Failure Rate

	4. Proposed Architecture: RDC-Cache
	4.1 RDC-Cache Concept & Organization
	4.2 Generating a Relocation Aware Defect Map
	4.3 Reading from RDC-Cache
	4.4 Writing to RDC-Cache
	4.5 Access Delay Analysis

	5. Simulation Methodology
	6. Results & Discussion
	7. Conclusion
	8. REFERENCES

