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Abstract— Wearable personalized health monitoring systems
can offer a cost-effective solution for human health care. These
systems must constantly monitor patients’ physiological signals
and provide highly accurate, and quick processing and delivery
of the vast amount of data within a limited power and area
footprint. These personalized biomedical applications require
sampling and processing multiple streams of physiological signals
with a varying number of channels and sampling rates. The
processing typically consists of feature extraction, data fusion,
and classification stages that require a large number of digital
signal processing (DSP) and machine learning (ML) kernels.
In response to these requirements, in this paper, a tiny, energy-
efficient, and domain-specific manycore accelerator referred to
as power-efficient nanoclusters (PENC) is proposed to map and
execute the kernels of these applications. Simulation results
show that the PENC is able to reduce energy consumption by
up to 80% and 25% for DSP and ML kernels, respectively,
when optimally parallelized. In addition, we fully implemented
three compute-intensive personalized biomedical applications,
namely, multichannel seizure detection, multiphysiological stress
detection, and standalone tongue drive system (sTDS), to evaluate
the proposed manycore performance relative to commodity
embedded CPU, graphical processing unit (GPU), and field-
programmable gate array (FPGA)-based implementations. For
these three case studies, the energy consumption and the per-
formance of the proposed PENC manycore, when acting as an
accelerator along with an Intel Atom processor as a host, are
compared with the existing commercial off-the-shelf general-
purpose, customizable, and programmable embedded platforms,
including Intel Atom, Xilinx Artix-7 FPGA, and NVIDIA TK1
advanced RISC machine -A15 and K1 GPU system on a chip.
For these applications, the PENC manycore is able to significantly
improve throughput and energy efficiency by up to 1872× and
276×, respectively. For the most computational intensive applica-
tion of seizure detection, the PENC manycore is able to achieve
a throughput of 15.22 giga-operations-per-second (GOPs), which
is a 14× improvement in throughput over custom FPGA solu-
tion. For stress detection, the PENC achieves a throughput
of 21.36 GOPs and an energy efficiency of 4.23 GOP/J, which
is 14.87× and 2.28× better over FPGA implementation, respec-
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tively. For the sTDS application, the PENC improves a through-
put by 5.45× and an energy efficiency by 2.37× over FPGA
implementation.

Index Terms— Low-power manycore accelerator, personalized
biomedical applications, seizure detection, stress detection, tongue
drive system (TDS).

I. INTRODUCTION

RECENT innovations in the semiconductor industry made
it possible to integrate various sensors and comput-

ing components in an embedded system-on-a-chip (SoC)
processing platform. Wearable mobile platforms use embedded
SoCs to process sophisticated and computationally intensive
applications. With the rapid advances in small, low-cost
wearable computing technologies, including smartphones and
smartwatches, there is a tremendous opportunity to develop
the ubiquitous personalized biomedical embedded systems
capable of continuous vigilant monitoring of physiological
signals. These systems have the potential to reduce the mor-
bidity, mortality, and economic cost associated with many
chronic diseases by enabling early intervention and prevent-
ing costly hospitalizations. In addition, recent advances in
noninvasive sensor technologies enable the possibility that
these systems can potentially monitor and analyze several
modalities, including acceleration, pressure, temperature, elec-
trocardiography (ECG), electromyography (EMG), electroen-
cephalography (EEG), ultrasound, audio, and image signal
streams. Embedded biomedical applications primarily consist
of three basic stages: 1) a sensor front-end to capture and
digitize physiological signals; 2) a processing stage to analyze,
classify, and potentially store the sensors data; and 3) an
RF module stage to transmit the data, classification, and/or
diagnostics to the user or medical personnel [1]–[5]. There has
been an incredible amount of innovation and improvement in
sensor design that has dramatically reduced power while main-
taining high accuracy. This is the result of technologies, such
as microelectromechanical systems sensors and specialized
analog-front-end (AFE) products targeted for physiological
signals, such as Texas Instruments medical AFEs, namely,
ADS129x and AFE44xx. There has also been a tremendous
amount of work done on wireless RF modules ranging from
specialized research modules to commercial modules, such
as Bluetooth Smart (17.9-mA receiver, 18.2-mA transmitted,
and 1-µA sleep). Still, the relatively high amount of power
required to transmit raw or even compressed data makes
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it essential to perform local onboard processing [6]. The
enterprise of this paper is on the computing platform to address
the unique challenges and the characteristics of biomedical
applications. Realizing a low-power processor for biomedical
computing in real time allows wearable biomedical devices to
be capable of tracking the health and well-being of individuals
with chronic disease using a holistic approach by integrating
and interpreting multiple sensory inputs.

Current processor design, based on commodity general-
purpose homogeneous processors, is not the most efficient
in terms of performance/watt to process compute inten-
sive applications [7]–[12]. To address the energy-efficiency
challenge, heterogeneous architectures have emerged as the
promising solutions in high performance as well as embed-
ded platforms to significantly improve the energy effi-
ciency by allowing applications to run on a computing core
that matches the resource needs more closely than a sin-
gle one-size-fits-all general-purpose core. A heterogeneous
chip architecture integrates cores with various microarchitec-
tures (in-order or out-of-order) or instruction set architec-
tures (Thumb and ×86) with on-chip graphical processing
unit (GPU) or field programmable gate array (FPGA) accel-
erators to provide more opportunities for efficient workload
mapping, so that the application can find a better match among
various components to improve power efficiency. Exam-
ples of heterogeneous architectures in embedded domains are
Xilinx ZYNQ (CPU + FPGA), NVIDIA Tegra TK1 and
TX1 (Quad-core advanced RISC machine + CUDA embed-
ded GPU), Qualcomm Snapdragon [CPU + digital signal
processing (DSP) + GPU], and Samsung Exynos (Big +
Little CPU + GPU). While conventional general-purpose
heterogeneous architectures in wearable computing platforms
promise to enhance energy efficiency significantly, they are not
designed to handle the large diversity and the computational
complexity of biomedical signals.

In fact, the state-of-the-art commodity general-purpose
embedded platforms are not optimized to process this class of
applications efficiently as they provide restricted choices with
tradeoff between power, performance, and energy efficiency.
Although integration with GPUs has provided opportunities
to enhance the performance, it comes with significant power
cost. In addition, to address the programmability challenge for
diverse range of applications, these platforms are designed to
provide general-purpose computing environments relying on
enormous redundancy at various levels, deep and sophisticated
memory hierarchy, and complex communication coherency
network, which increase their inefficiency. Most recent works
in developing a biomedical processor have focused on creating
an SoC with specialized accelerator cores targeted for par-
ticular biomedical applications [13]–[17]. These approaches
are not scalable to cover all kernels or applications, are often
very expensive, and require long development time to develop
specialized chips. Besides the major restrictions on power
and area, the processor must be able to efficiently process
several physiological signal streams with different character-
istics. Table I provides some example common sensors with
typical number of channels and sampling frequencies that
are used by personalized biomedical applications. Processing

TABLE I

EXAMPLE SENSORS FOR BIOMEDICAL APPLICATIONS WITH TYPICAL
NUMBER OF CHANNELS AND SAMPLING FREQUENCIES. DEMON-

STRATES THE VARIABLE SAMPLING FREQUENCIES AND

MULTIPLE CHANNELS REQUIRED

these data streams often includes feature extraction, data
fusion, and classification stages that consist of both DSP
and machine learning (ML) kernels that exhibit task-level
and data-level parallelism [18]. In response to all computing
challenges of personalized biomedical applications discussed
earlier, in this paper, we propose a programmable energy-
efficient, domain-specific accelerator named power-efficient
nanoclusters (PENC) to address the needs of biomedical
signals to push the energy-efficiency boundaries to the next
level. This paper, through an empirical setup on the state-of-
the-art commodity embedded computing platforms and real
measurements, makes the following major contributions.

1) Propose PENC, an energy-efficient, domain-specific tiny
programmable manycore accelerator to efficiently map
and execute common kernels of personalized biomedical
applications.

2) Develop the mappings of several DSP and ML kernels
on PENC accelerator for energy-efficiency analysis.

3) Provide analysis in terms of performance and resource
utilization of the DSP and ML kernels on FPGA, micro-
controller, and multicore CPU- and GPU-based state-
of-the-art embedded computing platforms along with
comparison to the proposed PENC.

4) Perform thorough case study on three emerging
compute-intensive biomedical signal processing
applications, namely, multichannel seizure detection,
multiphysiological stress detection, and stand-alone
tongue drive system (sTDS), to fully evaluate PENC
energy-efficiency advantage over commodity embedded
solutions.

II. BACKGROUND

A. Related Work

1) Heterogeneous Processors: Heterogeneous architecture
platforms have shown to provide significant advantages in
enabling energy-efficient or area-efficient computing [9]–[11],
[19], [20]. Integrating heterogeneous core in a multicore, such
as advanced RISC machine (ARM) + million instructions per
second (MIPS), CPU + GPU, or heterogeneous CPU + GPU
+ FPGA, has been investigated in various studies. In more
complex heterogeneous architecture, multicore, GPU, and even
FPGA have been integrated to solve the instruction level
parallelism and task level parallelism challenges. An example
for FPGA + CPU + GPU is the Axel system [21] and



98 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 1, JANUARY 2018

NVIDIA Tegra K1 and X1, that combines the benefits of the
specialization of FPGA, the parallelism of GPU, and the scal-
ability of a multicore architecture. These examples show that
the heterogeneous architecture can offer significant improve-
ment for high computing demand applications. In general,
in these systems, the overall performance can be improved by
smart scheduling, allowing various heterogeneous computing
components to work collaboratively on different parts of the
program. In spite of all the performance benefit of integrating
heterogeneous architectures, the challenge of high power con-
sumption and high operating temperature remains an obstacle
for deploying these designs in an embedded, wearable, and
power constrained environment, including mobile devices.
Particularly for many-cluster DSP and GPU platforms, while
its been shown that these architectures are capable of providing
the performance requirements of many computing intensive
applications, they still suffer from high power consumptions
and high operating temperatures [22]. Thus, these systems are
impractical for resource constrained embedded portable envi-
ronments. An example is the NVIDIA Tegra that can reach up
to 10 W of power consumption that is not tolerable in resource-
constrained biomedical embedded systems [23], [24]. A recent
work has shown that each of multicore CPU- and GPU-based
architectures offers a different power and performance tradeoff
for various biomedical applications [16]. Although easy to
program, these processors have limited flexibility and paral-
lelism. Therefore, an FPGA is also explored, which provides
high flexibility but requires writing low-level logic. In [15]
and [24]–[26], a high-level synthesis (HLS) tool was used
to generate an accelerator for ML kernels deployed in neural
network and biomedical image processing and show significant
performance and energy-efficiency benefit. However, as HLS
is automated, it does not leverage all potentials of hardware
acceleration. In this paper, in response, we use a custom,
programmable manycore accelerator to leverage the enormous
parallelism exists in biomedical applications to improve energy
efficiency and benefit FPGA flexibility.

2) Domain-Specific Accelerator Processors: In the domain-
specific platforms, several research works have been carried on
the implementation of simpler cores for optimization rather
than having application-specific processors. There has been
work on simple programmable processors used for application-
specific mapping. One such paper is [27], where 167 pro-
grammable processors having 16-kB shared memory imple-
mented on 65-nm technology having an area of 0.17 mm2,
operating at 1.07 GHz consuming 47.5 mW when 100%
active. This platform is dedicated for efficient computation
of DSP, embedded, and multimedia applications, such as
fast Fourier transform (FFT) and video encoding. There has
also been a recent work on using simpler cores for high-
performance computing applications in [28], and they propose
an ultralow power platform built using tightly coupled process-
ing cores called PULP. This manycore platform consists of
clusters of simpler four OpenRISC cores, having 64 kB of
L2 memory and 24 kB of tightly coupled data memory in 28-
nm technology. This architecture is dedicated for computer
vision applications, such as smart surveillance cameras and
autonomous micro-unmanned aerial vehicles. A recent work

has shown that KiloCore [18], a 32-nm 1000-processor com-
putational platform, occupies 0.055 mm2 area at a frequency
of 1.78 GHz at 1.1 V. This chip consists of 1000 simple RISC
types programmable processors and 12 independent memory
modules. This platform is developed to address the concerns
of extensive complex data computation, such as embedded
Internet of Things (IOT) to cloud data centers for high-
performance and energy-efficient computing. The proposed
PENC manycore accelerator is different from other available
platforms as it is a customized programmable architecture,
targeting specifically personalized biomedical applications,
with different characteristics than other studied domains.

3) Biomedical Processors: In the domain of general-
purpose platforms for biomedical applications, recent work
has shown how multicore architectures offer significant effi-
ciency advantage over single core architecture when running
various biomedical applications [29]–[32]. This is mainly
motivated by the inherent parallelism existing in biomedical
applications with multichannel signal analysis requirements,
where multicore architectures can bring significant energy
efficiency compared with a single core. Several research
works have reported the performance results of parallel
implementation of various computer vision-based biomedical
applications on CPU and compared it with the accelera-
tor implementations [16], [33], [34]. Cope et al. [35] and
Kulkarni and Mohsenin [36] have compared the implemen-
tation performance of image convolution on GPU, FPGA, and
CPU; Fykse [37] has compared image convolution processing
on GPU and FPGA. Asano et al. [38] have investigated the
performance comparison of 2-D filter on FPGA, GPU, and
CPU; however, none of this paper has studied the tradeoff
between power and performance on state-of-the-art embedded
heterogeneous platforms. In the context of customized proces-
sor design, there have been a number of research endeavors
exploring a single core or a multicore architecture design
targeting specific biomedical applications. A massively parallel
stream processor was introduced by Krimer et al. [39], which
achieves 1 giga-operations-per-second (GOPs)/W. An ultralow
energy processor with low voltage operations was presented by
Hanson et al. [40] for wireless monitoring systems. The power
consumption of the processor is optimized using a new low
leakage memory, memory size and instruction set adjustments,
and power gating. In another study, a sub/near threshold
accelerator was proposed by Pu et al. [41] for low-energy
mobile image processing using architecture-level parallelism.
Rosen et al. [42] described a solution to implement
predictable real-time applications on multiprocessors that
uses a bus scheduling policy based on the time divi-
sion multiple access. In their solution, processors are
assigned time slots to access the bus with static schedul-
ing. Their proposed multicore architecture [43] is used for
the real-time biomedical monitoring and analysis system.
Alemzadeh et al. [44] proposed a reconfigurable architec-
ture for real-time assessment of individual’s health status
based on the development of a patient-specific health index
and online analysis of multiparameter physiological signals.
Bouwens et al. [45] proposed a dual-core system solu-
tion for wearable health monitors ECG R-peak detection
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Fig. 1. Block diagram of a multichannel seizure detection application con-
taining feature extraction, ML classifier, multichannel vote, and IO interface.
The application highlights heavy use of DSP and ML kernels in addition to
data-level and task-level parallelism.

application, which consumes 65.38 W. As discussed, most
previous works have focused on creating an SoC by adding
accelerator cores for a particular biomedical application. How-
ever, these modifications do not target the fundamental charac-
teristics in common with a majority of biomedical applications.
Besides the major restrictions on power and area, the processor
must be able to efficiently process several physiological signal
streams at often differing sampling frequencies.

B. Characteristics of Personalized Biomedical Applications

Among the many commonalities shared between personal
biomedical applications, the need to process parallel streams
of data in real time is a dominating feature. Table I showed
that these applications require multichannel data streaming at
various sampling rates. The analysis of these multiple streams
requires a mix of data-level and task-level parallel compu-
tation [33], [34], [46], [47]. In addition, these applications
often require a large number of DSP and ML techniques.
DSP is often used to extract useful representations of the
input data while the ML is needed to perform automated
classification for diagnostic and detection purposes. In this
paper, Fig. 1 shows the block diagram of the seizure detection
application [1], [48]. This case study is an ideal example of
a biomedical application that exhibits multiple streams (up to
24 EEG channels) of real-time data that must be processed
with the DSP and ML kernels. In addition, the multiple streams
allow for intuitive parallel processing. In order to demon-
strate these dominant commonalities, we investigated various
common DSP and ML kernels. The examined DSP kernels
include filtering [finite impulse response (FIR)], windowing,
FFT, orthogonal matching pursuit (OMP), and convolutional
neural network (CNN) while the examined ML kernels include
logistic regression (LR), naive Bayes (NB), support vector
machine (SVM), and k-nearest neighbor (KNN).

In addition to exploring these various DSP and ML kernels,
three case studies, including multichannel seizure detection,
multiphysiological stress detection, and sTDS, are imple-
mented on a number of general-purpose embedded hard-
ware platforms. The platforms include Intel Atom processor,
ARM Cortex-A15 processor, mobile TK1 GPU SoC, a Xilinx
Artix-7 FPGA, and our proposed PENC manycore platform
customized for personalized biomedical applications.

III. POWER-EFFICIENT NANO CLUSTERS MANYCORE

A. PENC Manycore Overview and Key Features

The PENC manycore accelerator is a homogeneous multi-
ple instruction, multiple data (MIMD) architecture that con-
sists of in-order tiny processors with a six-stage pipeline,
an RISC-like DSP instruction set, and a Harvard Architecture
model [33], [34], [47], [49], [50]. The core operates on a
16-bit data path with minimal instruction and data memory
suitable for task-level and data-level parallelism. Furthermore,
these cores have a low-complexity, minimal instruction set to
further reduce area and power footprint. The lightweight cores
also help to ensure that all used cores execute an application
without an idle state, which can further reduce overall energy
consumption. These light cores have simplified data memory,
instruction memory, and instruction set architecture ensuring
full utilization of their resources when used. The processor can
support up to 128 instructions, 128 data memory, and provides
16 quick-access registers. In the network topology, a cluster
consists of three cores that can perform intracluster commu-
nication directly via a bus and intercluster communication
through a hierarchical routing architecture. Each cluster also
contains a shared memory. Fig. 2 shows the block diagram of
a 16 cluster version of the design, highlighting the processing
cores in a bus-based cluster. Each core, bus, shared memory,
and router were synthesized and fully placed and routed in a
65-nm CMOS technology using the Cadence SoC Encounter,
and the results for one cluster are summarized in Fig. 2(e). The
processing core contains additional buffering on the input in
the form of a 32-element content-addressable memory (CAM).
It is used to store packets from the bus and allow a finite-state
machine (FSM) to find a word where the source core field
corresponds to that in the IN instruction itself, where the IN
instruction is used to communicate between the cores. For
example, if the core is executing IN 3, the FSM searches
through the CAM to find the first word whose source core is
equal to three. This word is then presented to the processing
core and processing continues. The PENC manycore archi-
tecture has three lightweight processing cores and a shared
memory in a single cluster. Our initial manycore architecture
design had four processing cores and a hierarchical router
within a cluster, which was ideal for DSP kernels for minimal
data storage and localized processing [51]. Since personalized
biomedical applications use ML kernels, which often require
large amount of memory for their model data, the previous
architecture resulted in memory access time bottleneck. Hence,
the proposed PENC manycore architecture replaces the four
core implementation with three cores and a shared SRAM
memory of 3K words and low latency bus-based architecture
for intercluster communications, while maintaining the effi-
ciency of low area and power consumption. Our initial results
showed that the performance benefit of bringing additional
cores within the cluster diminishes given the increase in total
area, power consumption, and network congestion. Below are
the key characteristics of the PENC manycore platform.

1) Bus-Based Cluster: Cores use the IN and OUT instruc-
tions to communicate with each other. When a core executes an
OUT instruction, the data and relevant addressing information
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Fig. 2. (a) PENC manycore architecture. (b) Bus-based cluster architecture. (c) Postlayout view of bus-based cluster implemented in 65-nm, 1-V TSMC
CMOS technology. (d) Block diagram of core architecture. (e) Postlayout implementation results of optimized bus-based cluster (consisting of three cores +
bus + cluster memory).

Fig. 3. Postlayout area and power analysis of different customizations of
single processing core in PENC manycore architecture. Power is reported for
1-GHz clk.

are packetized and sent to its output first-in-first-out (FIFO)
through a bus. When data are present in a core’s output FIFO,
it requests to use the cluster bus. The bus then arbitrates
between requests, only granting those whose transactions can
be completed. The bus treats each transmission of data as a
single transaction, since it behaves with a simple push or data-
driven protocol. The bus is used for intracluster communica-
tion. This includes a round-robin arbiter, which chooses the
next node to grant access based on the round-robin scheme.
Once the node gets access, it wraps the processing core
pipeline with layers of buffering and is the main level in the
PENC architecture that interacts with the bus. The destination
core is used by the bus to forward the packet to the appropriate
location, and the source core is used by the requesting node
to satisfy its corresponding IN instruction. Based on the
destination address and the data fields, the recipient core stores
the address of the data.

2) Domain-Specific Customization of Instruction Sets: Cus-
tomizing a processor’s instruction set for a particular comput-
ing domain is an efficient way of improving the processors
performance. Designing an application-specific hardware for
each given application is expensive; hence, a customized
instruction set in the manycore can have a remarkable effect
on power and area. The PENC architecture is optimized to
best suited for ML kernels. There are lightweight processing
cores containing a limited instruction set for efficiency with a
handful of specialized instructions, such as absolute distance
calculation and sorting. Fig. 3 shows the postlayout power
and area results of single processing core with various opti-
mizations (single core, optimized single core, and optimized
single core with special instruction KNN) in terms of area

Fig. 4. Postlayout implementation breakdown analysis of PENC manymore
comprising of 192 processing cores, cluster bus, shared memory, and router.
(a) Area breakdown. (b) Power breakdown.

and power. The optimized single processing core has five
branching instructions removed, as they were redundant. This
optimization managed to get reductions of 9.90% in area and
9.01% in power for a single processing core, and 7.40% in
area and 6.86% in power for the PENC manycore archi-
tecture (192 cores, cluster bus, shared memory, and route).
The optimized processing core with special KNN instruction
is comprised of optimized single processing core with an
added instruction for absolute distance calculation for KNN
ML kernel. From the bar graph, it can be observed that this
optimization has a reduction of 9.13% in area and 8.93% in
power for a single processing core, and 6.83% in area and
6.80% in power for the PENC manycore architecture. Fig. 4
shows the postlayout implementation breakdown analysis of
optimized PENC manycore comprising of 192 Processing
cores, bus cluster, shared memory, and router with Fig. 4(a)
showing the area breakdown and Fig. 4(b) showing the power
breakdown. These results are obtained after Place and Route
using Cadence Encounter for 65-nm technology. The area
results come from the postlayout report, and the power results
are obtained from the Encounter power analysis with careful
consideration of activity factor, capacitance, IR drop, and rail
analysis. These results are used to compare with the off-the-
shelf processors.

3) Efficient Cluster Memory Access Architecture: While
the lightweight cores are ideal for DSP kernels that require
minimal static data [34], [47], ML kernels often require larger
amounts of memory for their model data. This is addressed
with the distributed cluster-level shared memory that is
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interfaced to the bus. The shared memory within a cluster
consists of three instances of SRAM cells of memory size
1024 × 16 bit making up a total of 3072 words and can
be accessed within the cluster using the bus and from other
clusters through the router. To access the memory, cores
use two memory instructions: LD and ST. The maximum
depth of the cluster memory is 216 words, since registers and
data memory are both 16-bit wide and can, therefore, supply
a 16-bit memory address. Using data memory as operands
for instructions is still beneficial to using LD and ST from
an efficiency standpoint because of the one-cycle read/write
capability. Referencing data from the cluster memory has
latency and requires a separate instruction, which reduces the
overall instructions per cycle that the pipeline can complete.
However, the LD and ST instructions enable the use of a
much larger addressable space, which allows the PENC to
support many applications. The PENC architecture is ide-
ally suited for personalized biomedical applications, which
require to compute a variety of multiphysiological signals in
real time within limited power budget. As previously shown
in Table I and Fig. 1, these biomedical applications process
many physiological signals at different sampling rates. The
processing of these parallel signals requires both DSP and ML
kernels that exhibit task-level and data-level parallelism. For
PENC, each signal can be processed in parallel in different
designated clusters. The proposed PENC features, including
lightweight processing cores, domain-specific customization
of instructions (i.e., sort, distance calculation, FFT, multiply
and accumulate, as well as low latency memory and IO access
instructions), and enhanced bus-based cluster architecture for
low latency shared memory access make this MIMD platform
address the needs of this class of applications. Section III-
B provides empirical results showing how these manycore-
specific features are well suited for personalized biomedical
applications.

B. PENC Platform Evaluation Setup

For the PENC manycore, we developed stand-alone simula-
tor and compiler that take user’s code and postlayout hardware
results as seen in Fig. 5. The simulator provides cycle accurate
results, including completion time, instructions, and memory
usage per core that directly come from the postlayout VLSI
hardware of processors. It also serves as a reference imple-
mentation of the architecture to make testing, refining, and
enhancing the architecture easier. Each task of algorithm is
first implemented in assembly language on every processing
core using manycore simulator. Assembly is a very low level
language, which is equivalent to the actual instructions running
on the processor. The simulator reads the assembly codes per
core, compiles to binary, and puts them in the instruction
memory to program the cores. It also initializes the register
file and data memory in each core. It models the functionality
of the processor and calculates the final state of register files
and data memories. For execution time and energy consump-
tion analysis of the algorithm, binaries obtained from the
compiler are mapped onto the hardware design of the many-
core platform, which is in Verilog and simulated using

Fig. 5. Mapping of PENC manycore simulator and compiler flow high-
level diagram and mapping the PENC hardware design using compiler.
(a) Initialization of data memory and register. (b) Assembly code and compiler
output. (c) Generated binary file and Verilog stimulus. (d) Hardware layout
and power and timing report on Cadence tools.

Cadence NC-Verilog [52], as shown in Fig. 5. The activity fac-
tor is then derived and is used by the Cadence [52] Encounter
tool for accurate power estimation of application running on
the postlayout VLSI hardware of the manycore. The manycore
simulator reports statistics, such as the number of cycles
required for arithmetic logic unit, branch, and communication
instructions, which are used for the throughput and energy
analysis of the PENC manycore architecture.

C. PENC Evaluation on DSP and ML Kernels

In order to demonstrate the proposed PENC manycore’s
effectiveness at targeting personalized biomedical applications,
experiments were performed that highlight the unique char-
acteristics of these applications. Specifically, the experiments
map various DSP and ML kernels with performance measured
in energy, execution time, and memory demands.

1) DSP Kernel Mapping: In the first experiment, var-
ious DSP kernels were mapped onto the PENC many-
core. The DSP kernels include FFT, FIR filter, OMP,
dot-product operation (DOT), and CNN. In our previous
work, we have designed specialized hardware for these
kernels [1], [49], [50], [53]–[56]. For PENC manycore map-
ping, an initial mapping was performed that used the minimum
number of cores to act as a baseline. A second mapping
was then performed that used the optimal amount of cores.
This was done by selecting the best from a number of
implementations. The final mapping is equivalent to the second
mapping but scales the frequency of each core to meet the
execution time of the first mapping using dynamic frequency
scaling (DFS). Fig. 6 shows all three of these mappings
for the five DSP kernels with their corresponding energy-
delay product (EDP). The plot shows that the manycore can
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Fig. 6. Mappings of DSP kernels, including FFT, FIR filter, OMP, dot-
product (DOT), and CNN. First mapping uses the minimum cores needed.
The second mapping utilizes optimal cores to leverage parallelism. The third
is the same as the second but with DFS.

Fig. 7. Comparison of different mappings of feature extraction and KNN
ML kernel with 512 training samples on the manycore with frequency scaling
to meet deadline. Additional clusters can be utilized to exploit KNN parallel
structure allowing to reduce frequency. Energy dissipation (with processing
core, bus, shared memory, and router) and frequency values are shown in the
plot. Table provides resources used for different mappings.

efficiently parallelize all of the kernels and is able to achieve
an EDP reduction of up to 10×. It is important to note that
kernels, such as CNN and OMP, do not use DFS, because
these kernels are parallel and complete almost simultaneously.
Therefore, their final mapping is the same as the mapping
when optimal amount of cores are used. OMP maps [57]
the sketching of 384 × 384 size image, and CNN maps the
convolution layers of LENET-5 [58].

2) ML Kernel Mapping: Many DSP kernels require very
little static and dynamic memory. For example, a 128-point
FFT requires around 512 words of memory assuming twiddle
factors are precomputed and the input is complex. On the
other hand, many ML kernels can often require storing a large
volume of model data. For example, KNN essentially requires
storing all of the training data. This could correspond to thou-
sands of values requiring to be stored (e.g., 17 000 data). This
is accommodated for by having cluster-level shared memory
accessible through the cluster’s bus. The mapping of an ML
kernel onto the manycore is performed similar to the mappings
of the DSP kernels. The KNN algorithm with the 512 model
data is mapped using between 1 and 16 clusters. The results
are shown in Fig. 7. Fig. 7 shows different mappings of feature

Fig. 8. Energy per cluster and execution time with the mappings of ML ker-
nels, including KNN-3 (17 500 training samples), linear SVM (4937 support
vectors), NB, and LR on PENC manycore platform.

extraction for KNN ML kernel using 512 training samples on
the PENC with frequency scaling for each core. As can be
seen, increasing the number of clusters to map KNN allows
the operating clock frequency to be dramatically reduced. The
optimal mapping is obtained using three clusters, which was
able to reduce energy by 25% and execution time by 63%
compared with single cluster. Fig. 8 shows energy per cluster
and execution time of four ML (including KNN-3, linear
SVM, LR, and NB) kernels mapping on PENC manycore.
The required number of clusters to map the ML kernels on
the manycore is shown in Fig. 8 as well.

IV. CASE STUDIES

In this paper, we explore three applications, namely, stress
detection, seizure detection, and TDS, to address the require-
ments for personalized biomedical applications that compute a
variety of multiphysiological signals in real time within limited
power budget. Seizure detection (Fig. 1) exploits multichan-
nel parallel signal processing for 22 to 64 EEG channels.
Stress detection in Fig. 12 exploits multiphysiological signal
processing for heart rate (HR), accelerometer, respiration,
and galvanic skin conductance. TDS in Fig. 15 exploits 3-D
magnetic sensor data through tongue movement for 12 chan-
nels [59]. For the three applications that are implemented in
this paper, processing of parallel data streams of the signals
requires both DSP and ML kernels that exhibit task-level and
data-level parallelism. These applications represent diversity
both in terms of application type and variety number of
sensors within biomedical signal processing domain as well
as computational behavior and memory requirements. For
example, TDS requires a very small training data, which can
fit in PENC manycore data memory, and thus, PENC can be
used as a stand-alone accelerator similar to the implementation
for Artix FPGA and microcontroller as will be discussed
in Table III and Fig. 18. For the Stress detection and seizure
detection implementation (which require more data storage
and transferring), the PENC accelerator runs with a host
CPU (Intel Atom Edison Processor) for data marshaling. This
would be similar to the operation of Jetson TK1 platform,
which contain ARM processor interfaced with GPU. These
applications are further discussed in this section.
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Fig. 9. Mapping of KNN-based seizure detection application onto PENC
manycore.

A. Seizure Detection Application
Epilepsy is a leading neurological disease that affects

approximately 2.2 million Americans. According to a recent
Institute of Medicine report, epilepsy is the fourth most
common neurological disorder in the United States with
roughly 1 in 26 people being diagnosed with epilepsy in their
lifetime [1]. The ability to monitor epileptic patients in an
ambulatory setting is a crucial tool that has significant medical,
psychosocial, cost, and safety advantages. For example, such
a tool could be used to help determine minimal effective
dosages or to alert medical personnel when a seizure is
detected, which can help reduce the occurrences of sudden
unexpected death in epilepsy.

In our previous work, a flexible seizure detection hardware
system was implemented to detect the onset of a seizure
by analyzing multiple channel, scalp-based EEG data in real
time [1], [6], [48]. The developed system is capable of process-
ing up to 24 channels of EEG electrodes that are digitized
using specialized AFE ICs. Each stream of EEG sensor data
is sampled at a rate of 256 Hz with 16-bit resolution. The
processing consists of four main stages as previously shown
in Fig. 1. Each EEG sensor is first passed through filters to
remove high frequency and dc components. A feature extrac-
tion stage is then used to convert windows of time-series data
into five temporal features per EEG channel. Each channel’s
features are then classified using one of four classifiers: KNN,
SVM, NB, and LR. The last stage uses a multichannel voting
scheme to determine the final classification.

For our study, the windows consist of 256 samples (1 s)
with 50% overlapping windows. This means that a window
will contain half-second of new data, which gives a 500-ms
deadline to process each window. The mapping of the KNN
version of the seizure detection application onto the PENC
manycore can be seen in Fig. 9. The mapping highlights the
parallelism that exists both between the EEG channels and
within the KNN classifier kernel. For different ML classifiers,
the task graph for seizure detection system is shown in Fig. 10.

B. Multiphysiological Stress Detection Application

Stress is a physiological response to the mental, emotional,
and physical challenges that everyone encounters in their daily
life [60]. There are strong links between stress and overall

Fig. 10. Task graphs of each variation of the seizure detection application,
when using KNN, SVM, LR, and NB ML algorithms. The graphs highlight
the task-level parallelism and interconnect between features extraction and
classification stage for each channel.

Fig. 11. Block diagram of a multiphysiological stress detection system
containing data acquisition by sensors, feature extraction, and ML classifier
to generate result.

health, concentration, and ability to perform tasks. Predicting
levels of stress using multimodal physiological sensors has
been an active research topic in recent years [60]–[63]. These
sensors usually include ECG, EMG, galvanic skin response,
respiration (Resp), and accelerometer.

In our previous work, a multimodal stress detection hard-
ware system was implemented to detect the level of stress by
analyzing multiple physiological signals, including HR and
accelerometer [64]. The processing consists of three main
stages, as shown in Fig. 11. The physiological sensor data
are first passed through an initial filter stage to remove high
frequency and dc components. A feature extraction stage is
then used to convert windows of time-series data into four
temporal features (one feature for HR and three features for
accelerometer). Each feature sample is then classified using the
KNN classifier. We used the data from a naturalistic shooting
task in which stress was manipulated by incorporating different
feedback modalities for making incorrect decisions [65]. Our
explicit goal is to determine an algorithmic model from which
the level of stress could be determined using multiphysiologi-
cal signals. For our study, the windows consist of 6-s samples
containing both HR and accelerometer signals with 50% over-
lapping windows. Fig. 12 shows the simulation environment
from which data have been acquired. As a case study, the stress
detection application was implemented on different platforms,
including FPGA (Xilinx Artix-7 XC7A200T), TK1 GPU, and
PENC manycore.

C. Standalone Tongue Drive System

The sTDS developed at the GTBIONICS Lab in the Geor-
gia Institute of Technology and the University of Maryland,
Baltimore County is an assistive, unobtrusive tongue-operated
device that allows for real-time tacking of the voluntary tongue
motion in the oral space for communication, control, and
navigation applications [66]. Fig. 13 shows the sTDS, which
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Fig. 12. 300° simulator to collect the multiphysiological data during different
levels of stress using the embedded sensors in wearable life shirt [65].

Fig. 13. sTDS prototype placed on a headset, which includes a low-power
FPGA, four magnetic sensors, a Bluetooth low energy transceiver, a battery,
and a magnetic tracer, which is glued to the users tongue.

Fig. 14. Block diagram of the sTDS containing external magnetic inter-
ference (EMI) cancellation kernel and multiclass ML classifier where LR is
used.

is placed on a headset. The sTDS device is a useful assistive
technology that can substitute some of the hand functions
with tongue motions. sTDS detects user’s tongue movements
through sensing the changes in the magnetic field generated by
a small magnetic tracer, roughly the size of lentil, adhered to
the tongue. The processing consists of converting these real-
time magnetic field input streams into discretized commands
to control environment. Fig. 14 shows the functional block
diagram of the sTDS. The sensory input consists of four
3-D magnetic sensors that provide X-, Y -, and Z -axis mag-
netic field readings at a sampling rate of 50 Hz. In the
first stage, the data are sent through an external magnetic
interference (EMI) attenuation block, which utilizes regres-
sion analysis to remove noise artifacts as well as Earth
magnetic field. Once this stage is complete, all the data
are then fed into an ML classifier stage that makes a final
classification based on these samples. The use of temporal
and spatial components helps to dramatically reduce error.
LR is implemented as the ML classifier, and the detection
accuracy of LR is 96.6%. As shown in the block diagram
in Fig. 14, similar to the seizure application, the task-level
and the data-level parallelism exist. Task-level parallelism
exists in the data acquisition, EMI, and ML classifier modules.
These analysis results show that the LR is the best candidate

for the proposed sTDS, because not only could it achieve
similar accuracy compared with another algorithm, but it
also consumes lower energy consumption and needs smaller
memory for saving the calibration coefficients. Hence, LR
is chosen as the ML classifier, and it is implemented on
different hardware platforms. As a case study, the sTDS was
implemented on different platforms, including FPGA (Xilinx
Artix-7 XA7A15T), microcontroller (ARM Cortex-M4), and
PENC manycore, and the results will be discussed in
Section VI.

V. OFF-THE-SHELF PLATFORMS AND

EXPERIMENTAL SETUP

To better gauge the performance of the PENC many-
core processor for personalized biomedical applications,
we compared against several commercial off-the-shelf general-
purpose and programmable processing platforms for all three
case studies conducted in this paper. In order to do this,
we targeted a number of platforms that contain low-power
ARM-based CPUs, Intel embedded ×86-based CPUs, FPGAs,
and embedded GPUs.

For each case study, we obtain the execution time and
power consumption required to classify sample data across a
variety of processor combinations. This is achieved by actively
recording these metrics for a large number of samples and
then averaging to derive the per classification performance.
For power results, we measure the power consumption of
both the processor and any external memory required. For
power measurements, we used the in-house hardware simula-
tor for PENC, while for Artix FPGA, we used Xilinx Xpower
Analyzer, and for other hardware platforms, we did board
measurements. While a few platforms, such as Intel Atom
Edison and Jetson TK1, include built-in monitoring capabil-
ities, we utilized an external TI INA219 voltage and power
IC connected to each system’s main power rails to ensure
measurement consistency, which is shown in Fig. 16. For each
platform, great care was taken to disconnect and power OFF

all other peripherals, including HDMI, debug circuitry, and
Wi-Fi/Bluetooth. The following discusses the details of the
targeted platforms, including the board capabilities, processors
included, and application mappings.

A. NVIDIA Jetson TK1
NVIDIA’s Jetson TK1 is an SoC combining the

Kepler GPU and a 4-plus-1 ARM processor arrangement.
The 4-plus-1 processor configuration consists of five Cortex
ARM-A15 processors, four high-performance processors, and
one low power processor. Each ARM A15 CPU has a 32-
kB L1 data and instruction cache supporting 128-bit NEON
general-purpose single instruction and single instruction mul-
tiple data (SIMD) instructions. All processors configuration
have shared access to a 2-MB L2 cache. For both the stress
and seizure detection applications, we have experimented with
using the embedded K1 GPU as an efficient accelerator;
however, sTDS, which requires less processing, does not take
advantage of using a GPU. Torch, a scientific computing
framework, was used to efficiently implement both of these
applications on the CPUs and embedded GPU. By exploiting
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Fig. 15. Experimental setup to obtain power and execution time measure-
ments of NVIDIA Jetson TK1 (as well as Intel Edison) platforms using TI
INA219 and Arduino.

Fig. 16. Comparison of KNN kernel on Jetson TK1 when using quad-core
ARM-A15 and embedded K1 GPU. Utilizing the GPU enables significantly
improving energy efficiency by up to 11×.

the GPU, we are able to achieve several orders of magnitude
energy-efficiency improvement over the ARM CPU counter-
part. For example, Fig. 17 shows the improvement in energy
efficiency of KNN when varying the model size with and
without the GPU. For larger model sizes that exhibit higher
parallelism, the GPU is able to improve efficiency by up to
11× over using quad-core CPU. The improvement tapers off
once the GPU is maximally utilized.

B. Intel Edison
The Intel Edison is a low-power platform targeted for

wearable devices and IOT. It contains an ultralow-power SoC
with a dual-core Intel Atom processor (IA-32), 1 GB of
double data rate type three (DDR3), Wi-Fi, Bluetooth, and
4-GB embedded multimedia controller memory running at
a fixed clock of 500 MHz. The Intel Edison platform is
used to obtain results by using Intel Atom processors stand
alone as well as acting as a host for the PENC manycore
accelerator. When using solely the Atom processors, great
care was taken to efficiently utilize the low power ×86 cores.
This was done using SIMD optimizations performed both
by the compiler and in the code. Furthermore, parallelism
was exploited by multithreading wherever possible, such as
across EEG channels in the seizure detection application. The
GCC/G++ compiler was passed using architecture’s appro-
priate flags to increase the compilers effort on performance,
such as −O3, mtune = native, and specification of the floating
point unit of streaming SIMD extensions 4.2. To enhance the
SIMD further, Intel Performance Primitives were used when
the compiler could not vectorize or correctly map the functions
to SIMD instructions. When the manycore is interfaced as

TABLE II

ARTIX-7 FPGA PERFORMANCE FOR DIFFERENT CASE STUDIES.
BOTH DYNAMIC POWER AND TOTAL RESULTS ARE

PRESENTED FOR FPGA CORE ONLY

an accelerator (for seizure and stress detection applications),
the Intel Edison is used as the host to perform data marshaling.
In this case, the system toggles between active mode to transfer
windows data and sleep mode otherwise.

C. Xilinx Artix-7 Cmod-A7 and Nexys

As alternatives to traditional software-based CPU and GPU
solutions, Cmod-A7 and Nexys platforms enable targeting
Xilinx Artix-7 FPGA. FPGAs are highly flexible, allowing
on-the-fly configuration to optimize bit resolution, clock fre-
quency, parallelization, and pipelining for a given application.
In addition, modern FPGAs provide accelerators to boost
the performance for operations, such as multipliers, generic
DSP cores, and embedded memories. The main disadvantages
of FPGAs, however, are that they have substantially higher
leakage power and require writing low level logic blocks
in Hardware Description Language. For all three case stud-
ies, complete FPGA hardware solutions were developed in
Verilog that utilized highly parallel, highly pipelined DSP
and ML kernels. Both real-time and simulated projections
using commercial tools were used to perform timing and
power analysis when running test stimulus. For the sTDS
application, the smallest Artix 7 FPGA, Artix-15T, is targeted
on the Cmod-A7 platform. For stress and seizure detection
applications, the Artix-200T FPGA is targeted on the Nexys
platform. Table II summarizes the results of implementing
each case study onto its respective Artix FPGA.

VI. IMPLEMENTATION RESULTS AND

PLATFORM COMPARISON

For each case study, complete implementations are per-
formed onto a subset of platform configurations best suited
for the particular task. For sTDS application, which contains
the least complexity, the processing platforms targeted include
Atmega328 microcontroller, Artix-7 15T FPGA, and PENC
manycore in stand-alone mode. For stress and seizure detec-
tion, we target the Artix-7 200T FPGA on Nexys, embedded
K1 GPU on NVIDIA TK1, and PENC manycore with Intel
Edison acting as host. In addition, seizure detection applica-
tion also has implementation results using solely ×86-based
CPU of Intel Edison. Table III provides results for all three
applications, including throughput, power, energy, and energy
efficiency. In Table III, results for all three applications are



106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 1, JANUARY 2018

TABLE III

BREAKDOWN OF HARDWARE RESULTS FROM RUNNING ALL THREE APPLICATIONS ON A VARIETY OF PROCESSING PLATFORMS. RESULTS INCLUDE
THROUGHPUT, ENERGY, AND ENERGY EFFICIENCY. FOR EACH APPLICATION, RELATIVE IMPROVEMENT OF ENERGY EFFICIENCY OVER LOWEST

PERFORMING PLATFORM IS PROVIDED. dec/sec CORRESPONDS TO CLASSIFICATION DECISION PER SECOND. NOTE THAT THE RESULTS

FOR ALL THREE APPLICATIONS ARE RECORDED WHEN EACH PLATFORM IS EXECUTING AT ITS MAXIMUM CLOCK FREQUENCY.
PENC ACCELERATOR OPERATES STAND ALONE FOR THE STDS APPLICATION SIMILAR TO FPGA AND MICROCON-

TROLLER, WHILE FOR STRESS DETECTION AND SEIZURE DETECTION APPLICATIONS, THE PENC ACCELERATOR

RUNS WITH A HOST CPU (ATOM PROCESSOR) FOR DATA MARSHALING

Fig. 17. Comparison of EDP for three case studies when implemented on several processor combinations, including Atmega328 microcontroller,
Artix-7 FPGA, Jetson TK1, and PENC manycore. The EDP is calculated as energy/throughput, where throughput is the number of decisions per second
(i.e., inverse of the time taken to complete one classification).

recorded when each platform is executing at its maximum
clock frequency. However, for this class of personalized bio-
medical applications, the sampling frequency is relatively low
in the range of 50 Hz–2 KHz as shown in Table I. Therefore,
PENC and other platforms can run at much lower frequency
to meet the application deadline, and thus significantly lower
the power consumption. PENC has DFS feature built in each
core, which allows each core to adjust its frequency accord-
ing to the kernel/application deadline, and this was shown
in Fig. 6. To better understand the benefit of PENC manycore,
Fig. 17 provides comparisons of manycore to COTS processor
combinations in terms of EDP for sTDS, stress detection,
and seizure detection applications. In all scenarios, the PENC
manycore has significantly lower EDP than all other studied
processors. The EDP is calculated as energy/throughput, where
throughput is the number of decisions per second (i.e., inverse
of the time taken to complete one classification). For example,
for seizure detection, the time to complete for PENC is
0.45 ms and energy is 5.65 mJ; thus, EDP is 0.002 mJ × s.
Minimizing EDP is important for personalized biomedical
applications as it is critical to both promptly making decisions
and to do so with minimal energy. The custom FPGA solutions
achieve the second best EDP for all three applications but have
the main disadvantage of long development time to design
hardware-defined solution. Furthermore, the PENC manycore
requires 13×, 34×, and 16× lower EDP compared with FPGA

Fig. 18. Comparison of energy efficiency (GOP/J) versus throughput (GOPs)
for all three case studies implemented on several processor combinations.

solution for sTDS, stress, and seizure detection, respectively.
In Fig. 18, the processing combinations for all three appli-

cations are further evaluated in terms of energy efficiency
versus throughput. We utilize GOPs to normalize based on
computation complexity of each application when determining
efficiency and throughput. As demonstrated in the plot,
the PENC manycore is able to improve performance along
both of these dimensions. For seizure application, which
exhibits greatest complexity of approximately 7 million oper-
ations per classification, utilizing the PENC manycore in
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concert with Intel Edison host is able to improve energy effi-
ciency by 18× and throughput by 5× over just using the host
processor. The high throughput is achieved due to significant
level of parallelism that can be exploited across the EEG
channels. On the other hand, for sTDS that contains far less
levels of parallelism, the manycore is able to exploit pipelining
similar to FPGA to significantly improve performance over
single-core architecture.

VII. CONCLUSION

This paper explores the choice of embedded architectures
for energy-efficient processing of personalized biomedical
applications. Biomedical applications share strong common-
alities requiring sampling from a number of physiological
signals and processing that contains various DSP and ML
kernels. The software, as well as hardware implementations
of ML personalized biomedical applications, is compared.
For the choice of software, the state-of-the-art commercial
off-the-shelf embedded processing platforms, such as ARM
and Atom CPUs along with K1 GPU, are compared with the
hardware implementation of these kernels on embedded low-
power FPGA. To further push the energy efficiency, a custom
lightweight, symmetric manycore architecture is proposed that
enables exploiting task-level and data-level parallelism within
biomedical kernels, DFS, and specialized instructions and
memory architecture to significantly reduce the energy usage.
By using the optimal number of cores with DFS, we demon-
strated the ability to reduce energy usage by up to 80% and
25% for DSP and ML tasks, respectively, relative to using the
minimal number of cores. The PENC manycore requires 13×,
34×, and 16× lower EDP compared with FPGA solution for
sTDS, stress, and seizure detection, respectively. The PENC
manycore was further compared with other commercial off-
the-shelf platforms for three compute-intensive personalized
biomedical applications, including sTDS, stress detection, and
seizure detection. For these end-to-end applications, the PENC
manycore is able to significantly improve throughput and
energy efficiency by up to 1872× and 276×, respectively.
For the most computationally intensive application of seizure
detection, the PENC manycore is able to achieve a throughput
of 15.22 GOPs, which is a 14× improvement in throughput
over custom FPGA solution. For stress detection, the PENC
achieves a throughput of 21.36 GOPs and an energy efficiency
of 4.23 GOP/J, which improves the throughput by 14.87× and
the energy efficiency by 2.28× over FPGA implementation,
respectively. For sTDS, the PENC improves the throughput
by 5.45× and the energy efficiency by 2.37× over FPGA
implementation.
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