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Abstract—1In this paper, we present a sparse regres-
sion (SpaRe) model-based yield analysis methodology and apply
it to memory designs with state-of-the-art write-assist circuitry.
At the core of its engine is a mixture importance sampling
technique which consists of a uniform sampling stage and an
importance sampling stage. The proposed methodology allows for
fast and accurate statistical analysis of rare fail events. In our
approach, a SpaRe model is built using the uniform sampling
stage data points obtained via circuit simulation (CktSim). Along
with the model, an optimal threshold value is determined for
proper pass/fail predict capability. The model and the threshold
value are then used to predict the response in the importance
sampling stage. This alleviates the need for CktSims in the
latter stage and introduces significant speedup compared to fully
CktSim-based approaches. The SpaRe model-based yield analysis
is tested on a 14-nm FinFET SRAM design, and the results
corroborate well with that of full CktSim-based yield analysis.
The methodology is used to compare multiple state-of-the-art
SRAM designs including selective boost and write-assist designs.
The operating Vi,in ranges and trends corroborate well with
hardware measurements.

Index Terms—Design for manufacturing, integrated cir-
cuit (IC) design, memory, rare events, sparse regression (SpaRe),
SRAM, statistical analysis.

I. INTRODUCTION

ITH technology scaling, process variations pose a seri-
Wous challenge to the design and analysis of integrated
circuit (IC) design [1]-[4]. IC designs generally integrate
various circuit components and each component needs to be
robust to process variations. Memory designs suffer most
leaving serious implications on the chip yield, especially for
low power design thereby posing further challenges for the
operation of portable devices. To achieve high yield, the failure
rate of an SRAM bit-cell must be less than 0.0001% [5], [6].
With such strict requirements of less than one failing part
per million, statistical yield analysis methodologies have been
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developed to address the problem of rare event estimation with
high confidence [6]-[8]. Kanj et al. [6] propose mixture impor-
tance sampling (MixIS). Unlike Monte Carlo, MixIS avoids
simulating too many samples in the success region, instead,
it is designed to cover more samples in the critical tail regions
of the performance distribution. It involves two sampling
stages: a uniform sampling stage and an importance sampling
stage.

Singhee and Rutenbar [7] present a statistical blockade
method that filters sample points in the tail regions of the
performance distribution and hence reduces the number of
needed circuit simulations (CktSims) to build a performance
metric tail cumulative distribution function. Dong and Li [8]
rely on Gibbs sampling for rare event estimation. All these
techniques are fully CktSims based.

Sparse regression (SpaRe) techniques have been devel-
oped [9]-[11], [13], [14] to address modeling circuit designs
in the presence of variability. In this paper, we explore
the integration of orthogonal matching pursuit (OMP) [10]
method along with MixIS for fast and accurate yield analysis
in the presence of rare fail events. Hence, we propose a
SpaRe model-based yield analysis methodology. An important
contribution of this method is to bypass hundreds to thousands
of CktSims typically required in the importance sampling stage
of MixIS. Thus, a SpaRe model is built using the uniform
sampling stage points. The resulting model is efficient and
employs only a few critical feature vectors. Most importantly,
it can accurately predict the failure points of the importance
sampling stage with significant speedup compared to the pure
CktSim-based yield analysis counterpart that relies fully on
CktSims [6]. Accordingly, SpaRe reduces the required number
of CktSims approximately by half compared to CktSim by
completely eliminating the need for CktSims in the importance
sampling (second) stage of MixIS.

Due to the nature of functional fails, the circuit response
does not evaluate in the fail region. Hence, while the response
is typically continuous in the pass region, it suffers from a
discontinuity at the fail boundary; thus, it is typically repre-
sented by a single value in the fail region indicating that the
cell fails to function properly. Henceforth, we will refer to this
response data as discontinuous data due to the discontinuity
at the fail boundary. For purposes of yield estimation, there
is a need for proper pass/fail prediction. Hence, it is required
to map the continuous SpaRe model-based response to the
real response data. To enable this mapping, we determine,
during the model building phase, and using the uniform stage
data an optimal threshold value that minimizes the number of
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false predicts for the developed model. We rely on the model
and its corresponding optimal threshold value to accurately
predict passing or failing sample points for the importance
sampling stage. This paper presents for the first time the
application of such an accelerated fast statistical analysis
tool that incorporates modeling cell functional fails such as
write ability. It is implemented in the context of state-of-
the-art selective boosting with write-assist circuitry. Selective
boosting is applied to the memory and part of the logic virtual
supply using “single supply.” The write-assist technique helps
address the quantization of FinFETSs that would otherwise pose
problems due to improper cell beta and gamma ratios. The
methodology, as well as the algorithms, uniquely pinpoint the
advantages of the write-assist circuit technique.

This paper is organized as follows. Section II presents a
review of MixIS and OMP. Section III presents the proposed
methodology. Section IV presents memory designs understudy.
Section V presents the simulation analysis and results. Finally,
conclusions are presented in Section VI.

II. BACKGROUND REVIEW

In this section, we present a review of MixIS methodology
and OMP. This enables mapping the MixIS stages to the
SpaRe model training and evaluation phases presented in the
following section.

A. Mixture Importance Sampling Review

In order to guarantee high chip yield, it is essential for
yield analysis tools to estimate low failure probabilities with
good confidence. This requires a very large number of sample
points using the traditional Monte Carlo methods. Importance
sampling is a variance reduction method that focuses on
generating more sample points in the critical fail regions [6].
Hence, instead of sampling, using the natural probability
density function (PDF) f(x), one would sample a distorted
PDF p(x) that biases the sampling to the important region,
typically toward the tails of the distribution. In this case, the
failure probability Py can be derived as

O I(x) - fx)
Py = / — pla)da ()
—00 px)
where I (x) is the indicator function
1, fail R
I(x):[’ all x € Kp )
0, pass x ¢ Rp

and Rfr denotes the failure region

The proper choice of p(x) is critical. p(x) is typically
derived from the natural PDF f(x) [6]. To address this
problem, MixIS has been proposed in [6] to generate random
variables using mixtures of distributions. The algorithm first
performs uniform sampling and identifies the corresponding
failure points. Next, the algorithm determines ug, the center
of gravity of the failure points, and uses p(x) = f(x — us)
to generate the importance sample points according to [6] for
the second stage of sampling. The true yield is then computed
by unbiasing the estimate using weights representing the ratio
of the natural to the distorted PDF according to (1).

1%t stage
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Fig. 1. Overview of SpaRe. The first stage and second stage represent the
uniform and importance sampling stages of MixIS. SpaRe uses the first stage
simulations to build a SpaRe model and predict the response of the second
stage sample points.

B. OMP Overview

OMP methodology determines the critical unknown model
coefficients via moment matching or inner product. For the
case of a simple linear regression model of the form

y= xixpi+C 3)

where y represents the response variable, and x; represent the
explanatory independent random variables, it can be shown
that

E(y)=C
E(y-xi) = pi. )
Hence, if the inner product ‘y - x;’ (f;) is far away from zero,
then it is significant and x; should be included in the model.

The above property (4) can be extended to nonlinear functions
of the form

y=> gl)xpi+C (5)

by relying on orthogonal polynomial basis functions g, such
as Hermite polynomials, [10], [15] satisfying the following
relation:
1 ifi=j
E(gi-g8j) = [
0 o.w.

E(y-gi(x)) = pi. (6)

III. PROPOSED METHODOLOGY

In this section, we present the proposed methodology
overview and implementation details.

A. Methodology in a Nutshell

Fig. 1 presents an overview of our proposed methodology.
It employs both CktSims and SpaRe models for the yield
analysis engine, and involves two major steps.
1) Use the first stage uniform sample points simulations to
build a SpaRe model and to calculate p;.

2) Use the SpaRe model to predict the failure sample points
of the importance sampling stage, i.e., second stage,
of MixIS.
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Fig. 3.  Tuned SpaRe flow diagram. It represents step 3 of Fig. 2. Higher
order polynomials include interaction terms.

B. Methodology Flow

Given ¢ explanatory variables vector X = {x;...x,}, and
a response variable y. Our objective is to efficiently estimate
the yield by employing SpaRe models. Fig. 2 presents the pro-
posed methodology steps and flow diagram. The Methodology
can be best described as follows.

Step 1: Generate and simulate n sample points uniformly
over the g explanatory variables space.

Step 2: Find ug, and use it to shift the natural distribution
of the explanatory variables to guarantee that the next stage
importance sample points have good coverage of the region
of fails.

Step 3: Perform tuned SpaRe for the uniform sample points
using OMP and k-fold cross-validation technique as indicated
in Fig. 3, and detailed in the following.

Given: X: n x g dimensional explanatory variables matrix
Y: n x 1 dimensional response variable vector
Output:  B: m x 1 dimensional model coefficient vector

C: a model scalar entity
m represents the dimensionality of the derived higher order
polynomial feature vector as will be explained in the
following.
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Step 3.a: As noted earlier, the circuit response does not
evaluate in the failure region Rr. We typically return a
constant value indicating failure instead. Hence, the data is
continuous in the pass region and lumped at a single value
indicating fail in the failure region. For our model building
purposes, we define Ytrue to be the vector derived from the
original response vector Y as follows:

Yirue = 17 V¢ Ry (7)
2x«max*x (Y ¢ Rp) Y € Rp

Hence, we modify the original response variable vector (Y)
obtained from CktSim, and replace all the failure sample points
with twice the maximum passing value; for example, in the
case of write ability, we replace it by twice the maximum
write delay. This provides separation between the pass and
fail regions and allows room for error due to polynomial
model fluctuations. Thereby, this enables safety margin for
the threshold to separate between the pass and fail regions in
the approximate continuous model.

Step 3.b: As discussed in Section II-B, we rely on the higher
order polynomial functions for increased model accuracy and
to enable the model to approximate well the complex nonlinear
relationship between the explanatory and response variables.
Thus, this step generates the high order n x m dimensional
feature matrix

XG = {gl(X)’ gZ(X)”gm(X)} (8)

where g, are the Hermite polynomial basis functions that
include interaction terms and higher order polynomial terms of
the explanatory variables. For a simple 2-D case, the Hermite
Polynomial is represented as [10]

g1(xi,xj) =1 gx,xj)=x;
1
ga(xi,x,o:E(x?—l) galxi,xj) =xi % xj,... (9

For higher dimensions, it can be derived according to [15].
For our purposes, our aim is to fit the model of the form

m
Ypred = Z X(Go’rf)ﬁ,-
i=1

(10)

where (ord) = second order or fourth order, and X (Gord) is the
corresponding extended feature matrix.

Step 3.c: Run the OMP [10] SpaRe with cross validation.
OMP is used to solve the regularization problem of form (11),
and accordingly identify the set of critical model features.
Thereby producing a high-fidelity SpaRe model with a few
important nonzero coefficients f derived according to (4). The
input to OMP is Ytrue and the feature matrix X¢

mﬂin I|XG - B — Ytrue||3 such that [|f]]y < A (11)

where 4 is the regularization parameter. OMP solves the other-
wise NP-hard LO-norm regularization problem. Traditionally,
the LO-norm problem is replaced by L1-norm problem, and the
solution may involve costly optimizations. OMP finds the opti-
mal number of features iteratively more efficiently [11], [12].
The optimal number of features is determined based on the
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Fig. 4. Fivefold cross validation.

model corresponding to the lowest k-fold cross-validation
error. Thus for a given model (set of features), and for a data
set of size n, the data set is divided into k folds. A single fold is
considered as the test set while remaining k — 1 folds are held
out for training sets. We repeat this k times each time selecting
a different fold for the test set to find the average cross-
validation error. There are tradeoffs for the choice of k. Large
k values are associated with a reduced bias to overestimating
the model error; this comes at the expense of higher runtimes
compared to small k values. On the other hand, small k values
are typically associated with reduced model stability due to the
increased size of the perturbation [16]. Hence the stability for
a 20-fold cross validation is better than that of tenfold which
is better than that of the hold-out method (train on 2/3 folds,
and test on 1/3 [16]). For our purposes, our objective is to
compare the average error among different models, and at
the same time maintain a low runtime overhead due to the
iterative nature of OMP feature selection process. Without loss
of generality, we rely on fivefold cross validation. This has a
relatively low runtime overhead for purposes of the LO-norm
regularization, and helps us compare the different models’
errors and hence identify the optimal number of features
corresponding to minimum cross-validation error efficiently.
We thus divide the input data set into five mutually exclusive
folds, and run the cross-validation process 5 times as illustrated
in Fig. 4.

OMP can be best summarized by the following steps.

1) Initialize the residual to be R = Ytrue; and the set of

selected features to be Q = {}. Set the loop index [ = 1.
2) Compute correlation between R and the features X¢ ;

¢i = (R, Xg.i).

3) Select from’{Xg,;}-Q’ the feature k with the highest
correlation to R. update Q = Q + {X¢ «}.

4) Build the linear regression model for Ytrue using only
the selected features in Q

2

Z XG,i-a; — Ytrue
ieQ

min
o

2

5) Calculate the corresponding average k-fold cross-
validation error ¢;.

6) Update R based on the new model, such that

R = Ytrue — ZXG’i -a; + C.
i€Q

7) If card (Q) did not exceed 1, [ =1+ 1 and go to step 2.
Otherwise go to step 7.

8) Use the model corresponding to the iteration with min-
imum cross-validation error e;. Set the critical f values
to match a values of the best models. Set the remaining
p coefficients to 0 for X ; that are not selected in that
model.

At each new iteration, the methodology adds to the set of
critical features the feature that portrays the highest correlation
with the residual obtained from the previous iteration model.
A model is built with new feature set, a new residual is
computed, and the corresponding cross-validation error is
computed. Typically, we stop the search once the number of
features exceeds a certain maximum limit Ap,x predefined by
the user (for example 50 features at max). Finally, the model
with minimum cross-validation error is adopted.

Step 4: The last step of model building involves identifying
a threshold value that properly maps the true pass/fail points
of the uniform data sample points to those predicted by the
model (Fig. 5). Any predicted sample points (Ypred) greater
than threshold value are considered as a fail, and our ideal
objective would be to satisfy the following relation:

Ypred > threshyy = Ytrue € Rp.

In practice, we find for the optimal threshold threshop satis-
fying the following relations:

mtin FalsePredict (12)

where ¢+ € [min(Ypred), max(Ypred)] is a threshold value
selected over the range of Ypred values

FalsePredict = FalseNegative + FalsePositive
FalseNegative = Z (Ypred < t) = I(Ytrue)

FalsePositive = Z (Ypred > t) = (1 — I(Ytrue))

and /(Ytrue) is an indicator function that evaluates to one
when Ytrue belongs to the failure region similar to (2). To find
the optimum #, we sweep it over all Ypred values for the
specific set of training sample points. Fig. 6 presents the pseu-
docode for searching for the optimal threshold given the
training set of n uniform stage sample points. Note that rather
than repeating the summations in (11) for every new threshold
value, we rely on an incremental update for FalseNegative and
FalsePositive values. In fact, the number of false negatives for
a given threshold value can be derived incrementally from the
previous value obtained prior to increasing the threshold value.
The number of false positives holds an opposite relation, and
hence, we derive it backwards. Maximum threshold implies
no predicted fails and hence no false positives.

In the results section, we discuss using an upper bound
on the false negatives to avoid being overly optimistic. The
optimal threshold is passed along with model coefficients for
predicting the response of the importance sample points of the
second MixIS stage.

Step 5: Generate importance sample points using the shifted
Gaussian (natural) distribution [6], and estimate the perfor-
mance metric and predict failures using the model coefficients,
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fgpe =1
thresh,,, = t(i)
End
End
Fig. 6. Pseudo code for finding the optimal threshold for n sample points.

[ as generated in step 3 and optimal threshold value discussed
in step 4.

Step 6: Estimate the probability of fail and compute the
corresponding yield using equations similar to (1).

IV. APPLICATION TO STATE-OF-THE-ART
WRITE-ASSIST CIRCUITRY
Nonplanar technology (FinFET) brings forth a new chal-
lenge in terms of the quantization of FinFETs which poses
a problem for proper beta and gamma ratios used in the
cell. A minimum sized SRAM cell with 1 fin each for all
the devices drives a beta and gamma ratio of 1. This disturbs

Calculating the optimal threshold to minimize false prediction. This represents step 4 of Fig. 2.

FinFET Boost Transistor

wch= 2 x Hﬁn

Fig. 7. Capacitive coupling between gate and source boosts the source
voltage (Vgqy) above Vgq when boost switches “high” [17].

the “write ability” at low “Vyq.” To overcome such problems
new circuit techniques are essential. In this paper, we evaluate
unique selective transistor-based boosting circuit techniques
along with write-assist techniques for the purpose of improv-
ing low voltage operation.

Fig. 7 presents a typical boost circuit. It involves an nFET in
parallel with a pFET device. The pFET source and nFET drain
are connected to Vgq. When their common gate is switched
from low to high, it couples the nFET’s source (pFET’s drain)
to a value above Vy4. The devices are sized to give a boost
around 0.12 V at low voltage operation. The selective boost
technique allows the design to operate at lower Vyq values
by selectively boosting memory specific paths and excluding
surrounding logic from the boost. The selective boosting can
be further paired with other write-assist techniques.

Thus, selective boost when applied to selective paths—
wordline, write drivers and cell, therefore, helps improve
the yield and pushes the low voltage operation range. The
write-assist techniques further help the SRAM cells improve



68 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 1, JANUARY 2018

Vddv
Predecoded
addresses 1

.léNegative”

Fig. 8. Negative boost write assist—applied to bitlines with virtual
supply (Vaay) [17].

TABLE 1
DESIGNS UNDERSTUDY

Design Write Assist Referred as
Selective Boost Only None SB_NoAssist
Selective Boost with Voltage Collapse SB_Collapse

Write Assist Negative Bitline Boost | SB_NegBoost

the write-ability yield. Two such techniques are: the voltage
collapse and negative bitline boost methods [16]. The earlier
operates by lowering the cell voltage during write. The lat-
ter [16] relies on negative boosting of the bitlines (Fig. 8). The
negative boost is created through capacitor coupling between
the gate nodes of datat (data true) and datac write enable
transistors and the bitlines. During the write operation, the
negative boost brings the bitline voltage lower than zero and
generates an increased voltage swing between the true and
complement bitline during write. Thus, the increase at the gate
voltage makes the transistor strong so it can flip the cell bit
easily and enhance the write ability.

For near threshold voltages, the devices are typically week
and selective boosting is needed for both read and write
operations. In fact, boosting further amplifies the write assist
improvements [17]. For higher voltages, boost is turned
on only for read operation. Finally, programmable booster
designs [18] can further enhance read access times by properly
tuning boost signal pulsewidth and phase.

Table I lists three design options that were implemented
in [17] for a 14-nm FinFET SOI technology 72-Kb SRAM
array arranged in columns of 16 cells/bitline. The presented
techniques are as follows:

1) selective boosting only;
2) selective boosting paired with voltage collapse;
3) selective boosting paired with negative bitline boost.

Hardware measurements indicate that SB_NoAssit design
requires more than 0.45 V to operate. SB_Collapse allows the
cells to work with the low voltage as of 0.35 V. SB_NegBoost
further stretches the operating voltage range all the way
to 0.30 V for write ability. These Vpin operating ranges and
trends were designed and validated using statistical design
methodologies [6] and results were found to corroborate well
with fabricated hardware presented in Fig. 9. Fig. 10 illustrates
the yield improvement due to SB_Collapse and SB_NegBoost

Test Chip Die Photo

Fig. 9. Die photograph in 14-nm FinFET SOI technology.
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Fig. 10. Increase in yield with SB_Collapse and SB_NegBoost compared to
the SB_NoAssist (arbitrary units).
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Fig. 11.  SRAM cell cross section. 6 T portion of 8 T cell illustrated.

compared to the SB_NoAssist. It is clear that write assist
SB_NegBoost provides significant yield improvement com-
pared to SB_Collapse as it can operate at the lower supply
voltage.

V. ANALYSIS AND RESULTS
For purposes of our analysis, we demonstrate the efficacy
of the proposed SpaRe methodology in the evaluation of the
negative bitline boost write-assist (SB_NegBoost) technique in
terms of model prediction capability and yield estimation.

A. Experimental Setup

We apply the methodology to an industrial 14-nm FinFET
SRAM design. For accurate analysis, simulations involve the
cell along with the peripheral logic as illustrated in Fig. 11.
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Variability is injected in the memory cell devices as well as
the local evaluation circuitry. Variability effects such as metal
gate granularity, line edge roughness, fin height variation, and
random dopant fluctuations are lumped into one source oy
that is injected into the simulations. Write ability, which is
the ability of the cell to be written, is selected as the primary
metric for investigation.

B. Model Building: Uniform Sampling Stage Data

We apply the proposed methodology to analyze the designs
understudy as the supply voltage is varied over the range
[0.40-0.43 V] for the SB_NoAssist design and [0.35-0.40 V]
for the SB_NegBoost design. For each design point, we gen-
erated 1000 samples using uniform distribution for nine fea-
tures/explanatory variables. Due to the nonlinearity of memory
designs, we build a higher order polynomial model (second
order or fourth order) to improve the accuracy. To handle
sparsity, OMP expresses the model as the function of few
important nonzero coefficients £. For instance, with the fourth
order polynomial model, OMP focuses only on a maximum of
50 nonzero coefficients f as compared to a full blown model
with 714 terms. This is based on the fact that for k variables,
the number of expansion coefficients for upto nth degree

polynomial is derived according to ° k+n) — 17 [19].

Finally, we employ a fivefold cross-validation approach for
optimal A.

C. Optimal Threshold Selection Analysis

We determine the threshold value used to predict the pass
and fail criteria for the importance sampling stage of MixIS
as the value that minimizes the uniform sampling stage false
predictions (see Figs. 2 and 5). Fig. 12 presents an example
optimal threshold value Threshopt. We observe that for small
threshold values the model is pessimistic and tends to over-
predict cell fails due to a high number of false positive; small
threshold implies a lot of Ypred values fail. For large threshold
values, the model is optimistic, tends to underpredict the
number of fails due to an increase in false negatives. We select
the optimal threshold value that provides the minimum false
predict. For all our experiments, the model corroborated well
and displayed a proper monotonic trend with the true data.
At the optimal threshold value, we had on average 1.5%
false predictions for the uniform stage sample points training
data set. To guard against overly optimistic scenarios should
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Fig. 13. SpaRe prediction summary for MixIS second stage for SB_NoAssist
design. Golden simulations are based on CktSim.
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Fig. 14. SpaRe prediction summary for MixIS second stage for SB_NegBoost
design. Golden simulations are based on CktSim.

they arise, we put a limit in our code on the maximum tolerable
false negatives to be 10% of the number of fails detected in
the uniform sampling stage. Hence, we adjust the threshold
accordingly if needed.

D. Model Prediction: Importance Sampling Stage

In this section, we focus on evaluating the proposed model
prediction capabilities in comparison to pure CktSims for the
sample points of the importance sampling stage of MixIS.
We present the percentage of false positives and false neg-
atives (uncaptured fails) for both designs in Figs. 13 and 14,
respectively. The results are for second order and fourth
order polynomial models. In the following section, we eval-
uate the corresponding yield convergence of the proposed
methodology.

Overall, we find that the fourth order model has better
prediction capability for both designs. We report the results in
terms of the percent false positives and percent false negatives
compared to the true number of fail points. For the second
order polynomial, SB_NoAssist design, we observe that false
positives percentage is as small as 0.4% for all the voltages.
The maximum error is 20% for the false negative at 0.43-V
supply voltage. On the other hand, the maximum error for the
fourth order polynomial is 6% recorded for the false positives
at 0.43 V.

For the SB_NegBoost design, again the fourth order poly-
nomial demonstrates lower errors in comparison to the second
order. The maximum recorded error is 15% for the fourth order
model false negatives recorded at 0.38 V.
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Fig. 15. Yield estimation: SB_NoAssist design-convergence. TRUE = CktSim. Predict = SpaRe.
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Fig. 16. Yield estimation: SB_NegBoost design-convergence. TRUE = CktSim. Predict = SpaRe.
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We apply the SpaRe methodology to estimate the yield of
the SB_NoAssist and SB_NegBoost memory design. Hence,
we rely on the model built using the uniform sampling
stage sample points of MixIS (first stage), to predict the
response for the sample points generated in the importance
sampling stage of MixIS (second stage). This completely
eliminates the need for CktSim in the importance sampling
stage. We analyze the convergence of the yield estimate for
both the proposed SpaRe methodology against CktSim, the
pure CktSim-based approach for MixIS. For our proposed
technique, the yield estimation is based on the second order
and fourth order polynomial models presented in the previous
section. The respective yield convergence results are presented
in Figs. 15 and 16. We observe that for both SB_NoAssist
design and SB_NegBoost design, second order polynomial
does not provide proper yield convergence especially at the
high supply voltages. This is expected due to the higher
errors observed for the second order model prediction pre-
sented in Section V-D. However, the fourth order model yield
estimation results demonstrate high corroboration between

yield = CktSim. Predicted yield = SpaRe.

the proposed SpaRe methodology and the traditional CktSim
methodology for both the SB_NoAssist and SB_NegBoost
designs. Note that for the fourth order model-based analysis,
the maximum yield error was 15.9%, and the average error was
found to be 6.2%. This is emphasized in Figs. 17 and 18 where
the final converging values of the second order and fourth
order model-based yield estimates are compared. Specifically,
we observe the following for the fourth order model.

1) For SB_NoAssist design yield prediction properly
matches the response at 0.4 and 0.42 with a slight
mismatch at 0.41 and 0.43 V.

2) For the SB_NegBoost design, the predicted yield results
match properly with slight mismatch at 0.36 V.

3) For both designs, the predicted yield trend is preserved
and the yield is monotonically increasing with the volt-
age increase.

4) Most importantly, Fig. 19 illustrates the ability of the
fourth order model-based to accurately predict the cor-
responding low fail probabilities.
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Fig. 19. Probability of fail estimation corresponding to Figs. 17 and 18.

TABLE II
RUNTIME COST
CktSim SpaRe
Uniform Sampling Circuit simulations Circuit Simulations
Stage 5 hours 5 hours
Model fitting N/A 110 seconds
Imp(.)rtance 7.5 hours <1 min
Sampling stage

As far as the runtime is concerned, the proposed SpaRe
methodology reduces the required CktSims by half and com-
pletely eliminates the need of CktSim for the second stage
of mixture important sampling. The methodology can be
effectively applied to other chip design frameworks in general.
It enables significant speedup compared to the traditional
CktSim-based techniques which can be very costly for large
cross sections. Furthermore, there is no added cost for training
sample points since these are obtained in the uniform sampling
stage. We can think of OMP as least squares regression
repeated iteratively. Because OMP solves least squares based
on a small number of features, Anm,x = 50, this implies
that the complexity of matrix computation and inversion
required for least squares regression is reduced significantly
due to the reduced number of features. From a practical
perspective, we recorded around 110 s of runtime for the
model building (fitting) using MATLAB. The model evaluation
is negligible. This is compared to more than 7.5 h runtime that
was required for CktSims of the importance sampling stage
as illustrated in Table II. This accounts for 150x reduction
in runtime. Both MATLAB and SPICE simulations were
performed on an IBM Power7 core processor machine running
at 4 GHz.

VI. CONCLUSION

We present a first application of a SpaRe model-based
yield analysis methodology for rare fail estimation of memory
designs. In the proposed methodology, we integrate the SpaRe
model using an optimal threshold value to predict the failures
of the importance sampling stage of MixIS for yield analysis
calculations. The methodology is shown to efficiently model
cell functionality in the context of high-dimensional space
with application to state-of-the-art selective boosting with
write-assist circuitry. The methodology bypasses hundreds to
thousands of CktSims by completely eliminating the need for
CktSims of the second phase of MixIS. This accelerates the
statistical analysis of memory designs without compromising
accuracy.
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