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ABSTRACT 
This paper proposes a combination of circuit and architectural 
techniques to maximize leakage power reduction in embedded 
processor on-chip caches. It targets cache peripheral circuits, 
which according to recent studies account for a considerable 
amount of cache leakage.  At circuit level, we propose a novel 
design with multiple sleep modes for cache peripherals. Each 
mode represents a trade-off between leakage reduction and 
wakeup delay. Architectural control is proposed to decide “when 
and how” to use these different low-leakage modes using cache 
miss information to guide its action. This control is based on 
simple state machines that do not impact area or power 
consumption and can thus be used even in the resource 
constrained processors. Experimental results indicate that 
proposed techniques can keep the L1 cache peripherals in one of 
the low-power modes for more than 85% of total execution time, 
on average. This translates to an average leakage power reduction 
of 50% for 65nm technology. The DL1 cache energy-delay 
product is reduced, on average, by 20%.   

Categories and Subject Descriptors 
B.3.2 [MEMORY STRUCTURES], Design Styles: Cache 
memories; C.1.1 [PROCESSOR ARCHITECTURES], Single 
Data Stream Architectures: Pipeline processors Systems 

General Terms 
Design 

Keywords 
Cache, Leakage Power, Peripheral Circuits, Multiple Sleep Mode, 
Embedded Processor 

1. INTRODUCTION 
Static or leakage energy consumption has been growing in both 
embedded and high-performance processors as transistor 
geometries shrink. Cache and TLB RAM structures account for a 

large fraction of processor power consumption [27, 29], and 
especially of leakage power. A number of process and circuit 
techniques have been proposed to significantly reduce leakage of 
the memory cell array making SRAM peripheral circuits the main 
sources of leakage. Recent results have shown that a considerable 
amount of leakage occurs in the peripheral SRAM circuits, such 
as decoders, word-line and output drivers, etc [2, 8, 9, 12, 17, 24].  
Figure 1 shows leakage components for different size SRAMs in 
65nm technology (based on CACTI 5.1 [22]), with peripheral 
circuits – data drivers, address driver, decoder and wordline 
drivers – accounting for over 80% of overall SRAM leakage. The 
reason is the use of larger, faster and more leaky transistors in 
peripheral circuits to satisfy timing requirements, while smaller 
and less leaky transistors are used in memory cells. In fact, 
SRAM memory cells can be optimized for low leakage currents 
without a significant impact on the cell area or performance 
[8,12,24]. 

This paper proposes a combination of circuit and architectural 
techniques to maximize leakage power reduction in embedded 
processors. It focuses on caches since they have the highest 
leakage energy in such processors, and in particular on leakage in 
SRAM peripheral circuits. There is a large variety of embedded 
processors, from single-issue, in-order processors with one level 
of cache to multiple-issue, out-of-order processors with two levels 
of cache.  For this work we define the former as low-end 
embedded processors, while a single-issue, in-order processor 
with two cache levels is defined as high-end. Our goal in doing so 
is to explore leakage reduction in different types of cache 
hierarchy. The same techniques are applicable to out-of-order 
embedded processors that also offer other opportunities for cache 
leakage reduction, but this type of processor is beyond the scope 
of this paper. 

At the circuit level, we utilize our recently proposed approach, 
zig-zag share circuit [2] to reduce the sub-threshold leakage in 
peripheral circuits of L1 caches.  Zig-zag horizontal and vertical 
share technique was shown to be vey effective in reducing 
leakage of SRAM peripherals. The results in [2] show leakage 
reduction by up to 100X in deeply pipelined SRAM peripheral 
circuits, with only a minimal area overhead and small additional 
delay.  

As shown in [2], the wakeup latency of zig-zag share could be 
large, especially in large SRAMs.. To deal with this problem, this 
paper shows that by increasing the bias voltage of the NMOS 
footer sleep transistor in zig-zag share circuit (and decreasing it 
for the PMOS header transistor) one can trade leakage reduction 
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vs wakeup delay. Thus we propose to use several low-leakage 
modes with different wakeup times to better control the cache 
leakage. For instance, one can have a low-leakage mode for an L1 
cache with a one-cycle wakeup but it would reduce leakage by 
only 40%. Alternatively, one can define a mode with a 4-cycle 
wakeup that saves 90% of leakage. These modes differ only in 
how they bias sleep transistors and thus can be dynamically 
switched during execution with almost no delay. The question is 
when and how to use these different low-leakage modes for L1 
caches. Note that this approach can also be applied to L2 caches, 
but this is beyond the scope of this paper. 
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Figure 1. Leakage power component for different cache size 
 
We propose to use architectural control of low-leakage modes in 
L1 caches.  It uses cache miss information to determine its action. 
The action depends in part on the cache organization and in part 
on the ability to hide the wakeup delay. In all cases, control is 
based on simple state machines that do not impact area or power 
consumption and can thus be used even in low-end processors. 
Hiding one to four cycles of wakeup latency in a short pipeline 
typical of embedded processors is difficult in a uniform way, 
therefore we propose different methods for each delay and low-
leakage mode. For instance, one cycle of delay in DL1 access can 
be completely hidden by starting cache wakeup as soon as 
instruction type is known in decode.  
The most efficient low-energy mode with four cycles of wakeup 
can be used during cache miss service. Thus we can actually keep 
the L1 cache peripherals in a basic low power mode with a one-
cycle wakeup as default.  Other low-power modes can be used 
when an L2 cache is presented. 
The energy savings and performance of various cache 
configurations for embedded processors are evaluated in this 
paper using the proposed circuit and architectural techniques. Due 
to lack of space only L1 data cache results are presented, but it 
should be clear that the approach can be applied to I-caches as 
well. 
It is shown that our techniques can keep the L1 cache in one of 
the low-power modes for more than 85% of total execution time, 
on average. This translates to an average leakage power reduction 
of 50%.  And the energy-delay product is reduced, on average, by 
20%. 
 

2. RELATED WORK 
A number of techniques were proposed for reducing leakage 
power at technology, circuit, architecture and compiler/OS levels. 

 

2.1 Circuit-level leakage control 
Several circuit techniques proposed to reduce the leakage power 
in SRAM memories. These techniques were mainly targeting the 
SRAM memory cell leakage.  
The primary technique is voltage scaling which due to short-
channel effects in deep submicron processes reduces the leakage 
current significantly [21]. Another technique is Gated-Vdd which 
turns off the supply voltage of memory cells by using a sleep 
transistor and eliminating the leakage virtually completely [23]. 
However, it doesn't retain the state of the memory cells. The third 
technique, ABB-MTCMOS, increases threshold voltage of a 
SRAM cell dynamically through controlling its body voltage [16]. 
The overhead of applying this technique in terms of performance 
and area makes it inefficient. Device scaling leads to threshold 
voltage fluctuation, which makes the cell bias control difficult to 
achieve. In response, [8] proposed a Replica Cell Biasing scheme 
in which the cell bias is not affected by Vdd and Vth of peripheral 
transistors. 
[14, 31] proposed a forward body biasing scheme (FBB) in which 
the leakage power is suppressed in the unselected memory cells of 
cache by utilizing super Vt devices. 
 In addition to these four major techniques applied to SRAM 
memories, there are also leakage reduction techniques in literature 
which concentrated on generic logic circuits. Examples are sleepy 
stack [10] and zig-zag super cut-off CMOS (ZSCCMOS) 
techniques [3, 4]. ZSCCMOS reduces the wakeup overhead 
associated with Gated-Vdd technique by inserting the sleep 
transistors in a zig-zag fashion. Sleepy stack proposed to divide 
the existing transistors into two half size and then insert sleep 
transistor to further reduce leakage. This approach was shown to 
be area-inefficient as it comes with 50 to 120% area overhead. 

 
2.2 Architectural techniques 
A number of architecturally driven cache leakage reduction 
techniques have been proposed. Powell et al proposed applying 
gated-Vdd approach to gate the power supply for cache lines that 
are not likely to be accessed [13]. Kaxiras et al. proposed a cache 
decay technique which reduces cache leakage by turning off 
cache lines not likely to be reused [19]. Flautner et al. proposed a 
drowsy cache which reduces the supply voltage of the L1 cache 
line instead of gating it off completely [21]. The advantage of this 
technique is that it preserves the cache line information but 
introduces a delay in accessing drowsy lines. Nicolaescu et al [1] 
proposed a combination of way caching technique and fast 
speculative address generation to apply the drowsy cache line 
technique to reduce both the L1 cache dynamic and leakage 
power. Zhang et al. proposed a compiler approach to turn off the 
cache lines for a region of code that would not be accessed for a 
long period of time [5]. Meng et al presented a perfecting scheme 
which combines the drowsy caches and the Gated-Vdd techniques 
to optimize cache leakage reduction [6]. Ku et al. [28] exploit 
several power density minimization techniques to reduce 
temperature and further leakage in highly-associative on-chip 
caches in embedded processors. Due to positive feedback relation 
of temperature and leakage, they shown on-chip cache leakage 
reduces significantly.   
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Figure 2. (a) Stacking sleep transistor to reduce leakage (b) Leakage in the wordline driver 

In a recent work, Chung et al. proposed a novel approach, which 
utilize branch prediction assist to selectively wake up only the 
needed instruction cache line for an embedded processor [30].  

All research mentioned above primarily targeted the leakage in 
the SRAM cells of a cache. Given the results in Figure 1 and 
recent work such as [2, 8, 9, 12, 17, 24], peripheral circuits are 
equally if not more important to address in a cache. 

 
3. SLEEP TRANSISTOR STACKING 
Stacking sleep transistors have been proposed to reduce sub-
threshold (IDsub) or weak inversion current [32]. IDsub is an 
inverse exponential function of threshold voltage ( TV ).  
Threshold voltage is a function of Source to Bulk Voltage. An 
effective way to reduce the leakage of a transistor is by increasing 
its source voltage (for an NMOS increasing VSB, the source to 
bulk voltage) [7, 32]. Stacking a sleep transistor (footer NMOS or 
header PMOS transistor) as shown in Figure 2(a) could deliver 
this effect. In this figure by stacking transistor N with slpN source 
to body voltage (VM ) of transistor N  increases. When both 
transistors are off increase in VM increases the TV  of the 
transistor N and therefore reduces sub-threshold leakage current. 
[32]. Size (W/L) and bias (Vgslpn) voltage of the stacked sleep 
transistor determines the VM [15, 32]. Reducing the sleep 
transistor bias reduces the leakage while increasing the circuit 
wakeup period which is the time to pull the VM down to ground. 
Thus there is a trade-off between the amount of leakage saved and 
the wakeup overhead [15]. 
A wordline driver shown in Figure 2(b) increases the gate voltage 
of the access transistors of all cells connected to the selected 
wordline. The number and size of inverters in the chain are 
chosen to meet the timing requirements for charging or 
discharging the wordline. The size of inverters in the chain 
decreases from decoder side to the wordline to increase the 
effective fan-out.  The inverter chain has to drive a logic value 0 
to the pass transistors when a memory row is not selected. Thus 
the driver cannot be simply shut down when idle. Transistors N1, 
N3 and P2, P4 are in the off state and thus they are leaking. 
Stacking header and footer sleep transistors with all NMOS and 
PMOS transistors in the chain reduces their leakage; however, 
aside from the area overhead, it increases the propagation delay of 
the inverters in the driver chain followed by an increase in the 

rise/fall time of the wordline.  Rise and fall time of an inverter 
output is proportional to the Rpeq * CL and Rneq * CL,  
respectively, where Rpeq  is the equivalent resistance of the PMOS 
transistor, Rneq  is the equivalent resistance of the NMOS 
transistor, and CL is the equivalent wordline output capacitive 
load [7]. Inserting sleep transistors increases Rneq, Rpeq and thus 
the rise time and fall time of the wordline driver as well as its 
propagation delay [2, 7]. While increasing the rise time and 
propagation delay (due to its impact on access time) is not 
desirable, increasing the fall time is not tolerable since it can 
affect memory functionality [18, 20]. Increase in the fall times of 
the wordline increases the access transistor’s active period of a 
memory cell during a read operation. This results in the bitline 
over-discharge and the memory content over-charge during the 
read operation. Such over-discharge not only increases the 
dynamic power dissipation of bitlines but, more importantly, can 
cause a memory cell content to flip if the over-discharge period is 
large [7,20]. In brief, to avoid impacting memory functionality the 
sense amplifier timing circuit and the wordline pulse generator 
circuit need to be redesigned. To avoid the redesign of these 
critical units and, moreover, not to increase bitline dynamic power 
dissipation we use zig-zag share circuit technique proposed in [2]. 
 

3.1 zig-zag share circuit  
In this approach, sleep transistors are inserted in a zig-zag fashion 
[3, 4] keeping the Rpeq of the first and third inverters and Rneq of 
the second and fourth inverters constant. This technique keeps the 
fall time of the circuit the same as in the baseline circuit with no 
leakage control. However, the rise time of the circuit is affected 
by the zig-zag scheme. In addition, using one sleep transistor per 
inverter logic increases the area for the zig-zag scheme. 
To improve both leakage reduction and area-efficiency of the zig-
zag scheme, [2] proposed using one set of sleep transistors shared 
between multiple stages of inverters which have similar logic 
behavior, such as stage 1 and 3 in a studied chain of inverters. To 
further reduce leakage power [2] proposed to also share one set of 
sleep transistors (slpN and slpP) vertically with adjacent rows of a 
(wordline) driver. Figure 3 shows the zig-zag horizontal and 
vertical sharing circuit (in brief zz-hvs) when two adjacent 
wordline drivers share one set of sleep transistors. Intuitively, in 
vertical sharing (for instance for N11 and N21), the virtual ground 
voltage (VM in Figure 3) increases in comparison to when there is 
no vertical sharing. 
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Figure 3. Zig-zag horizontal and vertical sharing circuit 

Results in [2] show that using zz-hvs reduces the leakage power 
significantly, by 10 to 100X, when 1 to 10 wordlines share the 
same sleep transistors. 

 

4. ZIGZAG-SHARE WITH MULTIPLE 
SLEEP MODES 

As described in Section  3, to benefit the most from the leakage 
reduction by stacking sleep transistors we need to keep the bias 
voltage of NMOS footer sleep transistor as low as possible (and 
for PMOS header transistor as high as possible). The drawback of 
such biasing is its impact on wakeup latency of the circuit 
transitioning from sleep mode to active mode which requires the 
voltage of virtual ground to reach to the ground voltage [2]. Such 
wakeup delay would significantly impact performance if it was 
incurred frequently. One way to alleviate the impact of wakeup 
delay is to control the gate voltage of the sleep transistors (both 
footer and header) [15]. For instance, increasing the gate voltage 
of footer sleep transistor (in Figure 2) reduces the virtual ground 
voltage (VM) which leads to reduction in the circuit wakeup delay 
overhead. The negative impact of such biasing is a reduction in 
leakage power savings. By controlling the gate voltage of footer 
and header transistors we can thus define different sleep modes 
where each mode has a different wakeup delay overhead and a 
different amount of leakage power reduction.  
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Figure 4. Normalized wakeup delay and leakage power for 
different pair of footer and header gate bias voltage 

The proposed multiple sleep mode zig-zag share approach was 
applied to SRAM wordline driver. A test experiment was set up in 
which the wordline inverter chain drives 256 one-bit memory 

cells. The memory cells and wordline drivers were laid out using 
Mentor Graphic IC-Station in TSMC 65nm technology and 
simulated using Synopsis Hspice at typical corner (25 º) with 
extracted netlist and the supply voltage of 1.08V. Empirical 
results presented are for the normalized leakage power and 
wakeup delay for different pair of sleep transistors bias voltage.  
Figure 4 shows normalized wakeup delay and normalized leakage 
power for different pairs of footer and header gate bias voltage 
when zz-hvs is shared by 10 rows of wordline drivers. The figure 
shows a clear trade-off between the normalized wakeup overhead 
and leakage power. 
Based on these experimental results, four sleep modes were 
defined. Table 1 shows wakeup delay and relative peripheral 
circuit leakage reduction for the four different modes. The basic 
low power mode has the lowest leakage reduction but shortest 
wakeup delay. Next is lp mode which has higher leakage savings. 
Aggressive and ultra sleep modes have even higher leakage 
savings but also a longer wakeup delay. 

 
Table 1. Peripherals multiple sleep mode 

power mode wakeup 
delay (cycle) 

leakage 
reduction (%) 

basic-lp 1 42% 

lp 2 75% 

aggr-lp 3 81% 

ultra-lp 4 90% 

 
Finally, note that the power overhead of waking up peripheral 
circuits from any low power mode is negligible, almost equivalent 
to the switching power of sleep transistors. Sharing a set of sleep 
transistors horizontally and vertically for multiple stages of a 
(wordline) driver makes the power overhead even smaller. 

 

5. APPLYING ZZ-HVS TO L1 DATA 
CACHE 

This section describes the architectural approach to control the zz-
hvs sleep transistors in DL1 cache for two different types of 
embedded processors: a low-end and a high-end. We start by 
briefly describing the processor and the experimental 
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Figure 5.  ARM11 processor pipeline 

 
methodology used and then present results for different cache 
configurations. 

5.1 Experimental methodology 
The approach proposed in this paper was evaluated for several 
processor configurations shown in Table 2. A low-end processor 
uses 2, 4, 8 or 16KB instruction and data caches and no L2 cache. 
The high-end processor has two levels of on-chip caches, with L1 
cache size of up to 32KB. The rest of the processor architecture is 
similar to the ARM11 family of processors [25]. 
Figure 5 shows the processor pipeline of ARM11, a single issue, 
out of order completion processor. It has two fetch stages and two 
stages for data cache access. The Fetch stages fill a four-entry 
instruction fetch buffer [25].  

Table 2. Processors Configuration 

 Low-end 
configuration 

Medium-end 
configuration 

L1 I-cache 2-4-8-16KB, 4 
way, 2 cycles 

4-8-16-32KB, 8 way 2 
cycles 

L1 D-cache 2-4-8-16KB, 4 
way, 2 cycles 

4-8-16-32KB, 8 way 2 
cycles 

L2-cache none 64-128-256-512KB, 
15 cycles 

Fetch, dispatch  1 wide 1 wide 

Issue in-order, non 
blocking 

in-order, non blocking 

Memory 30 cycles 80 cycles 

Instruction fetch 
queue 

4 4 

Load/store 
queue 

4 entry 8 entry 

Arithmetic unit 1 integer, 1 
floating point units 

1 integer, 1 floating 
point units 

Complex unit 1 INT, 1 FP 
multiply/divide 
units 

1 INT, 1 FP 
multiply/divide units 

Pipeline 8 stages 8 stages 

Processor speed 300 MHz 800 MHz 

The processor supports non-blocking and hit-under-miss 
operations in which it continues execution after a cache miss, as 
long as subsequent instructions are not dependent on cache miss 
data. The processor pipeline stalls only after three successive data 
cache misses. 
An extensively modified MASE [11] simulator was used to model 
the architecture. The MiBench suite [26] was used to represent a 
(low-end) embedded domain. SPEC2K benchmarks were used for 
the high-end processor. All benchmarks were compiled with the -
O4 flag using the Compaq compiler targeting the Alpha 21264 
processor. MiBench benchmarks executed for 500 Million 
instructions and SPEC2K for 500 Million instructions after fast-
forwarding for 500 Millions instructions. 

5.2 Reducing Leakage in L1 Data Cache 
To maximize the leakage reduction in DL1 cache peripherals one 
simple solution is to always put them into ultra low power mode. 
However, this requires wakeup of DL1 peripheral circuits before 
cache access and adds 4 cycles to the DL1 latency which 
significantly reduces performance. One can put DL1 peripherals 
into the basic low power mode, which requires only one cycle to 
wakeup, and hide this latency during address computation stage, 
thus not degrading performance. However, this doesn’t noticeably 
reduce leakage power (see Table 1). To benefit from large leakage 
reduction of ultra and aggressive low power modes and low 
performance impact of basic-lp mode one has to dynamically adjust 
the peripheral circuit sleep power mode such that during periods of 
frequent access they are kept in basic-lp mode and when they 
accessed infrequently they are put into aggr-lp or ultra-lp modes.  
In this architecture it can be determined whether an instruction is 
load or a store at least one cycle before cache access (during issue 
stage in Figure 5). As a result, accessing DL1 while its peripherals 
are in basic-lp mode doesn’t require an extra cycle because it’s 
peripheral circuits can be woken up one cycle prior to access. 
Similarly, one cycle of wakeup delay can be hidden for all other 
low-power modes. Thus the effective wakeup overhead of DL1 
cache is one cycle less than the delays shown in Table 1.   
Based on the above, the DL1 is in basic-lp mode by default. For 
low-end processors the DL1 is accessed infrequently, if at all, once 
there is one or more pending DL1 cache misses. Thus it can be put 
into ultra low power mode. For high-end processors the DL1 is 
accessed very infrequently while an L2 cache miss is being 
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Figure 6. State machines to control DL1 cache peripherals in (a) low-end processor (b) medium-end processor 
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Figure 7. (a) Fraction of total execution time a 2KB DL1 cache spends in each of the power mode (b)Performance degradation of 
putting DL1 into low power mode (low-end architecture) 
 
serviced. It is also access infrequently with no L2 cache misses 
but with multiple outstanding L1 misses. Based on these 
considerations the following state machines are proposed for 
different cache configurations. 

5.2.1 Low-end architecture 
For low-end architecture, a state machine shown in Figure 6(a) is 
proposed for controlling the DL1 low-power mode. Once a DL1 
cache miss occurs the peripheral circuits transition from basic to 
lp mode. Given the miss service time of 30 cycles in this 
architecture, it is likely that processor stalls during the miss 
service period. Occurrence of additional cache misses while one 
DL1 cache miss is already pending further increases the chance of 
pipeline stall. Thus the DL1 peripherals are put into the 
aggressive low-power mode with more leakage savings. 

Finally, the cache peripherals are put into the deepest low power 
mode, ultra-lp, once processor stalls after DL1 misses occurs. A 
stall is detected in the issue stage and the processor put into ultra-
lp once the processor doesn’t issue any instructions for at least 
five consecutive cycles after a DL1 miss.  
Processor returns to the basic-lp mode from any of the other low 
power states when one of the two following conditions are met: 

• Stall condition removed; i.e instruction issue resumes 
• All pending DL1 misses are serviced 

Figure 7(a) reports the fraction of total execution time a 2KB DL1 
cache spends in each of the power modes for MiBench 
benchmarks. On average, 85% of the time DL1 cache peripherals 
can be put into one of the low power modes. Most of the time is 
spent in the basic-lp mode, 58% of total execution time. Figure 
7(b) shows performance degradation for different DL1 cache  
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Figure 8. Fraction of total execution time DL1 is in different low power modes for (a) low-end and (b) high-end processors. 
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Figure 9. (a) Fraction of total execution time a 4KB DL1 cache spends in each of the power modes (b) Performance degradation of 
putting DL1 into low power mode (high-end architecture) 
 
sizes. The average performance degradation is less than 2% in all 
cases. Interestingly, the benchmarks which spend a considerable 
amount of time in one of lp, aggr-lp or ultra-lp modes have the 
most performance degradation, for instance dijkstra, lame and 
tiff2bw. This is understandable as transition to these modes incurs 
larger time delay.  
Figure 8(a) shows the fraction of total execution time a DL1 
spends in different low power modes for different cache sizes. 
Increasing the cache size reduces DL1 cache miss rate and 
reduces opportunities to put the cache into more aggressive low 
power modes. This also reduces performance degradation for 
larger DL1 cache as can be seen in Figure 7(b). 

5.2.2 High-end architecture 
For high-end architecture we propose a simpler state machine to 
control the peripheral power mode (shown in Figure 6(b)). The 
major difference is that in this architecture the DL1 cache 
transitions to ultra-lp mode right after an L2 miss occurs. Given a 
long L2 cache miss service time (80 cycles) the processor will 
stall waiting for memory. The cache returns to the basic-lp mode 
once the L2 miss is serviced. 
Figure 9(a) shows the fraction of total execution time a 4KB DL1 
cache spends in each power mode for the high-end configuration. 
It shows that leakage power cannot be saved during only 10% of 
execution time. For the rest, the basic-lp mode has the highest 
contribution. Interestingly, in many benchmarks the ultra-lp mode  
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Figure 10. (a) Leakage power reduction for the low-end architecture with 2KB of DL1 cache (b) Leakage power reduction for the 
high-end architecture with 4KB DL1 cache 
 
has a considerable contribution, e.g. for ammp, applu, art and 
swim. In fact, these benchmarks have high L2 miss rate (not 
shown here), which triggers transition to ultra low power mode. 
Figure 9(b) shows performance degradation for different DL1 
cache sizes. The average performance degradation is less than 
1.5%. Similar to low-end architecture, here the benchmarks which 
spend considerable amount of time in one of lp, aggr-lp or ultra-lp 
mode have the highest performance degradation: ammp, applu, art 
and galgel.  
Figure 8(b) shows the fraction of total execution time DL1 is put 
into different low power modes for different cache sizes. Similar 
to low-end architecture, increasing the cache size in any of high-
end configurations reduces the relative power savings period. 

 

6. POWER AND ENERGY-DELAY 
RESULTS 
This section presents results for power reduction and energy-
delay product.  First, let us describe power and timing 
assumptions used. We used the relative leakage power reduction 
of various power modes reported in Table 1. Total dynamic power 
was computed as N*Eaccess/Texec, where N is the total number 
of accesses (obtained from simulation), Eaccess is the single 
access  energy  (from  CACTI-5)  and Texec  is  the program 
execution time.  Leakage  power computations  are similar,  but  
leakage energy is  dissipated  on every cycle. 

Figure 10 (a) reports the leakage power reduction of individual 
benchmarks for the low-end architecture with 2KB of DL1 cache. 
On average, DL1 leakage is reduced by 50%. The fraction of 
leakage power reduction of each of low power mode is also 
shown in the figure. Comparison of results in Figure 7 and Figure 
10(a) shows that while ultra-lp mode occurs much less frequently 
compared to basic-lp mode, its leakage reduction is comparable to 
the basic-lp mode. The reason is that in ultra-lp mode the 
peripheral leakage is reduced by 90%, almost twice that of basic-
lp mode. 
Figure 10 (b) shows the leakage reduction results for the high-end 
architecture with 4KB of DL1 cache. The average leakage 
reduction is almost 50%. In Figure 11 (a) we report the leakage 
power and energy-delay reduction of different processor 
configurations and different DL1 cache size. On average, leakage 
is reduced by 42 to 52% for different configurations. In both low-
end and high-end architectures larger DL1 caches have lower 
leakage savings. Overall, the energy-delay product reduction, 
unlike leakage power reduction, increases for larger cache size. 
The reason is that for smaller cache size, the fraction of dynamic-
energy per access to static energy is noticeably higher. As a 
result, for these small caches a large leakage reduction does not 
translate to large overall energy-delay reduction. This is different 
for larger  caches,  as their  static  power dissipation is  
proportional to the dynamic power dissipation. The average 
energy-delay reduction varies from 9 to 21% for different 
architectures. 
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Figure 11. (a) Leakage power reduction (b) Total energy-
delay reduction for DL1 cache. 

 

7. CONCLUSIONS 
This paper deals with the important problem of leakage energy in 
peripheral circuits of SRAM in L1 caches of embedded 
processors. These circuits account for 85% of overall leakage in 2 
to 16KB caches in 65nm technology. By defining multiple sleep 
modes and architectural control of sleep mode transition, 
significant leakage energy reduction was achieved with no 
significant performance impact. In future technology of 45nm and 
below the peripheral leakage is expected to be even higher and 
therefore the proposed approach will result in even higher energy 
savings. 
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