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Abstract— Heterogeneous architectures have emerged as a
promising solution to address the dark silicon challenge by pro-
viding customized cores for each running application. To harness
the power of heterogeneity, a critical challenge is simultaneously
fine-tuning several parameters at the application, architecture,
system, as well as circuit levels for heterogeneous architectures
that improve the energy-efficiency envelope. To address this chal-
lenge, an ElasticCore platform is described where core resources
along with the operating voltage and frequency settings are scaled
to match the application behavior at run-time. A quantile linear
regression model for power and performance prediction is used
to guide the adaptation of the core resources, along with the
operating voltage and frequency, to improve the energy efficiency.
In addition, the dynamically scalable partitions of the ElasticCore
are powered with multiple on-chip voltage regulators with high-
power conversion efficiency that are able to realize fast dynamic
voltage/frequency scaling. The results indicate that ElasticCore
predicts application power and performance behavior with a
small error at run-time across all studied benchmarks and
achieves, on average close to 93% energy efficiency, as compared
to an architecture with the Oracle power and performance
predictor.

Index Terms— Dynamic voltage scaling, energy efficiency,
heterogeneous systems, reconfigurable architectures.

I. INTRODUCTION

MOORE’S law scaling continues to provide increased
transistor counts for each successive processor gen-

eration. In recent generations, these transistors are primarily
devoted to increased core counts. However, the increase in
the number of transistors is not accompanied by an increased
power budget. Therefore, the “dark silicon era” [1] has arrived,
where more transistors are available on an integrated circuit
than can be possibly turned ON at any given time. Dark
silicon requires a re-evaluation of the tradeoffs between area
(transistor count) and power, as transistors are all but free,
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while power becomes critically important. As a consequence,
both academic and industrial studies are focused on the
development of new software and hardware paradigms and
novel architectures to sustain Moore’s law in the presence of
dark silicon. One traditional approach is scaling voltage and
frequency [i.e., dynamic voltage/frequency scaling (DVFS)]
depending on the application demand. The power dissipation
reduces quadratically and linearly when reducing the voltage
and frequency, respectively. Another approach that effectively
improves the energy efficiency of computation is the use of
heterogeneous processing cores. Heterogeneous multicore sys-
tems are comprised of cores with varying architectural features
as well as power and performance characteristics. Each core
is specialized and, therefore, efficient for executing one type
of application [2], or an aggregation of different generations
of cores with the same instruction set architecture (ISA)
is implemented [3], [4]. In heterogeneous systems, a given
application is executed on the most efficient core based on
system optimization objectives (power, energy, energy delay
product, and so on). Whenever the execution phase of the
application changes, the thread is migrated to the heteroge-
neous core most fit for the application. Traditionally, the best
core is selected based on a small sampling of applications
on each core [3], [5]. However, the sampling and migration
of threads among cores imposes a timing penalty to the
system. Migration requires the transfer of the architectural
state of the current core to the selected core. In addition,
the overheads imposed by warming up branch predictor and
memory subsystems impose extra time overhead to the system.
Therefore, to alleviate the various overheads, the decision is
generally made at the granularity of the operating system time
slice (i.e., tens to hundreds of millions of instructions). In the
ARM big.LITTLE [4] platform, the decision is made at the
operating system level such that, based on the feedback of
the core utilization, the operating system decides to change
the voltage/frequency or the core type. Voltage/frequency
scaling incurs a time penalty of a few tens of microseconds
[6], [7]. In a big.LITTLE system, the time overhead of task
migration from an A15 to A7 and the reverse from an A7 to
A15 is up to 3.75 and 2.10 ms, respectively [8]. Write back
of dirty cache lines and the warming of cache and other
state variables impose additional overheads, which limits the
migration to fine-grained execution.

The ElasticCore reconfigures resources and the voltage/
frequency dynamically at runtime with fine granularity and
small overhead based on the demand of the applications.

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2038-4908
https://orcid.org/0000-0001-8887-6645
https://orcid.org/0000-0003-4230-1795


250 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2018

The primary enabling components that realize fine grain
adaptation with high efficiency are the voltage regulators
(VRs) and power delivery system of the proposed platform.
A suitable power delivery system based on available state-
of-the-art on-chip VR topologies is designed. The effect of
on-chip and off-chip VRs on the total energy efficiency of
the system is evaluated. In addition, the proposed platform
consists of dynamically scaling the bandwidth as well as
the capacity. Different tradeoffs in power and performance
are achieved by reducing or expanding the size of various
resources to construct cores of different sizes and configu-
rations such as big, medium, little, or tiny. The tradeoff for
each core size is highly affected by the operating voltage
and frequency. Therefore, a joint core and DVFS optimization
is required, particularly where the application performance
is sensitive to frequency. Joint DVFS and core scaling are
employed during different phases of the execution of an
application. In particular, it is shown that increasing bandwidth
and capacity reduces the sensitivity of an application to
frequency. For example, while a core configuration with a
higher bandwidth and capacity dissipates more power, there is
significant opportunity to use DVFS for reducing power with
a minor performance loss. Optimization of energy efficiency
is explored based on core and voltage/frequency scaling. Note
that with the reduction of the voltage, the frequency is reduced
accordingly for the correct operation of the underlying circuit.
In the remainder of this paper, the reference to scaling of
frequency or voltage implies the simultaneous scaling of both
parameters.

The basic idea of ElasticCore was proposed in [9]. The main
contributions of [9] are as follows.

1) The performance and power sensitivity of various stan-
dard benchmarks for different core sizes (big, medium,
little, and tiny) and frequencies are investigated. The per-
formance of standard benchmarks in terms of execution
time is shown to be a linear function of frequency while
no clear trend is observed as a function of core size.

2) The impact of core size on the frequency sensitivity of
applications is explored. It is shown that modifying the
core size changes the sensitivity of an application to the
frequency.

3) Based on the characterization results, an ordinary least-
squares linear regression model (OLSLRM) is used to
estimate the power and performance of an application
at run-time. Based on performance counters’ data cap-
tured at run-time for a small monitoring interval of
the application, regression models predict the energy
efficiency of an application for various core sizes and
operating voltages/frequencies. The results are compared
with an oracle predictor when used to guide the scaling
of the core size and the operating voltage/frequency to
maximize efficiency.

4) ElasticCore is proposed, which is a platform capa-
ble of scaling resources including bandwidth, capac-
ity, voltage, and frequency based on the application
performance requirements at run-time while improving
energy efficiency. The ElasticCore platform eliminates
the need of migration that is required in big.LITTLE

like architectures (i.e., two separate cores with diverse
power and performance characteristics) and outperforms
the big.LITTLE architecture by enabling fine-grained
resource scaling.

5) Circuit design challenges to realize fast core and voltage/
frequency scaling at run-time are examined. The Elastic-
Core is provisioned with multiple on-chip VRs (OCVRs)
to not only scale the voltage quickly but also sustain
high power conversion efficiency (PCE) over varying
load. Based on these results, a two-tiered power delivery
scheme is proposed.

This paper substantially extends [9] as follows.
1) In previous work, regression coefficients are trained

based on a few million instructions of a given benchmark
and used for power and performance estimation at
different operating points. The coefficients of the linear
model are customized for each application based on the
profiling information. In other words, the approach is
not general, cannot be applied to an unknown applica-
tion, and requires application profiling to determine the
coefficients of the model. In this paper, the limitations of
dedicated linear models are eliminated by using a unified
regression model for all applications, moving toward a
more general-purpose platform.

2) An OLSLRM was proposed in [9] to guide resource
adaptation. In this paper, two other methods [robust
LRM (RLRM) and quantile LRM (QLRM)] are eval-
uated and the prediction accuracies are compared. It is
shown that quantile linear regression significantly out-
performs the LRM used in [9].

3) In this paper, the analyses and evaluations of ElasticCore
are extended through extensive simulation; in particular,
the impact of dynamic heterogeneity and DVFS on
energy efficiency is investigated. The results indicate
that exploiting only DVFS for energy efficiency is not
an effective approach, whereas exploiting multiple het-
erogeneous cores (without DVFS) drastically improves
energy efficiency drastically. This observation is in line
with [10] and [11].

The rest of this paper is organized as follows. In Section II,
related work is described. The motivation of the work, the
sensitivity of the applications with respect to core size and
frequency is provided in Section III. The ElasticCore archi-
tecture and the effectiveness of various LRM are described in
Section IV. Evaluation and results are presented and discussed
in Section V. Finally, Section VI concludes this paper.

II. RELATED WORK ON HETEROGENEOUS

ARCHITECTURES

Heterogeneous architectures are classified into two groups:
1) static heterogeneous architectures and 2) dynamic heteroge-
neous architectures. A discussion of some of the heterogeneous
architectures in each category is provided in this section.
Additional information is described in a recent survey on
heterogeneous systems and architectures [12].

ElasticCore is a dynamic heterogeneous architecture in
the sense that the heterogeneity is within a core, and the
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core itself is capable of providing diverse performance/power
tradeoffs.

A. Static Heterogeneous Architectures
Multicore systems in which the cores are diverse but the

characteristics of each core are fixed at design time are
described as statically heterogeneous. Examples of commer-
cial products include the AMD Fusion APUs [2] in the
high-performance domain and the TIOMAP 5 [13] in the
embedded system domain. A static heterogeneous architec-
ture enables efficient thread-to-core mapping and permits a
change in the mapping across phases of execution through
thread migration [14], [15]. Prior research has shown that
the potential benefit of a static heterogeneous architecture is
greater with fine-grained thread migration than with coarse-
grain migration [16]. In [14], an Intel Xeon is integrated
with an Atom processor. Code instrumentation is used at the
function or loop level to schedule different phases of the
application on each processor. However, the separate core and
memory subsystems in static heterogeneous architectures incur
power and performance overheads for application migration,
which makes dynamic mapping ineffective for fine-grained
migration [16].

The composite core proposed in [16] integrates
heterogeneous cores to overcome the high migration
overhead. Low-overhead thread migration is realized by
pairing an in-order and an out-of-order μEngine in the same
core. The controller decides at run-time which phase of the
application is more suited to execute on the out-of-order or the
in-order portion of the core to reduce power with a minor
effect on performance.

The ARM big.LITTLE architecture [4] integrates
high-performance cores with smaller energy-efficient cores.
Despite having the same ISA, the microarchitectures are
significantly different with diverse power and performance
characteristics. The popularity of static heterogeneity is
evident from the many commodity products on the market
that implement the big.LITTLE architecture. The Qualcomm
Snapdragon 810 uses quad-core Cortex A57s and quad-core
A53s, while the Snapdragon 808 uses quad-core A57s
and dual-core A53s [17]. The Nvidia Tegra X1 integrates
quad-core Cortex-A57s with quad-core Cortex-A53s [18].
The Samsung Exynos 5 Octa uses four Cortex-A15s along
with four Cortex-A7s [19].

One of the most important decisions for heterogeneous
architectures is application mapping. The challenge of
dynamic thread mapping in static heterogeneous many-core
systems is addressed in [20] and [21]. Prior research aimed
to maximize performance under power constraints. Work pre-
sented in this paper differs as the first goal is a dynamic
heterogeneous architecture where core size can be adapted
at run-time, and the second goal is to maximize the energy
efficiency by reducing the energy delay. It is important to
note that the power and performance of an application on
different cores at various frequencies must be known for
proper mapping. Traditional designs suggest selecting the best
core based on a small sampling of applications on each
core [3]. Other techniques estimate core performance without

running applications on a particular core type. A model
for performance estimation on two core types (i.e., big and
little cores) is provided in [16] and [22]. The complexity of
application mapping on a heterogeneous architecture increases
exponentially with an increasing number of core types and
applications [21], [23]. In response, the solution proposed in
this paper applies application mapping with minimal overhead.
In this paper, an estimation engine is described that provides an
estimation of the performance and power for four core types at
four operating frequencies, for a total of 16 operating points.
The estimation engine and on-chip VR enables ElasticCore to
perform fine-grained adaptation with minimal overhead.

B. Dynamic Heterogeneous Architectures
Static heterogeneous architectures achieve heterogeneity

through static or fixed cores. However, a particular hetero-
geneous design that is fixed may not match the needs of an
arbitrary workload. In addition, the resources required for an
application vary during different phases of the execution, but
the core remains fixed in size, resulting migration overhead
that further limits the benefits of heterogeneity. Dynamic
heterogeneity is exploited in finer granularity in [24], where
3-D stacking is proposed as a means to share some of the
structures among the different stacked cores that cause a
performance bottleneck including the register file (RF) and
load store queue (LSQ). The 3-D stacking, however, suffers
from the high cost of integrating dies vertically and elevated
temperature of operation [24]. Core Fusion [25] and TFlex [15]
allow for the doubling or quadrupling of the size of the
core by aggregating cores together to improve performance
whenever the instruction-level parallelism (ILP) is high. Major
challenges with Core Fusion and TFlex include data migration
with changing core size and the additional pipeline latency
imposed by the fused cores. Alternatively, large out-of-order
cores are used in MorphCore [26] for workloads with high ILP
while the architecture is reconfigurable at run-time to many in-
order cores for workloads with high thread-level parallelism.
While MorphCore is an architecture that switches between
out-of-order and wide in-order operation, the focus of the
work described in this paper is to dynamically adapt the out-
of-order core window size (capacity), execution bandwidth,
and frequency to the workload requirements at run-time to
improve the energy efficiency. More recent work applies front
end throttling and resource scaling in superscalar processors
to tradeoff performance for energy [5]. The core periodically
resizes to full resources and samples the instructions per
cycle (IPC) to guarantee the performance. Sampling imposes
overhead and scalability issues when the operating points
increase. ElasticCore adapts the core size and frequency at
the same time to optimize energy efficiency without the need
for frequent sampling.

III. MOTIVATION

In this section, the performance sensitivity of various stan-
dard benchmarks to frequency and core size is analyzed. The
concept of dynamically scaling the core architecture with
respect to the application behavior is also described. The aim is
to design a platform which is capable of dynamically detecting
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Fig. 1. Normalized performance of different benchmarks with respect to
frequency. Note that all the values are normalized to a core with maximum
frequency and resources.

the sensitivity of an application to both frequency and core size
within a few kilo instructions, and then scale the frequency and
core size with respect to the behavior of the application.

A. Application Sensitivity to Frequency

A wide range of applications with diverse behavior from
SPEC2000 and SPEC2006 benchmarks are selected and sim-
ulated on various core configurations and across various
frequencies. The normalized billion instructions per second
(BIPS), used as a performance metric, for the studied bench-
marks when the operating frequency is swept from 1.5 to
3 GHz with a step of 500 MHz is shown in Fig. 1. The sen-
sitivity of the application to the operating frequency increases
when moving from the left to the right in Fig. 1. For instance,
the performance loss of art is less than 10% when reducing
the frequency by half (far left). However, close to a 50%
performance loss occurs when reducing the frequency by half
when executing the povray benchmark (far right). Reducing
the frequency slows the CPU–bound applications noticeably,
while no significant impact is observed for memory-bound
applications. Sensitivity of applications to frequency variation
is observed and studied in previous work [27].

B. Application Sensitivity to Core Size

Applications exhibit a different performance behavior as a
function of the size of the core resources. In this section, the
performance sensitivity of the applications to the size of the
core (capacity and bandwidth) is examined. For capacity,
the LSQ, integer/floating point RF, reorder buffer (ROB), and
integer/floating point instruction queue (IQ) are considered
as these four units define the instruction window size of the
processor. For bandwidth, the fetch, decode, issue, and commit
width are considered. Four balanced cores with different
capacity and bandwidth are modeled to reduce the design
exploration space of the system. The detailed parameters for
each of the configurations are listed in Table I.

The normalized BIPS for each application is shown
in Fig. 2. The BIPS for four configurations with different core
sizes is reported. It is important to note that the sensitivity
to core size is not uniform across applications. For instance,
lbm shows less than 0.1% performance loss when comparing a

TABLE I

RESOURCE SPECIFICATIONS FOR THE ELASTICCORE PLATFORM

Fig. 2. Normalized performance of different benchmarks with respect to
core size. Note that all the values are normalized to a core with maximum
resources.

Fig. 3. Impact of core size on frequency sensitivity.

big- to-medium core size, whereas comparing big to small and
tiny reveals a performance loss of 17% and 36%, respectively.
On the other end of the spectrum, galgel shows continuous
and uniform performance reduction when changing the core
size from big to medium, small, and tiny. A 3x performance
loss is observed when reducing the core size from big to tiny
for the galgel benchmark.

C. Impact of Core Size on Frequency Sensitivity

Simulations indicate that the performance sensitivity of the
application to frequency changes noticeably depending on the
core size, as shown in Fig. 3. The normalized performance
for big and tiny core size configurations when the application
is executed at half the maximum frequency, as compared to
the case when the application is executed at the maximum
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Fig. 4. Sensitivity of applu benchmark to (a) core size and (b) frequency at run-time over 20 and 40 million instructions, respectively. The maximum
performance loss as a percentage is included for each phase.

frequency, is plotted in Fig. 3. For a number of benchmarks,
when the core size varies, the impact on the sensitivity of
an application to frequency is significant. However, for other
benchmarks, less of an impact is observed. For instance, core
size has the largest impact on frequency sensitivity for mgrid
and the least impact on the povray benchmark. As core size
potentially affects the frequency sensitivity of applications,
the performance estimation engine must be capable of cap-
turing the behavior of an application to properly select the
most energy efficient core size and frequency.

D. Application Sensitivity at Run-Time
As shown in Figs. 1 and 2, applications exhibit differ-

ent levels of sensitivity to frequency and core size. Over-
provisioning resources to assure a core functions for the
most demanding applications leads to inefficiency in energy
usage. The many categories of applications that execute on
different cores with various sizes highlight the need for a
heterogeneous architecture for improved energy efficiency.
Heterogeneous designs that reduce over-provisioning without
necessarily sacrificing performance enable significant gains in
performance per Watt. However, even within an application,
the behavior (sensitivity to frequency and core size) changes
at run-time. The BIPS trace for the applu benchmark is plotted
for various core size and frequency values in Fig. 4(a) and (b),
respectively. Even for a range of 20 million instructions,
the variation in performance changes significantly from 7%
to 48% when the core size is changed from big to tiny.
A similar dynamic behavior is also observed when changing
the frequency. As shown in Fig. 4(b), the different phases of
an application experience a variation in the performance when
the frequency is reduced to half. The main goal of ElasticCore
is to detect the upcoming phase of an application at run-time,
expand or contract resources (capacity and bandwidth), and
set the frequency/voltage to match the core resources for the
currently executing workload.

IV. ELASTICCORE ARCHITECTURE

A. Microarchitecture Feasibility

Prior research has explored the microarchitecture and design
modifications required to allow for resource adaptation in the
pipeline, where components such as an RF, IQ, ROB, LSQ,
fetch width, issue width, and commit width are dynamically

resized [24], [28]–[31]. The overhead of microarchitecture as
well as the power and area overheads to implement resource
resizing is minimal [28]–[30].

Redesigning core components such as the RFs, ROB, IQ,
and LSQ to implement adaptive resource resizing was studied
in [29]. The RF and ROB are static random access mem-
ory (SRAM) structures. Due to the circular FIFO nature of the
ROB, two pointers are required to dynamically adjust the size.

A modular architecture to dynamically resize both the ROB
and RF is proposed in [28]. Structures such as the LSQ and IQ
are designed as content addressable memory + SRAM-based
architectures. The components hold the instructions until they
are ready to issue. It is possible that two or more partitions of
the IQ/LSQ are combined to form a larger partition without
impacting cycle time [5], [24]. Prior research also considered
bandwidth adaptation based on the ILP in the application [30],
[31]. The ElasticCore exploits previous research to implement
fine-grained resource adaptation.

Instruction dispatch is stalled when transitioning from more
resources to less resources (e.g., a transition from a medium
to a tiny core size), to allow for the completion of the current
instructions. However, the core is completely stalled during
voltage scaling. Stalling the instruction dispatch or stalling
the core during voltage scaling incurs performance loss.
Most instruction dispatch stalls incur a penalty of less than
100 cycles, which is negligible [5]. However, in this paper,
assuming a conservative implementation, 1K cycles of over-
head is assumed to account for the reconfiguration of the core.
The voltage scaling overhead depends on the VR. If an on-chip
VR is implemented, the performance overhead is in the range
of a few tens of nanoseconds [6], [23].

Note that ElasticCore is designed for the maximum
capacity and bandwidth (in this case, a pipeline width of 4
and window size of 128) to account for the worst case
scenario where all resources are needed. The ElasticCore
specifications are listed in Table I. The core includes four
voltage/frequency settings. The memory subsystem remains
unchanged; however, the core size (capacity and bandwidth)
is resized to four different configurations.

B. Efficiency Metric
The efficiency is measured in BIPS3/W , which is a

metric for joint power and performance optimization for
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Fig. 5. Power dissipation of (a) gcc and (b) lbm benchmarks for different voltage/frequency pairs and core sizes.

high-performance processors [12], [24], [32]. The BIPS3/W
is proportional to the inverse of the energy × delay2 product
(ED2P). An estimation of the performance and power is
required to dynamically adapt the core and the operating
frequency to maximize BIPS3/W . The average and variance
of the power dissipation for the gcc and lbm benchmarks for
various frequency/voltage pairs and for each core size is shown
through the boxplots in Fig. 5. Each application has a different
power footprint. The gcc application is more power hungry
as compared to the lbm. In addition, the variation in power
consumption is larger for gcc as compared to lbm, which
experiences low variation in power dissipation. The variation
in power is more pronounced in the gcc when the core has
more resources and operates at higher frequencies.

For a phase of an application that is more sensitive to core
size (rather than frequency), execution of the phase with more
bandwidth (larger core) and at a lower frequency optimizes
the BIPS3/W . The goal is to accurately estimate the power
and performance and find the best solution that maximizes
BIPS3/W .

C. Power and Performance Estimation

Recent work has proposed OLSLRM to estimate the
power [14] and performance [16], [33] of a processor at
run-time. In [9], the OLSLRM was also used for resource
adaptation of ElasticCore in order to improve the energy effi-
ciency. It was shown that OLSLRM is not the best suited algo-
rithm for performance and power estimation as outliers can
deceive the model, as applications experience different phases
with different behaviors. In addition, superscalar processors
are complex, which makes it difficult to develop a general
model for power/performance estimation. OLSLRM is highly
sensitive to the outliers and potentially produce misleading
results as even a single point of data substantially impacts
the accuracy of the regression model. Two separate linear
regression algorithms in addition to OLSLRM are evaluated in
this paper: 1) RLRM [34] and 2) QLRM [35]. RLRM is more
effective as compared to OLSLRM when the data includes
significant number of outliers. There are different methods

TABLE II

PERFORMANCE COUNTERS USED FOR THE REGRESSION MODEL

for robust linear regression; however, all give less weight
iteratively to the outlier samples that influence the regression
model. Out of several proposed techniques for robust regres-
sion, the bisquare estimator [34] is used in this paper, a method
applied in statistics to determine the coefficients of a linear
model. Using the bisquare estimator has been mathematically
proven to be at least as efficient as OLSLRM if the distribution
of samples is normal; however, it is robust to influential outlier
samples [36].

Similar to RLRM, the main advantage of QLRM as com-
pared to OLSLRM is robustness against outliers. All three
regression models are applied to the studied benchmarks and
the absolute error is measured in each case. The parameters
for estimating performance are listed in Table II. Note that
removing any of the selected parameters potentially reduces
the accuracy of the average case by a few percent. It is there-
fore possible to trade accuracy for a reduction in the number
of parameters. However, as the regression is only performed
for each control period, resulting in a small overhead, all
parameters are kept to obtain higher accuracy.

The LRM used for performance estimation is given by

LRM =
(

β0 +
i=9∑
i=1

βi Pci

)
+ ei (1)

where β0 is the intercept, βi are coefficients of the regression
model, and Pci are target performance counters. The error term
ei is used by both the OLSLRM and RLRM to minimize
the mean-square error. For the quantile regression model,
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TABLE III

AVERAGE ERROR OF THE THREE IMPLEMENTED LINEAR REGRESSION
ALGORITHMS FOR DIFFERENT CORE CONFIGURATIONS

a specific quantile of data is set instead of the mean value. The
quantile is set to 0.5 in this paper, which results in minimizing
the median of the error values. Note that despite using different
algorithms, the objective of all three methods is to find the
coefficients of the LRM presented in (1).

Incurring a minimum cost in hardware and complexity,
implementing LRM in ElasticCore or similar adaptive archi-
tectures is desirable. Therefore, the primary objective is to
explore and optimize a linear model that exploits different
schemes, rather than finding a complex nonlinear model. Note
that the overhead area, power, and performance overhead to
implement an LRM in hardware are negligible [16]. We show
that the QLRM [35] achieves the highest accuracy among the
three regression algorithms.

The average error of the three LRMs for performance esti-
mation at different operating points is listed in Table III. For a
big core running at 3-GHz frequency, the average error when
estimating performance is 29.46%, 21.98%, and 16.28% when
using OLSLRM, RLRM, and QLRM, respectively. Scaling
down the frequency or the core size leads to an improvement
in performance. The error is 6.5% with QLRM when the core
is tiny and running at the minimum frequency, as reducing
the frequency or core size bounds the maximum achievable
performance and reduces the variations in each control period.
For all cases, QLRM outperforms OLSLRM and RLRM. The
QLRM is therefore used in this paper.

For the training of the coefficients in QLRM, the first
200 million executed instructions of each benchmark are
selected and combined to generate a training set. Statistically,
25% of all data are used for training the model. Performance
and power are estimated at the end of each control period
(i.e., every 200k instructions). The absolute error in perfor-
mance and power estimation for different operating points is
presented as boxplots in Figs. 6 and 7, respectively. The worst
case median of the absolute error is less than 18%, which
implies that the quantile regression model can estimate half
of the operating points with less than 18% error. The median

Fig. 6. Error in performance estimation at different operating points.

Fig. 7. Power estimation error at different operating points.

Fig. 8. ElasticCore architecture.

of the error is less than 5% when using a tiny core operating
at the minimum frequency.

For the estimation of the power dissipation, only the IPC
is used as an input parameter for the regression model. The
performance at different operating points is calculated first,
and then the power dissipation is determined at these operating
points. The same training is performed for the power estima-
tion coefficients with the results shown in Fig. 7. There are
many outliers in the data. However, for most of the operating
points, the median of the error is less than 10%.

The final architecture of the ElasticCore is shown in Fig. 8.
At the end of each control period, which occurs every 200k
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instructions, the inputs of the regression model (metrics pro-
vided in Table II) are fed through the hardware performance
counters. The performance and power of the system are
estimated for different core configurations based on the linear
model built by QLRM. The configuration corresponding to
the highest energy efficiency is determined based on the
model. The power management unit (PMU) and core size
configuration unit then set the corresponding voltage and core
size to optimize efficiency.

D. Power Delivery to the ElasticCore

The current demand of the ElasticCore fluctuates signifi-
cantly at run-time due to dynamic core scaling. The power
delivery topology, therefore, plays a crucial role in the
energy efficiency of the ElasticCore. The ElasticCore not only
requires a power delivery system with high PCE but also a
fine-grained, low-overhead voltage control for scaling the core,
and the voltage at run-time. The ElasticCore is, therefore,
designed with OCVRs that offer fast DVFS [6], a reduced
printed circuit board footprint, and a reduction in parasitic
losses [23].

The fully integrated VR (FIVR) in the fourth-generation
Intel core microprocessors (Haswell) [37], [38] offers up to
three times higher peak power as well as higher performance
for a given power level as compared with previous generations
of Intel core microprocessors. The power delivery system of
the ElasticCore is modeled using a configuration similar to the
Intel Haswell processor. The block diagram of the proposed
two-tiered power delivery system is shown in Fig. 9. Instead
of serving the ElasticCore with a single OCVR that provides a
high output current rating, each partition (CW1 through CW4)
is served with a dedicated OCVR with a maximum output
current rating proportional to the peak current demand of the
partition CW1. The current rating is defined in terms of the
maximum output current supplied by the VR. The PCE of
a switching type OCVR is directly proportional to the load
current and inversely proportional to the switching frequency
[6], [39]. Implementing multiple OCVRs of lower current
rating, each serving a different partition (CW1 through CW4)
of the ElasticCore instead of a single OCVR with a high rating
provides multiple advantages.

1) Variation in the PCE is reduced as each OCVR supplies
current to a load with smaller current variation.

2) OCVRs with moderate peak current density (Imax per
unit area) and low switching frequency are used to serve
each partition if a higher weight is assigned to energy
efficiency rather than area efficiency.

3) OCVRs with lower rating provide faster voltage transi-
tions and, therefore, improved performance with DVFS.

4) Reduction in the leakage power of the ElasticCore by
selectively shutting down the OCVRs serving unused
partitions (CW2 through CW4).

A multitiered power supply hierarchy is implemented where
an off-chip VR first converts the power supply voltage
(3.3 to 12 V) or Li–Ion battery voltage (3.7 V) to a fixed output
voltage VVR of 1.35 V. The OCVRs then convert the VVR
to one of the four discrete voltage levels Vcore (1.35, 1.132,
0.914, and 0.75 V) controlled by the PMU. The L2 cache is

Fig. 9. Two-tiered power delivery configuration for the ElasticCore with
multiple OCVRs.

on a separate voltage domain of 1.13 V and is served by a
dedicated on-chip low dropout (LDO) VR. The LDO provides
a high PCE (ηLDO) of close to 90% [39] due to the small
voltage drop from the input voltage VVR.

The peak load current consumed by the core across all four
voltages, as obtained from McPAT [40], varies from 8 to 30 A.
Most VRs offer a PCE in the range of 85%–95% to meet
8 to 30 A load current demand. For example, the PCE of a
Texas Instruments LM27403 [41] (voltage mode synchronous
buck controller) is 93% with an input voltage of 12 V. The
variation in the PCE for the LM27403 is less than 3% for
a load current in the range of 5–40 A. The LM27403 is
selected as the VR for the ElasticCore. The PCE of the VR
is assumed to remain constant across the different modes of
operation of the ElasticCore. The current ratings of the OCVRs
are selected according to the peak load current of each core
partition, where a three-phase buck converter is required for
CW1 and an eighteen-phase converter for CW4. Each OCVR
has a similar topology to the FIVR [38]. The current density
of the FIVR is 31 A/mm2 [38]. The proposed power delivery
system with dedicated OCVRs modeled as multiphase FIVR
circuits, therefore, occupies an on-chip area of 1.87 mm2. The
peak PCE of each OCVR remains 90% for the given number
of phases and load current. The PCE for the two-tiered power
delivery configuration shown in Fig. 9 is given by (2). The
energy efficiency of the power delivery system ηsystem is equal
to the product of the energy efficiency of the off-chip (ηVR)
and energy efficiency of the on-chip regulators (ηFIVR), where
ηFIVR is assumed equal to ηLDO. Based on the given PCEs
of the VR and FIVR, the two-tiered power delivery system of
the ElasticCore offers a peak PCE of 84%

ηsystem = Pout

Pin
=

∑4
i=1 Pi + PL2

PVR
= ηVR × ηFIVR. (2)

With the proposed implementation, the power delivery net-
work of the ElasticCore offers not only fine-grained DVFS but
also a constant and high PCE across application behavior at
run-time.

V. METHODOLOGY AND RESULTS

The SMTSIM simulator [42] and McPAT [40] are inte-
grated to obtain the power dissipation of each component
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Fig. 10. BIPS3/W of the applications on various architectures normalized to the ElasticCore-Oracle.

while simulating the target architectures. Each benchmark is
simulated for 800M instructions after fast forwarding past the
first two billion instructions, and the performance counter data
are captured every 200k instructions thereafter. DVFS and core
scaling are also performed during the same interval. The DVFS
performance of the proposed two-tiered power delivery system
for the ElasticCore is compared with a single-tier off-chip VR.
A time overhead of 100 ns and 100 μs is assumed for the
proposed power delivery scheme for the OCVRs and the off-
chip VR, respectively [15]. In addition, the time overhead of
implementing the LRM in hardware and calculating values
at each interval is assumed negligible [16]. Note that the
coefficients are calculated offline and the only overhead at
run-time is multiplication and summation of coefficients for
the selected performance counters. The power overhead of
implementing a LRM is estimated as 5 μW, which is further
reduced by gating idle units during each interval [16]. The
following schemes are evaluated for comparison.

1) DVFS-Oracle: This scheme implements a big core with
DVFS capability. It is an oracle scheme as the exact
application behavior is known in advance and the best
DVFS setting is used at each control period to improve
the energy efficiency. The DVFS-Oracle scheme was the
primary approach used by industry prior to the develop-
ment of heterogeneous architectures to respond to the
demand of the most computing intensive applications.

2) MinMax-Oracle: Uses DVFS similar to the
DVFS-Oracle, however, another core is added to
realize heterogeneity in the system. In other words,
MinMax-Oracle employs the configuration with the
highest performance (big) and the one with the greatest
power efficiency (tiny). The selected configuration
shows diverse power and performance tradeoffs, but is
limited to only the two core configurations.

3) Hetero-Oracle: This scheme has no DVFS capability at
all and instead exploits heterogeneity in a wide range of
core configurations (i.e., big, medium, small, and tiny)
to improve energy efficiency. Comparing Hetero-Oracle
with DVFS-Oracle provides insights on the impact of
DVFS and heterogeneity through resizing of the core
on the energy efficiency.

4) General-QLRM: This is the ElasticCore architecture
implemented with the QLRM described by (1) to

estimate the BIPS3/W for various core sizes and fre-
quency/voltage pairs. The first 200M instructions for
each benchmark are used as training data. As opposed to
Customized-QLRM, the coefficients are fixed for all exe-
cuting applications in this scheme. Therefore, general-
QLRM better represents general-purpose architectures.

5) Customized-QLRM: Similar to the general-QLRM, this
is the ElasticCore architecture with the QLRM described
by (1) to estimate the BIPS3/W for various core sizes
and frequency/voltage pairs. Note that the coefficients
are determined per application with training from the
first 200M instructions for each benchmark. This scheme
is not general and requires reprogramming the coef-
ficients for each application, which is unsuitable for
general-purpose computing. However, for many embed-
ded systems, where the type and the behavior of appli-
cations are known in advance, customized-QLRM is
applicable.

6) Customized-OLSLRM: This scheme is presented in [9]
and uses OLSLRM as an LRM. Similar to customized-
QLRM, the coefficients of the model are determined per
application and, therefore, coefficient reprogramming is
necessary to obtain an optimal result for each applica-
tion.

7) ElasticCore-Oracle: This is the ElasticCore architecture
with a perfect application predictor, where all future
behavior of the application as well as the power and
performance for various configurations are known in
advance. The ElasticCore-Oracle, therefore, adapts the
core resources and frequency, and exploits all opportuni-
ties to maximize energy efficiency. It provides the upper
bound for energy efficiency and is, therefore, used to
normalize and compare all the other schemes.

The results of all the benchmarks normalized to the
ElasticCore-Oracle are shown in Fig. 10. Using only DVFS
limits the improved energy efficiency of the core as com-
pared to using a heterogeneous architecture (4× compared to
ElasticCore-Oracle). In addition, Hetero-Oracle, which only
exploits heterogeneity without DVFS, improves the energy
efficiency by 3.7× on average as compared to DVFS-Oracle.
The only difference between Hetero-Oracle and ElasticCore-
Oracle is that the latter uses DVFS to further improve energy
efficiency. However, the results indicate that DVFS only



258 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2018

Fig. 11. Distribution of executed instructions on the various core sizes and frequencies for (a) lucas, (b) art, and (c) milc benchmarks.

improves energy efficiency by less than 7%, on average. Note
that even adding a tiny core with a big core in the DVFS-
Oracle to implement the MinMax-Oracle scheme reduces
the efficiency gap from 75% to 20% on average. For some
benchmarks, such as povrary and mcf, the MinMax-oracle per-
forms close to the ElasticCore-Oracle. For other benchmarks
such as art and lbm, the MinMax-Oracle is approximately
40% less energy efficient than the ElasticCore-Oracle. Some
benchmarks such as gcc and gromacs execute more efficiently
on a MinMax-Oracle rather than a Hetero-Oracle. The results
indicate that these benchmarks are better suited for MinMax-
Oracle, which includes eight operating points (four frequency
and two core type configurations), as compared to Hetero-
Oracle, which includes four operating points.

The general-QLRM performs similar to the ElasticCore-
Oracle for many of the benchmarks and on average produces
a 93% energy efficiency as compared to ElasticCore-Oracle.
General-QLRM produces a poor efficiency only for the art
benchmark due to a lack of accurate estimation of performance
and power. The behavior of general-QLRM for a subset of the
studied benchmarks is shown in Fig. 11.

Customized-QLRM performs best as compared to the other
schemes, with close to 98% energy efficiency as compared to
the ElasticCore-Oracle. However, reprogramming the coeffi-
cients based on the application is a significant drawback of
customized-QLRM.

The distribution of executed instructions among various
core sizes and operating frequencies is shown in Fig. 11.
Each column provides the breakdown of instructions for the
ElasticCore-Oracle, customized-QLRM, and general-QLRM.
The results indicate that each selected benchmark requires
a different core size and operating frequency to optimize
energy efficiency. As an example, art mostly uses the tiny
core configuration, whereas lucas and milc are optimized on
the small configuration. The lucas benchmark performs poorly
as compared to other benchmarks for both the customized-
QLRM and general-QLRM. The customized-QLRM uses a
medium core configuration instead of the small for some
portion of applications, which leads to increased inefficiency.
The general-QLRM tends to use big core at minimum fre-
quencies instead of running applications on a small core con-
figuration at the highest frequency. For the lucas benchmark,
the customized-QLRM and general-QLRM are approximately
10% and 15% less energy efficient, respectively, as compared
to ElasticCore-Oracle.

The art benchmark is also shown in Fig. 11. The general-
QLRM performs poorly as compared to the customized-
QLRM for the art benchmark. The customized-QLRM closely
follows ElasticCore-Oracle in terms of instruction distribution
at different operating points for the art benchmark. In addi-
tion, the general-QLRM inaccurately selects the frequency
for the small core configuration and executes 7% of the
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Fig. 12. Impact of the PCE of the OCVR and off-chip VR on the energy efficiency.

instructions on a big core at a minimum frequency. For the milc
benchmark, general-QLRM outperforms customized-QLRM
as general-QLRM is trained with more benchmarks as com-
pared to customized-QLRM and the first 200M instructions
of the milc benchmark do not accurately represent the entire
benchmark. The quantile regression model is accurate enough
to capture the variation in the application behavior at run-time
and produce accurate estimates of the power and performance
to adapt the core size and frequency.

The impact of an on-chip (OCVR) and off-chip VR on the
energy efficiency at the application level is shown in Fig. 12.
Two factors reduce the energy efficiency at the front-end.
The first factor is the PCE of the VRs. As described in
Section IV-D, 7% and 16% of the input power is lost in the
off-chip VR and OCVR, respectively. The second factor is the
time and energy overheads of scaling the core or the operating
voltage/frequency. During voltage scaling and turning the
OCVRs on/off, the ElasticCore is stalled. For the former
case, the voltage must be stable for reliable operation of the
ElasticCore. For the latter case, the OCVRs turn ON or OFF

according to the required core size.
Even though the PCE of the OCVR is less than the off-chip

VR, the fast DVFS and phase adaptation as well as more
control on leakage power provide additional advantages when
using OCVRs. In comparison, for the off-chip VRs, the use
of frequent DVFS in the range of a few nanoseconds is
not possible. There is, therefore, a tradeoff such that for
some applications where frequent core and frequency scaling
are required, the OCVR is more beneficial, and in contrast,
for other applications where a few changes are required,
the off-chip VR is better suited. For instance, the time and
energy overheads imposed by the off-chip VR for the facerec
benchmark reduces the total energy efficiency as compared to
an OCVR. The proposed two-tiered power delivery topology
offers high energy efficiency even for applications that do not
benefit from frequent frequency and core scaling by intro-
ducing high-speed switches that switch the supply of current
to each partition of the ElasticCore between the OCVRs and
off-chip VR.

VI. CONCLUSION

This paper presents ElasticCore, a dynamic heterogeneous
architecture that permits adaptation of its resources at run-time

based on the application requirements to enhance energy
efficiency. ElasticCore concurrently scales the bandwidth,
capacity, and voltage/frequency based on the behavior of the
applications at run-time. To guide the adaptation of the core
resources along with the operating voltage and frequency,
the performance and power sensitivity of various standard
benchmarks to different core sizes (big, medium, little, and
tiny) and frequencies are first investigated. Based on the
characterization results, three regression-based models to accu-
rately estimate the power and performance of the applications
at run-time are studied. The results indicate that the QLRM
is the most accurate when estimating power and performance.
In addition, the dynamically scalable partitions of the Elas-
ticCore are powered with multiple OCVRs with high PCE
that are able to realize fast DVFS. Both on-chip and off-chip
VRs are analyzed to determine the total energy efficiency
at the application level. This paper further analyzes various
tuning knobs of the ElasticCore architecture to understand
the effectiveness on enhancing energy efficiency. The results
indicate that DVFS by itself does not perform well in terms
of energy efficiency, whereas core scaling enhances energy
efficiency noticeably for many of the studied applications.
However, when DVFS is used in conjunction with core scaling,
energy efficiency is further improved by 7% on average.
The ElasticCore with a general estimator and a customized
estimator per benchmark are shown to achieve close to a
93% and 98% efficiency, respectively, as compared to an
architecture implementing the Oracle power and performance
predictor, where the application behavior is perfectly matched
at run-time.
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