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Abstract—Heterogeneous architectures have emerged as an effective solution to address the energy-efficiency challenges. This is
particularly happening in data centers where the integration of FPGA hardware accelerators with general purpose processors such as
big Xeon or little Atom cores introduces enormous opportunities to address the power, scalability and energy-efficiency challenges of
processing emerging applications, in particular in domain of big data. Therefore, the rise of hardware accelerators in data centers,
raises several important research questions: What is the potential for hardware acceleration in MapReduce, a defacto standard for big
data analytics? What is the role of processor after acceleration; whether big or little core is most suited to run big data applications post
hardware acceleration? This paper answers these questions through methodical real-system experiments on state-of-the-art hardware
acceleration platforms. We first present the implementation of four highly used big data applications in a heterogeneous CPU+FPGA
architecture. We develop the MapReduce implementation of K-means, K nearest neighbor, support vector machine and naive Bayes in
a Hadoop Streaming environment that allows developing mapper functions in a non-Java based language suited for interfacing with
FPGA based hardware accelerating environment. We present a full implementation of the HW+SW mappers on existing FPGA+core
platform and evaluate how a cluster of CPUs equipped with FPGAs uses the accelerated mapper to enhance the overall performance
of MapReduce. Moreover, we study how various parameters at the application, system and architecture levels affect the performance
and power-efficiency benefits of Hadoop streaming hardware acceleration. This analysis helps to better understand how presence of
HW accelerators for Hadoop MapReduce, changes the choice of CPU, tuning optimization parameters, and scheduling decisions for

performance and energy-efficiency improvement. The results show a promising speedup as well as energy-efficiency gains of upto
5.7x and 16x is achieved, respectively, in an end-to-end Hadoop implementation using a semi-automated HLS framework. Results
suggest that HW+SW acceleration yields significantly higher speedup on little cores, reducing the performance gap between little and
big cores after the acceleration. On the other hand, the energy-efficiency benefit of HW+SW acceleration is higher on the big cores,
which reduces the energy-efficiency gap between little and big cores. Overall, the experimental results show that a low cost embedded
FPGA platform, programmed using a semi-automated HW+SW co-design methodology, brings significant performance and
energy-efficiency gains for Hadoop MapReduce computing in cloud-based architectures and significantly reduces the reliance on large

number of big high-performance cores.

Index Terms—FPGA acceleration, hardware+software co-design, MapReduce, Hadoop streaming, Big-little core

1 INTRODUCTION

MERGING big data analytics applications require a sig-

nificant amount of server computational power. How-
ever, these applications share many inherent characteristics
that are fundamentally different from traditional desktop,
parallel, and scale-out applications [3]. They heavily rely on
specific deep machine learning and data mining algorithms.
The characteristics of big data applications necessitates a
change in the direction of server-class microarchitecture to
improve their computational efficiency. However, while de-
mand for data center computational resources continues to
grow with the growth in the size of data, the semiconductor
industry has reached scaling limits and is no longer able
to reduce power consumption in new chips. Thus, current
server designs based on commodity homogeneous proces-
sors, are no longer efficient in terms of performance/watt to
process big data applications [4].

To address the energy efficiency problem, heterogeneous
architectures have emerged to allow each application to
run on a core that best matches its resource needs than
a one size-fits-all processing node. In big data domain,
various frameworks have been developed that allow the
processing of large data sets with parallel and distributed al-
gorithms. MapReduce [5] is an example of such frameworks
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developed by Google, which achieves high scalability and
fault-tolerance for a variety of applications. While hardware
acceleration has been applied to software implementation
of widely used applications, MapReduce implementation of
such applications requires new techniques, which studies
their MapReduce implementation and their bottlenecks, and
selects the most efficient functions for acceleration [6].

The rise of hardware accelerators in data centers, raises
several important research questions: what is the potential
for hardware acceleration in MapReduce, a defacto standard
for big data analytics? How much performance benefits a
semi-automated high level synthesis framework which is
used for conventional compute-intensive applications bring
for accelerating big data analytics applications? What is the
role of processor after acceleration; whether big or little
core is most suited to run big data application post hard-
ware acceleration? How tuning optimization parameters at
system, architecture and application levels for performance
and energy-efficiency improvement changes before and af-
ter hardware acceleration? and how presence of hardware
accelerator changes the scheduling decision for performance
and energy-efficiency optimization? This paper answers all
above questions through methodical real-system experi-
ments on state-of-the-art hardware acceleration platforms.

To understand the potential performance gain of using a
semi-automated standard HW+SW co-design methodology
to accelerate analytics applications in MapReduce environ-
ment, in this paper we present a MapReduce implementa-
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tion of big data analytics applications on a 12-node server
MapReduce and evaluate a heterogeneous CPU+FPGA ar-
chitecture, taking into account various communication and
computation overhead in the system including the commu-
nication overhead with FPGA. We offload the hotspot func-
tions in the mapper to the FPGA. We measured power, and
execution time on the server and the FPGA board. To the
best of our knowledge this is the first empirical work that
focuses on the acceleration of Hadoop streaming for non-
Java based map and reduce functions to find architectural
insights. For evaluation purposes, we are performing the
following tasks in this paper:

e MapReduce parallel implementation of various data
mining and machine-learning application in C
through Hadoop streaming.

o Implementation of HW+SW co-design of the mapper
functions on the FPGA+core platform.

o Evaluating the overall speedup, power and energy-
efficiency of the system considering various hard-
ware communication and software computation
overhead in Hadoop MapReduce environment.

o Performance and energy-efficiency analysis of the
hardware acceleration based on application (size of
input data), system (number of mappers running
simultaneously per node and data split size), and
architecture ( big vs little core) level parameters.

Consequently, we make the following major observations:

o The optimal application, architecture, and system-
level parameters to maximize the performance and
energy-efficiency is different before and after acceler-
ation.

e HW+5SW acceleration yields higher speedup on lit-
tle Atom cores, therefore significantly reducing the
performance gap between little and big cores after
acceleration.

o  HW+5SW acceleration yields higher energy-efficiency
improvement on big Xeon cores, therefore signifi-
cantly reducing the energy-efficiency gap between
little and big cores.

e In presence of hardware acceleration, we can reduce
the number of mapper/reducer slots (active cores)
and yet be as energy-efficient as a case in which,
all the available cores are active without significant
performance loss.

e  HW+SW acceleration improves scheduling decisions
and provides more opportunities for fine-tuning of
parameters to further enhance performance.

The rest of the paper is organized as follows: In Sec.
2 we provide a background on MapReduce. In Sec. 3 and
4 the system architecture and methodology are described,
respectively. Sec. 6 introduces the studied big data appli-
cations. Sec. 5 describes the model for the calculation of
the execution times after the acceleration. Sec. 7 describes
the HW+SW co-design of the mapper functions. In Sec. 9
we show the results and carry out a sensitivity analysis
on different configurations. In Sec. 10 and 11, we study
scheduling of various workloads and the scalability of our
framework, respectively. In Sec. 12, we discuss the related
work. Finally, Sec. 13 concludes the paper.
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Fig. 1. Hadoop MapReduce: Computational Framework Phases [7].
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Fig. 2. Timing of various Hadoop phases

2 HAbpooP MAPREDUCE

MapReduce is the programming model developed by
Google to handle large-scale data analysis. Fig. 1 shows
the various phases in the MapReduce platform. The map
functions parcel out the work to different nodes in the
distributed cluster. They process <key/value> pairs to gen-
erate a set of intermediate <key/value> pairs. The reduce
functions merge all the intermediate values with the same
intermediate key and collate the work to resolve the results.

Apache Hadoop is an open-source Java-based frame-
work of MapReduce implementation. It assists the process-
ing of large datasets in a distributed computing environ-
ment and stores data in highly fault-tolerant distributed file
system (HDEFS).

2.1 Timing

Fig. 2 shows the timing diagram of a MapReduce appli-
cation with 15 map jobs, one reduce job and four slots.
A slot is a map/reduce computation resource unit at a
node. The map phase starts with the start of the first
map task and finishes when the last map task completes
its execution. Shuffle starts shortly after the first map, and
will not complete until all the map tasks are finished. A low-
volume shuffle is finished shortly after the last map (e.g. Fig.
2), while a high-volume shuffle takes longer to complete.
The sort phase finishes after the shuffle. Reduce starts after
all the data is sorted. Upon the completion of all the reduce
tasks, the whole MapReduce job is finished.

In the MapReduce platform, a significant portion of the
execution time is devoted to the map and reduce phase,
as they carry out the computation part. In this paper, we
target the map phase for acceleration, as it accounts for a
higher portion of the execution time across studied machine
learning kernels.

3 SYSTEM ARCHITECTURE

In a general-purpose CPU several identical cores are con-
nected to each other through their shared-memory dis-
tributed interconnect. However, for hardware acceleration,
each core is extended with a small FPGA fabric. We study
how adding on-chip FPGAs to each core would enhance the
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TABLE 1 NameNode
Architectural parameters m
CORE CORE
cache cache cache

Processor Intel Atom C2758 | Intel Xeon E5-2420 [ Intel Xeon E5-2670
Cores\Threads 8\8 6\12 8\16
Operating Frequency 2.4 GHz 1.9 GHz 2.6 GHz
Micro-architecture Silvermont Sandy Bridge Sandy Bridge
L1i Cache 32 KB 32 KB 32 KB
L1d Cache 24 KB 32 KB 32 KB
L2 Cache 4 MB 256 KB 256 KB
L3 Cache - 15MB 20MB
System Memory 8 GB 32 GB 365 GB
TDP 20 W 95 W 115W

performance of the architecture that runs Hadoop MapRe-
duce. Fig. 3 shows the system architecture of the proposed
multi-node platform studied in this paper. The single-node
architecture is identical to the DataNode.

3.1

While in a general purpose CPU, mapper/reducer slots are
mapped to a single core, in the heterogeneous architecture
depicted in Fig. 3, each mapper/reducer slot is mapped to
a core that is integrated with the FPGA. Given the tight
integration between FPGA and CPU, the interconnection
interface between the two is the main overhead in this
architecture. Thus, the mapper/reducer slots are accelerated
with the FPGA, without any high off-chip data transfer
overhead.

For implementation purposes, we compare two types of
core architectures; little core Intel Atom C2758, and big core
itel Xeon E5-2420. These two types of servers represent two
schools of thought in server architecture design: using big
Xeon cores, which is a conventional approach to designing a
high-performance server, and Atom, which uses low-power
cores to address the dark silicon challenge facing servers [8].
Table 1 shows the details of the studied servers.

Moreover, each FPGA in Fig. 3 is a low cost Xilinx Artix-7
with 85 KB logic cells and 560 KB block RAM. The integra-
tion between the core and the FPGA is compatible with the
advanced micro-controller bus architecture (AMBA).

Specifically, we utilize measurements for the Advanced
eXtensible Interface (AXI)-interconnect. AXI is an interface
standard through which, different components communi-
cate with each other. The data transferred between the core
and the FPGA, is rearranged to create transfer streams. A di-
rect memory access (DMA) engine is used to move streams
in and out of the shared memory between the FPGA and the
core, which provides high-bandwidth direct memory access
between the AXI-stream and the IP interfaces implemented
on the FPGA.

Single-node

3.2 Multi-node

The architecture of the multi-node cluster consists of a
homogeneous CPU as the NameNode, which is connected
to several DataNodes with heterogeneous architectures. The
architecture of each DataNode is similar to that in Fig. 3.
The NameNode is responsible for the job scheduling
between all the DataNodes. It is configured to distribute
the computation workloads among the DataNodes. The
number of mapper/reducer slots on each DataNode is based
on its number of cores. The interconnection between the
NameNode and DataNodes is established through a multi
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Fig. 3. System architecture for a multi-node cluster.

channel Gigabit switch to allow high data transfer rates. For
implementation purposes, we use a 12-node cluster with E5-
2670 CPUs. Table 1 shows the specifications of the E5-2670
CPUs.

4 METHODOLOGY

We develop a MapReduce version of each studied machine
learning application for execution on Apache Hadoop. It
should be noted that Hadoop applications are mostly imple-
mented in Java; however, the FPGA+CPU platforms allow
hardware acceleration of C-based applications. While native
C/C++ injection into Hadoop is on the way, various utili-
ties have been used to allow Hadoop to run applications,
the map and reduce functions of which, are developed in
languages other than Java. Hadoop pipes [9] and Hadoop
streaming [10] are examples of such utilities. In this paper,
we use Hadoop streaming, a utility that comes with the stan-
dard Hadoop distribution. It allows running MapReduce
jobs with any executable or script as the mapper and/or the
reducer. The Hadoop streaming utility creates a MapReduce
job and submits it to an appropriate cluster.

This paper aims to characterize data mining and ma-
chine learning applications. Accordingly, the C-based im-
plementation of such applications were developed and ex-
ecuted on Apache Hadoop streaming. Subsequently, two
levels of profiling is carried out.

subsectionProfiling of the Application on MapReduce As
mentioned earlier, the MapReduce platform is comprised of
several execution phases; however, in this study we focus
on the acceleration of the map phase. In order to calculate
the potential speedup on the Hadoop platform after the
acceleration of map functions for each application, we need
a detailed analysis and profiling for various phases.(i.e.
map, reduce, shuffle, etc.) We use the timing information
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to calculate the execution time of each phase before the
acceleration.

subsectionProfiling of the map function To accelerate the
map functions through HW+SW co-design, we profile the
map functions in order to find out the execution time of
different sub-functions and select which functions should
be offloaded to the hardware in the FPGA, and which ones
still need to remain in the software on the core (i.e., SW
part).

The map function is carried out on data splits. The
data split size is mostly the size of one HDFS block for
data locality purposes, which varies from 64MB, 128MB to
higher values [11]. For each application, we execute the map
function on the data splits and profile it on the two big
and little server architectures. Profiling of map functions on
these two architectures determine the sub-functions better
suited for FPGA implementation.

The execution time of the accelerated map function is
comprised of three parts. First, the SW part of the map
function that remains on the core (tsu, Atom and tsuw zeon
on Atom and Xeon, respectively), which is calculated based
on the profiling of map functions on Intel Xeon and Atom
using the Perf tool. Second, the HW part of the map function
that is offloaded to the FPGA (t3,,), which is calculated by
measurements from the FPGA implementations. And third,
the data transfer time between the FPGA and the core ().
The calculation of the transfer time requires a platforms that
allows the integration of the FPGA with the core.

In the proposed framework the time-intensive sub-
function within the map functions are targeted for accel-
eration. The memory patterns for map functions is highly
regular with low data dependencies. Thus, profiling and
measurements of execution time using gprof for map func-
tions takes into account the time to bring the data from
the main memory. In the accelerated map function, the
selected sub-function is replaced with an accelerator, its
execution time is replaced with the processing time of the
accelerator and the time to stream the data between the map
sub-functions on CPU to accelerated map sub-functions on
FPGA.

In lack thereof a variety of high performance CPU+ on-
chip FPGA platforms, to demonstrate how on-chip inte-
gration of the CPU and FPGA allows accelerating of sub-
functions within Map functions and subsequently acceler-
ates the overall MapReduce applications, rather than using
raw and optimistic values reported for AXI-interconnection
delay and bandwidth, we use timer functions on Zynq to
calculate the timing of transmission.

To estimate the execution time after the acceleration ac-
curately, and for functional verification, we fully implement
the map functions on the Zedboard. ZedBoard (featuring
XC77020 Zynq) integrates two 667 MHz ARM Cortex-A9
with an Artix-7 FPGA with 85 KB logic cells and 560 KB
block RAM. The connections between the core and FPGA is
established through the AXI interconnect [12]. To calculate
the time required to send the data for each map function
to the accelerator and the processing time of the FPGA, we
add timer IPs on the FPGA. Using the timer, we measure
the data transfer time (¢;.), and the accelerator time t,,.
The measurements are used as estimation for a framework,
in which the transmission link and the FPGA are identical
to those used in the Zynq platform, while the CPU is Intel
Atom or Intel Xeon.

Based on the timings calculated from the full implemen-
tations on the Artrix-7 FPGA in this platform, the execution
time of the map function after acceleration is calculated as
tsw,meon + thw + Ler and tsw,Atom + thw + Ler, for Xeon and
Atom, respectively, assuming a tight on-chip integration of
the Intel Atom and Xeon cores to the studied FPGA. We
compare the execution time of the map function before
and after the acceleration to yield the speedup of the map
functions though HW+SW co-design.

Finally, based on the information about the execution
time of each phase, and the speedup of the map functions,
we perform a comprehensive analysis to find out how accel-
eration of the map function contributes to the acceleration
of the entire application on Hadoop MapReduce.

5 ESTIMATING HADoOP MAPREDUCE SPEEDUP

In order to calculate the potential speedup on the Hadoop
platform after the acceleration of map functions, we perform
the following two steps: In the first step, the speedup of the
map function through HW+SW co-design is calculated. In
the second step, the speedup of the overall MapReduce is
calculated, when the map function is accelerated with the
rate calculated in the first step. As mentioned earlier, given
the tight integration of FPGA and CPU, the main overhead
is the on-chip data transfer between the core and the FPGA,
which is calculated using the timers implemented on the
Zynq platform.

5.1 Modelling Speedup of the Map Function through
HW+SW co-design

A comparison of various models of computation for
hardsware+software co-design has been presented by [13].
The classical FSM representation or various extension of
it are the most well-known models for describing control
systems, which consists of a set of states, inputs, outputs
and a function which defines the outputs in terms of
inputs and states, and a next-state function. Since they
do not allow the concurrency of states and due to the
exponential growth of the number of their states as the
system complexity rises, they are not the optimal solution
for modeling HW+SW co-design. Dataflow graphs have
been quite popular in modeling data-dominated systems
[14]. In such modeling, computationally intensive systems
and/or considerable transportation of data is conveniently
represented by a directed graph where the nodes describe
computations and the arcs represent the order in which the
computations are performed.

In case of acceleration of the map phase in a MapReduce
platform, what needs to be taken into account is the highly
parallel nature of the map functions, which allows higher
acceleration by concurrent processing of multiple compu-
tations that have no data dependencies. Most efforts for
modeling of the hardware+software co-design have found
data dependencies to be an important barrier in the extent
to which a function is accelerated, however this is not the
case for MapReduce. In the mapper part of most machine-
learning applications a small function, i.e., an inner prod-
uct or a Euclidean distance calculation is the most time-
consuming part of the code, where multiple instances of
a small function can be executed in parallel with no data
dependencies. In such cases, a simple queuing network
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can be deployed to model a map function, with only one
accelerated sub-function.

Queuing system models are useful for analyzing systems
where inputs arrive sporadically or the processing time for
a request may vary [14]. In a queuing model, customers
(in this case, the data to be processed by the accelerator)
arrive at the queue at some rate; the customer at the head
of the queue is immediately taken by the processing node
(the accelerator hardware), but the amount of time spent by
the customer in processing must be specified (service time).
Typically, both the customer arrival rate and processing
time are modeled as Poisson random variables. In our case,
however, since we are using one or multiple copies of the
same accelerator, the service time for all data is fixed and
is determined by the maximum frequency of the accelerator
on the FPGA and the number of clock cycles it takes to
finish the processing of each batch of data. Moreover, we
assume that the data arrives at the accelerator at a fixed
rate, determined by the processing speed of the accelerator.

Let T},qp be the execution time of the map function on
the data splits before the acceleration. Accordingly, based on
the discussion in Sec. 4, the speedup of the map function is
calculated as follows.

Tmes (1)

Smap = 7P
map tsw + thw + ttr

where tg, is the SW part of the map function that
remains on the core (fsw,atom and sy zeon ON Atom and
Xeon, respectively), t, + they, is HW time and the transfer
time derived from the timers in Zynq implementation, and
Smap is the speedup of the map function.

To calculate ¢, we fully optimize the accelerator IPs
using Vivado HLS. Vivado HLS reports the delay of the IPs
in terms of the number of cycles. Based on the frequency
of the accelerator in the implementations, the processing
time of the IPs is measured (ty,,). To calculate t;., timer
IPs are added on the FPGA. In the software codes, the timer
is reset when a transfer is started to the PL. The timer is
stopped when the Tlast is high, which happens after the
last packet is processed by the PL. Thus, the timer indicates
the time required for transfer of data through DMA and
the processing time (5, + tir). Since tp,, is measured based
on the latency results from HLS and the frequency, ¢4, is
calculated by subtracting the measurement form the timer
IP and tp,,.-

The t,, and t;, measurements are used as estimation for
a framework, in which the transmission link and the FPGA
are identical to those used in the Zynq platform, while the
timing measurements for the execution time on the ARM
core are discarded.

5.2 Speedup on MapReduce

Assuming a platform with M mapper/reducer slots, and n
input data splits (n map tasks), each slot runs [ ] or | -]
map tasks. For simplicity and without loss of generality, we
assume that n is a product of M. Thus, each mapper slot
runs exactly g7 map jobs. The execution time of the map
phase is calculated as follows.

A ol
Toap = max (S (TFF -TSL)+ Y TL,), @
Sm> i=1

i=1

Speedup

S,

map

Smap — 1

Fig. 4. Overall speedup as a function of a.

where, T'S!, and TF}, are the start and finish times for the
m-th slot running the i-th map task, T'I?, is the time interval
for the m-th slot between the end of i-th map task and the
start of next map task, and 7,4, is the total time for the map
phase. HW+SW acceleration will only speedup the first term
in (2).

Lets assume that « is the fraction of time that is acceler-
ated. Then the overall MapReduce speedup is derived from:

1

Speedup = —————, 3)

1 o a(l o S'map)

where
hivg ) )
Tfi, - Ts,
i=1

= = 4
@ 1§Hrlna§XM T ’ @

and T is the total execution time.

This methodology was applied to the acceleration of the
mapper functions; however, the same procedure is applica-
ble to the accelerations of other computational phases in the
MapReduce, including the reduce.

5.3 Upper and Lower Bounds of Speedup

In this section, we analyze the upper and lower bounds for
the speedup on an end-to-end Hadoop platform given a
function speedup of Sy,qp.

Fig. 4 shows the overall speedup as a function of «,
which is always lower than 1. Different application types,
and system and architecture level configurations yield dif-
ferent values for a. Based on this figure, as o increases,
the overall speedup is enhanced. It will approach infinity
ata = %, which is higher than a = 1, and out of the
range of ac}éeptable o The highest acceleration in realized
when all the execution time is devoted to the accelerated
phase, in which case, an acceleration in the range of .S, is
obtained.

Considering that not all parts of the map and/or task are
best suited for hardware acceleration, and that not all phases
of the MapReduce (shuffle, sort, etc.,) are accelerated, the
extent of the achievable accuracy is limited. As a result the
acceleration can be limited to 20% as in [15], or upto 1.8x
in [16], 2.6 x in [17], 3x in [18], and 4.1x as shown in Table
3.

6 MAPREDUCE PARALLEL IMPLEMENTATION IN
HADOOP STREAMING

The machine-learning applications studied in this paper,
include various commonly used classification and clustering
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algorithms. In this section, we discuss our approach to
implement parallel version of these learning algorithms in
Hadoop MapReduce streaming.

6.1 Support Vector Machine

SVM is a widely used classification algorithm. In this paper
we implement proximal SVM [19]. We assume numerical
training data with two classes. Training the classifier is done
as follows:

[W] — L4 BTE) BT D, )
il v
where, I is the identity matrix, e is a vector filled with ones,
D is a diagonal matrix of training classes, E is a diagonal
matrix with feature vectors, and v is a scalar constant used
to tune the classifier. The classification is done through
calculation of (zTw — 7), which returns a number, the sign
of which corresponds to the class.

Parallelization with MapReduce is achieved through the
following property:

FETE=EI'Ey+ETE, +---+ EL |E, .,
ETDe = E'Dye + DI Die+ -+ EL_ D, _1e, (6)

where the training data is split into n splits. Thus, each
mapper calculates one element of the sum in (6), and they
all produce the same output key. The reducer calculates the
sum and carries out the matrix inversion. Thus, the size of
the data splits has a significant influence over the overall
execution time as it decides the size of £ and D matrices.
Fig. 5-a shows the pseudo-code for the map and reduce
functions in the MapReduce implementation of the SVM
algorithm.

6.2 K-means

K-means is the most commonly used clustering algorithm.
It partitions a set of n objects into k clusters to maximize
the resulting intra-cluster similarity, while minimizing inter-
cluster similarities.

First, the algorithm selects k objects representing ini-
tial cluster centers. The remaining objects are assigned to
the clusters to which, they are more similar, based on
the distance between each object and the cluster center.
Subsequently, a new center is calculated for each cluster.
This process iterates, with the centers updated in each
iteration, until the center values converge. The distance
computations between objects and cluster centers comprise
the biggest portion of the calculations, which may be done
in parallel for different objects. However, the new centers
are calculated serially. In MapReduce implementation of
the parallel K-means [20], the map function performs the
procedure of assigning each sample to the closest center.
The reduce function performs the procedure of updating
the new centers. Fig. 5-b shows the pseudo-code for the map
and reduce functions in the MapReduce implementation of
K-means.

6.3 Naive Bayes

Naive Bayes is one of the supervised machine learning clas-
sification algorithms, which is based on applying Bayes the-
orem with the naive assumption of independence between

every pair of features. Given a variable y, a feature vector

Z1,%2, - , Ty, and the naive independence assumption:
P g =
(las, - 2n) Plar, - )
P(xla"'axn) )

Since the denominator is constant for a given input, the fol-
lowing rule classifies an object with x1,--- , z,, as features.

n
j = argmax [ | P(x:ly), ®)
7=l
where P(y) is the relative frequency of class y in the training
set.

Utilizing the maximum a posteriori (MAP) estimation,
we set P(x;|y) to the relative frequency of feature z; in the
training set.

Given a large set of training data in the MapReduce
platform, HDFS splits the input data and replicates them
to the available nodes in the clusters.

In the MapReduce implementation, the map phase cre-
ates a list of <key,value>, where the key is a combination of
the class, attribute and the attribute value, namely a unique
string and the value is 1. In the reduce task, the values of
the same key is added up and a single <key,value> pair is
emitted, where the value is the number of occurrences of a
specific string in the output of the mappers. Fig. 5-c shows
the pseudo-code for the map and reduce functions in the
MapReduce implementation of naive Bayes.

6.4 K nearest neighbor

KNN is an algorithm that finds the £ nearest neighbors in
the training data set for a given point, and classifies it by
a majority vote on these k£ neighbors. The algorithm does
not explicitly require a training phase. It involves sorting
the data vector coordinates along with the class label. In
the testing phase, the aim is to find the class label for
the new point. In the MapReduce implementation of KNN
[21], the map function calculates the distance of each data
point from the training data, and lists out the distances
with the corresponding classes. Fig. 5-d shows the pseudo-
code for the map and reduce functions in the MapReduce
implementation of KNN.

7 HW4+SW coO-DESIGN OF THE MAPPER ON ZYNQ

Acceleration of the applications through HW+SW co-design
is a complex problem, particularly because different phases
of the same application often prefer different configurations
and, thus, it requires specific mapping to find the best
match. Also the cost of communication and synchronization
between the FPGA and the CPU, due to data dependen-
cies, could potentially eliminate the benefit of HW+SW co-
design. Therefore, careful mapping between the HW and
SW is required to take all these cost overheads into con-
sideration and in fact due to all these overheads not all
applications will benefit from HW+SW co-design method.
Fig 6 shows the block diagram of the FPGA+CPU plat-
form used in the implementations. The HW+SW acceler-
ation consists of 3 major parts, namely processing system
(PS), interconnects, and programmable logic (PL). The PS
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Map
Input: train data containing feature vectors and training classes,
v (a scalar constant to tune the classifier)

Output: <key, value> pair

0: Create e as vector filled with ones;

0: Split the train data into n blocks

0: Fori=1ton:
Create D as a diagonal matrix of training classes;
Create E as a diagonal matrix with feature vectors;
Calculate EtE;
Calculate EtDe;

0: Output <key, value>;
key: all the mappers produce the same key
value: A string containing the E'E and EtDe values

Map
Input: Global variable centers, the offset key, the sample value
Output: <key, value> pair,
key: index of the closest center point
value: string of information
0: Construct the sample instance from value;
0: minDis = MAX VALUE, index=-1;
0: For i=0 to #centers:
dis= ComputeDist(instance, centers][i]);
If dis < minDis :
minDis = dis;
index=1I;
0: Output <key, value> pair;
key: index
value: string containing values of all dimensions

Reduce
Input: key, and V which is the list of values corresponding to the key
Output: <key’, value’> pair,
0: SUM_E'E=0;
0: SUM_ E'De=0;
0: For i=1ton:
SUM_E'E+=E'E;
SUM_ E'De+= E'De;
0: Calculate inverse of (% + E*E);

0: Calculatey and w based on [?] = (§+ EE)™'EtDe;

0:output <key’, value’>;
key’: key
value’: string containingvalues fory and w

Reduce
Input: key, which is the index of clusterand V, which is the list of
parallel sums (values corresponding to each key)
Output: <key’, value’> pair,
key’: index of the cluster
value’: string representing the new centers
0: Initialize the array record with the sum of value of each dimensions
of the samples contained in the sale cluster;
0: NUM=0;
0: For valuein V:
NUM+=num;
(add the value of different dimensions of instance to the
array)
0: Divide the entries of the array by NUM;
0: Output <key’, value’> pair;
key’: key
value’: string containing center’s coordinates

(@)

(b)

Map

Input: train data containing attribute values and class label

Output: <key, value> pair

0: Load the train data

0: Create a key for each train data point, which is a combination of, class,
attribute name and attribute value;

0: Set the value for all the keys to 1;

0: Output <key, value>;

Map
Input: testing data-set and training data-set
Output: <key, value> pair,
Key: testData
value: string containing information about distance form
trainData with their respective class label
testList=newtestList;
Load testfile;
testList <= tetfile; (Update list with data points from file)
Open trainfile; (loading train data one at a time)
ComputeDist(trainData,testData);
write the distance of testData points from all the training data points
with their respective class label.
Output <key, value> pair;

eeeeee

e

Reduce
Input: key, and V which is the list of values corresponding to each key
Output: <key’, value’> pair,
0: Sum=0;
0: for each value in V:
0: For i=1ton:
SUM+=1;
0:output <key’, value’>;
key’: key
value’: the number of occurrence of a specific string in the
output of the mappers

Reduce
Input: key, and V which is the list of values corresponding to each key
Output: <key’, value’> pair,
key’: testData point
value’: class label
0: load the value of K;
0: Load testData points one at a time (load keys and their values);
0: Look through the K lowest distances for each testData point and
increment the corresponding class label counter;
0: Assign the class label with the highest count for each testData point;
0: Output <key’, value’> pair;
key’: key
value’: string containing classification information

©

(d)

Fig. 5. MapReduce Pseudo-code for SVM (a) SVM, (b) kmeans, (c) naive Bayes, and (d) KNN.

Input_Stream |«—|

Programmable Logic (PL) Interconnect Processing Unit (PS)
M_AXIS_MM2S M_AXI_MM25S " S00_AXI
S_AXIS_MM2S M_AXI_S2MM so1_axi  MOO_AXI

Output_Stream |—>{

S_AXI_Control_Bus

Accelerator

mm2s_introut AXI Interconnect

S_AXI_LITE s2mm_introut
AXI Direct Memory Access _‘I
LIs_AXI_ACP
IRQ_F2P
| M_AXI_GPO
MOO_AXI J

MO1_AXI sop_AXI

S_AXI|«<f—P> MO2_AXI

AXI Timer AXI Interconnect

Fig. 6. Block diagram of the FPGA+CPU platform utilized in the acceler-

ation
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is the processor, PL is the FPGA and the interconnects are
the AXI interconnect IPs, which transfers data between the
processor and programmable logic.

The programmable logic consists of 3 major IPs. The
accelerator is the main IP generated through Vivado high-
level synthesis (HLS). We provide HLS-ready C++ codes,
translate them to VHDL and generate the corresponding
IP. AXI4-Lite interface is used for sending control data, as
AXI-Lite is suitable for sending small amount of data with
specific addresses. AXI4-Stream interface is used for sending
and receiving input data and result data, since it allows
burst transactions as opposed to AXI4-Lite.

AXI Direct memory access (DMA) and AXI timer are
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Tx Buffer :

{Accelerator m ——— 3
: 3[i] 2[i] [i] stream
«— l— «— < b

'
to Rx Buffer
Argmin |—» H

Fig. 7. The accelerator for the K-means mapper.

the other two IPs utilized. The former converts the stream
transactions to memory map and allows reading and writ-
ing to and from the DDR memory. The latter measures
execution time for SW, HW and the transfer time; however,
we are only interested in the HW and transfer time, as we
use Intel Atom and Xeon cores to execute the SW part.

We perform a full HW+SW implementation for the map-
per functions of the studied machine-learning applications.
We analyze each application thoroughly by first analyzing
the timing of various functions within the map phase of
each application using gprof and the perf tool. Subsequently,
we selected specific functions for each application to be
offloaded to the FPGA.

Fig. 7 shows the details of the FPGA implementation
for the K-means mapper with K = 3. The features of
input objects are transferred from the CPU through the AXI
stream, and saved on the Tx buffer. It should be noted, that
the transmit and receive streams are stored in a buffer with a
data size of 64-bits and depth of 4096 [12]. The features of the
incoming objects are read from the buffer, subtracted from
the corresponding feature of each cluster center, squared,
and accumulated to calculate the Euclidean distance of the
object from each cluster center. Subsequently, these value are
compared to find the cluster that best matches the incoming
object. In Fig. 7, f[¢] is the i-th feature value for the incoming
object, fk[i] is the i-th feature of k-th cluster center. The
Argmin block outputs the index of the cluster each object
belongs to. Calculation of the Euclidean distance of the
objects from all the cluster centers in done in parallel in
this figure. Thus, for bigger values of K, a higher level
of parallelism can be exploited. Moreover, The following
actions can increase the speed of the calculations.

o saving the feature values in 32-bit format, reading
two features values in each cycle, and thus paral-
lelizing the calculation of the Euclidean distances.

e pipelining the paths with long delays.

o for big K values, the Argmin block can be enhanced
by using efficient sorting algorithms.

The same process is used to accelerate mapper functions for
other applications, e.g., in the SVM mapper, the calculation
of the vector multiplication is carried out on the accelerator.
In naive Bayes, the construction of the key string from
class, attribute name, and attribute value, and in KNN, the
distance calculation of the data points from the training data
are moved to the accelerator.

We used Vivado HLS to create FPGA accelerators for
these functions. Other IPs including AXI interconnect, DMA
were created in the FPGA and connected to the Processing
system using Vivado. The FPGA was programmed with
the generated bit stream. The map functions were modified
to transmit the data to the FPGA through function calls
associated with the drivers of the AXI interconnect. AXI
specific Control signals are used to notify the completion
of the data transfer to and from the FPGA. To maintain the
memory coherency we use the accelerator coherence port
(ACP). During the ACP writes the cache line is evicted from
L1 (if present) and L2 is updated. The DMA transfer writes
to L2 so does not pollute the L1 cache. Assuming data is
in the processor cache, the access is low-latency using ACP.
However, to use the High-performance port (HP), memory
coherency can be established by flushing the cache from the
PS for each transmission. It should be noted that memory
transfer time is a key determining factor for performance
and energy efficiency. However, the main focus in this work
is the exploration of the block of core, cache, and FPGA
architecture. DRAM and LLC are out of scope the paper
due to the limitation of measuring the breakdown of data
transfer time from DRAM to shared LLC and from LLC to
Core/FPGA.

Table 2 shows the FPGA resource utilization, (which
includes the accelerator IP, DMA, timer and the intercon-
nect) and the maximum frequency of accelerators. It is
worth mentioning that the reported frequencies reflect the
processing power of Artrix-7 and higher frequencies can be
achieved using high-end FPGAs.

Moreover, Table 2 shows the acceleration speedup of the
map function after HW+SW co-design with respect to their
software implementation (measured by the perf tool on Intel
Atom and Intel Xeon) based on equation (1).

Speedup values were calculated by measuring ¢, for
Atom and Xeon, t;,, and t;, as described in Section 5.1.

It should be noted that for each application, the com-
putation intensive part of the applications is accelerated for
only one map task. Based on Table 2 not all applications use
all the FPGA resources. For these applications (and other
applications, assuming larger FPGAs) due to the highly
parallel and data-independent nature of MapReduce mul-
tiple map tasks can be executed in parallel; however the
bandwidth of the transmission link between the FPGA and
CPU will eventually become the bottleneck.

Table 2 shows that not all applications show high po-
tential for acceleration on the this platform. This is due
to dependencies and communication as well as synchro-
nization cost in different parts of the code, and the fact
that some applications have a smaller computational part,
resulting in a lower speedup. For SVM for instance, while
the computation part of the map function is accelerated by
offloading to the FPGA, still most of the parts remain on
the core, allowing negligible change in the overall execu-
tion time after the hardware acceleration. For the K-means,
KNN and Naive Bayes applications on the other hand, the
range of speedup is higher. Thus, applications with higher
numerical calculations and higher levels of parallelism are better
candidates for being offloaded on the FPGA.

8 EXPERIMENTAL SETUP
A parallel MapReduce version of the 4 studied applications
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TABLE 2 TABLE 3
Resource utilization and timing of HW+SW acceleration IPs for map Changing the number of mapper slots
functions.
cores mappers _total_time(s) map_time(%) accelerated_time(s)  speedup \
[ Resources | Available ] Utilization (%) | Naive Bayes
- X T 756.59 8553 182.68 1142
SVM K-means KNN Naive Bayes x 4 349.78 49.82 195.42 1.790
FE 35200 7.57 6.38 4.07 4.82 x 8 290.46 3128 209.87 1.384
LUT 17600 12.03 11.98 7.13 8.66 X 12 301.12 38.46 198.36 1518
Memory LUT 6000 1.23 2.03 1.14 1.23 a T 1,256.32 82.55 275.48 2561
BRAM 60 5929  37.86 47.50 62.14 a 4 482.15 56.74 223.85 2154
DSP48 80 227 9.55 0.00 0.00 a 8 495.05 K44.39 287.25 1.723
BUFG 32 3.13 3.13 3.13 3.13 means
Frequency [MFZ] 321 33 30 301 x4 on 7199 2562 2192
throughput [MBps] 25.3 59.3 36.6 95.3 x 8 41.34 58.24 23.19 1.783
Thuw 18] 14 15 156 21 X 12 47.59 56.85 27.18 1.751
Tyr[1s] 103 36 707 59 a 1 393.31 94.50 68.93 5.706
4 108.66 88.54 24.74 4393
Tow 18] Xeon 87 31 424 63 a
Atom 19 e 1007 e a 8 60.22 2\1113 18.60 3.238
Trmaplus] Xeon 210 346 3230 1284 X T 1,73753 93.36 76455 2273
Atom 249 737 7371 4202 X 4 581.18 74.50 321.43 1.808
Smap Xeon 1.028 4.20 251 8.99 x 182 gzggg gggg gigig %ggg
X o R K B
Atom 1.042 7.90 3.90 1852 a T 3,921.08 94.7% T158.88 3384
a 4 1,145.62 86.50 408.79 2.802
a 8 707.14 71.27 332.66 2.126
SVM
X T 120,81 87.03 11876 1017
; : : - X 4 4620 65.10 4561 1.013
was 1mP1emented using Hadoop Streaming and profiled for X s ot o e Toos
1GB using Intel VTune [22] on Atom C2758 and Intel Xeon X 112 ;g%g ggg ;gg;g %g;g
E5-2440. The map functions of 4 machine learning and data a 4 83.17 83.60 80.49 1033
a 8 51.90 73.26 50.44 1.029

mining applications were accelerated and the speedup rate
for the map functions were calculated for the Xeon and
Atom architectures assuming integration of Artrix-7 FPGAs
through on-chip AXI-interconnect streaming as described in
Sec 7. In order to calculate the potential speedup on the
Hadoop platform after the acceleration of map functions,
the speedup of the overall MapReduce is calculated based
on equation (4), assuming the map function is accelerated
with the calculated rates in Sec 7.

9 ACCELERATION RESULTS
9.1 Execution time and speedup

The execution time, power, and energy efficiency of an
application is a factor of several parameters at the system,
architecture and application levels. For selection of an op-
timum design, the sensitivity of the design’s performance
and power to various parameters is of high importance. In
this section, we analyze various parameters including the
number of mapper slots and the size of input data. All the
experiments are performed and the results were collected
for both Xeon as well as Atom architecture.

9.1.1  Number of Mapper/Reducer Slots

One of the important criteria while making architectural de-
cisions is the restrictions on the number of mapper/reducer
slots. The MapReduce programmer decides the number of
map and reduce tasks. First, the input data is split into data
splits. Then, based on the data split size, the number of
map tasks is derived. However, The number of tasks that
are executed in parallel depends on the hardware resources,
namely mapper/reducer slots.

Different techniques are used to determine the optimal
number of slots based on the architecture. Mostly, experi-
ments show that for performance optimization the number
of slots is best to be tuned in a range of (0.95 — 1.75) x the
number of available cores [23]. In this case, all the cores in
the architecture are busy.

Table 3 shows the results for execution time and
speedup on Atom and Xeon with different number of

mapper/reducer slots. In Table 3, map—time(%) shows the
execution time of the map phase with respect to the total
execution time (i.e., ), the HDFS block size is 64MB, and
the input data size is 1GB. The number of reduce tasks is set
to one. Thus, only one slot is taken up by the reduce task
after the completion of map, shuffle and reduce phases. It
should be noted that Xeon and Atom have 12 (dual-socket)
and 8 cores, respectively. Thus, the experiments were carried
out for 1, 4, 8 and 12 slots on Xeon, and 1, 4 and 8 slots on
Atom.

Table 3 shows that mostly, the execution time before the
acceleration decreases with the increasing number of slots,
which is due to the higher exploitation of the parallelism
inherent in the MapReduce framework.

Table 3 shows that the speedup realized on both ma-
chines drops noticeably with the increasing number of
mapper slots. This is to be expected, as the fraction of time
spent in the map phase i.e., , is reduced with increasing the
number of mappers. Also more time is spent in other phases
like shuffle as well as transferring of data, as the number of
mappers increases.

Since the final execution time is both a function of the
HW+SW speedup gain of the map function i.e., Sy,qp, as
well as «, the lowest post-acceleration execution time is
case-specific, and is decided not only by the nature of the
application and the potential HW acceleration in the code,
but also by the system and architecture level parameters
such as number of slots and the choice of CPU core. For
instance with the SVM and K-means, on both Xeon and
Atom the optimal number of mapper/reducer slots is 8,
while the optimal configurations are different for Naive
Bayes and KNN.

It should be noted that Intel Xeon has two sockets of 6
cores. By using more than 6 cores (mappers) the increasing
communication time between the two sockets results in the
a number of counter-intuitive behavior in which increas-
ing the number of mappers beyond 6 slightly increases
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the execution time for some applications. Interestingly,
the performance gap between configurations with different
number of mapper/reducer slots reduces significantly after
acceleration. For example in naive bayes and on Atom, the
execution time before acceleration is almost 250% different
on 1 mapper compared to 4 mappers. However this gap
drops to less than only 20% after acceleration. In some cases
after acceleration, the trend even changes; For instance,
in naive Bayes and on Xeon core, while the configuration
with 1 mapper/reducer slot is significantly slower than 4, it
becomes faster after the acceleration. This is in part, due to
the fact that the map phase in the configuration with 1 slot
accounts for significantly larger part of the total execution
time compared to the configuration with four slots. This
observation is very important and can be leveraged to guide
the co-scheduling decision of multiple applications, i.e.
while scheduling multiple applications competing for map-
per/reducer slots, HW+SW acceleration reduces the reliance
on large number of slots (availabe cores) for performance
gain. In fact, HW+SW acceleration allows a configuration
with fewer number of slots to be competitive with the one
with larger number of slots. As a result, more cores are
freed up on each node to accommodate the scheduling of
incoming applications in a cloud-computing environment.

Another observation from Table 3 is the reduction in the
performance gap between Atom and Xeon. The aggressive
superscalar architecture of Xeon allows it to process jobs at a
higher speed compared to Atom. However, the acceleration
yields lower speedup gains on Xeon. In few configurations
this results in Atom having a comparable speed to Xeon
after acceleration. For instance, with 8 mapper/reducer
slots, the K-means application is initially slower on Atom,
however after the acceleration, its execution time is compa-
rable to Xeon. This is due to the fact, that the map phase
accounts for 58% and 88% of the total execution time on
Xeon and Atom, respectively. As a result a larger portion of
the application is accelerated on Atom at a higher rate (7.9x
vs. 4.2x), making its performance comparable to Xeon.
This is an important observation for making architectural
decisions for the choice of CPU in presence of hardware
accelerator.

9.2 Power and Energy efficiency

An important benefit of HW+SW acceleration is the im-
provement in the energy-efficiency. General-purpose CPUs
such as Atom and Xeon are not designed to provide max-
imum efficiency for every application. Accelerators help
improve the efficiency by not only speeding up execution
time, but also executing the task with just enough required
hardware resources. To this end, we measure the power and
calculate the energy delay product (EDP) both before and
after the acceleration.

The overall power values were calculated with the same
methodology as the one used to calculate the accelerated
execution time. Wattsup pro power meter [24] was used for
power readings on Xeon and Atom servers. We measured
the average power for individual phases on Xeon and
Atom using Wattsup pro power meter. Moreover, for each
mapper function on the FPGA board, we used picoScope
digital oscilloscope. We multiplied the average power by
the execution times before/after the acceleration to get the
corresponding energy values. These number were used to

TABLE 4
Power end energy efficiency results

[ cores mappers power(w) poweracc(w) power ratio  EDP(kws?) EDPacc(kws?) EDP ratio |
Naive Bayes
X 1 27.34 21.19 1.29 1565.02 707.15 221
X 4 36.49 34.48 1.06 4464.12 1316.62 3.39
X 8 38.37 37.61 1.02 3237.16 1612 2.00
a 1 3.56 6.71 0.75 5622.88 994.54 5.65
a 4 5.55 7.28 0.76 1289.79 364.63 3.54
a 8 5.94 7.89 0.53 1475.30 458.56 6.58
K-means
X 1 12.99 14.43 0.91 493.33 55.92 8.82
X 4 18.15 20.19 0.90 71.47 16.54 4.32
X 8 37.11 41.22 0.91 63.42 5.78 2.88
a 1 3.65 7.45 0.49 565.17 35.39 15.97
a 4 5.74 11.55 0.50 67.74 67.74 9.58
a 8 4.27 12.20 0.35 15.48 4.21 3.67
KNN
X 1 27.69 20.66 134 83602.92 12043.49 6.94
X 4 44.55 37.50 119 15047.37 3874.45 3.88
X 8 50.22 46.07 1.09 7667.04 3098.67 2.48
a 1 3.53 4.90 0.72 54273.28 6580.51 8.23
a 4 5.49 8.03 0.68 7205.15 1341.17 5.37
a 8 7.57 11.30 0.67 3785.35 1251.15 3.02
SVM
X 1 21.89 20.51 1.07 319.52 289.19 1.10
X 4 26.05 24.81 1.05 55.59 51.62 1.08
X 8 24.62 23.88 1.03 30.48 29.06 1.05
a 1 3.42 3.38 1.01 24579 225.81 1.09
a 4 4.50 441 1.02 3115 28.57 1.09
a 8 3.56 3.52 1.01 9.58 8.96 1.07

calculate the energy consumption. Subsequently, the energy
consumption of the accelerated mappers was replaced with
that of the FPGA to estimate the energy of the accelerated
design. Power measurement for the hardware part of each
mapper function was performed using picoScope digital
oscilloscope for the FPGA board. We measured the power
by measuring the current flowing to FPGA and multiplying
that by the voltage. To measure the current, we measured
the voltage drop across the test points provided on the
FPGA board divided by the resistance around those points.
By averaging the resulting energy consumption over the
new execution time, the new power values were calculated.

Table 4 shows the results for average power and EDP,
where power and power,acc account for power before and
after the acceleration, respectively, and EDP and EDPacc
represent EDP before and after the acceleration, respectively.
Power ratio and EDP ratio show the ratio of the power and
EDP before the acceleration to the power and EDP after the
acceleration, respectively.

Results show that the power mostly decreases for Xeon,
since a part of the task of high-power Xeon cores is moved to
the low power FPGA. This does not apply to Atom, in which
the power consumption increases after the acceleration, as
the power consumption of FPGA board is comparable to the
power of low power Atom core. However, EDP which is an
indicator of the energy efficiency is reduced significantly (in
some configurations by upto 16x).

As discussed earlier, the speedups on the Atom ar-
chitecture are higher compared to Xeon; As a result, the
improvement in the energy-efficiency is more significant on
Atom. Moreover, as the number of mapper/reducer slots
increases, i.e., the CPU utilization increases on both Atom
and Xeon, the energy-efficiency gain of acceleration reduces.
This is somewhat expected, as increasing the number of
mapper/reducer slots results in an increase in the number
of active cores on each machine which in turn, increases
the utilization of the CPU as well as its energy-efficiency,
therefore bringing smaller energy-efficiency gain after the
acceleration. In addition, as discussed earlier, increasing
the number of mapper/reducer slots significantly reduces
the performance gain after acceleration compared to be-
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Fig. 8. Normalized [a] Execution time [b] EDP comparison of big and
little core.

fore acceleration. Therefore, for some cases, increasing the
number of mapper/reducer slots yields small changes in
the performance with a significant increase in the power.
For such cases, the lower number of mapper/reducer slots
after acceleration is the best configuration to maximize the
energy-efficiency.

9.3 Big and Little Core in Presence of acceleration

The simulation results suggests that the hardware accel-
eration reduces the gap between Atom and Xeon. In this
section we compare the execution time and EDP of the
studied benchmarks for Atom and Xeon. Fig. 8 compares
the execution time and EDP. All the execution times have
been normalized to the execution time on Xeon and all
the EDPs have been normalized to Xeon. As expected the
execution time and EDP are lower on Atom. However the
figures shows that both the execution time gap and the EDP
gap between Atom and Xeon is significantly reduced. This
shows that the hardware acceleration targets the speed of
the little cores more significantly, while its impact on energy-
efficiency is more significant on big cores.

10 SCHEDULING IN PRESENCE OF HARDWARE AC-
CELERATOR

In this section, we show how hardware acceleration changes
scheduling decision and whether it provides more oppor-
tunity for fine-tuning of optimization parameters to fur-
ther enhance performance, when co-scheduling multiple
MapReduce applications. In order to study the impact
of parameter-aware hardware acceleration on scheduling,
we create a workload consisting of the studied applica-
tions. We create several workloads W (M, N, O, P), with
M xKNN, N xKmeans, OxNB, and PxSVM. For simplic-
ity we assume there are a total of 12 benchmarks to be
scheduled in each workload. We randomly picked up the
following workloads to present how much opportunity

2000 M Fair Serial ~ m Fair Parallel Parameter-tuned
1800
1600
1400
= 1200
g 1000
= 800
600
400

200 I

0

W HW+SW SwW HW+SW

Xeon Atom

Fig. 9. Execution time for various scheduling schemes for W1 workload.

exist for optimized scheduling. The following workloads
were studied: W1(1,5,1,5),W2(2,4,4,2), W3(2,4,3,3)
and W4(3,3,3,3). We carry out our simulations on a 8-
core machine, ( thus with 8 mapper/reducer slots) and
use fair serial, fair parallel and parameter-aware scheduling
methods for both accelerated and pure software MapReduce
implementations. In the fair serial scheduling, we allow each
application to use all the 8 cores and schedule them serially.
In the fair parallel scheduling, we allow each application to
use 4-cores, thus 2 applications can run in parallel. In the
parameter-aware scheduling, we minimize the time of the
whole workload by tuning the parameters (number of cores
and HDFS block size).

Table 5 shows the results for the studied workloads.
The results show that tuning the parameters enhances
the performance of hardware-accelerated framework even
further. In order to make a comparative analysis between
pure software and post-acceleration, the results for W1 are
depicted in Fig. 9. Based on the results, for both Atom and
Xeon the execution time of fair parallel scheduling is less,
both before and after hardware acceleration. The hardware
acceleration enhances the speed of the workload on both
machines. Moreover the parameter-tuned scheme yields the
best results. In this scheme, not only the parameters are
tuned to get the lowest execution time, the resources are
distributed not fairly, but based on the benchmark perfor-
mance. Specifically for some benchmarks, the execution time
after the acceleration is significantly reduced when they are
consuming less hardware (e.g., when they are running only
on one core). This allows us to run these benchmarks on
one core and leave other cores free for other programs. For
instance, for the studied workload, KNN takes up 4 cores,
and Naive Bayes, K-means and SVM occupy three cores,
leaving one core for other applications.

More importantly, Fig. 9 shows, that while the effect
of fine-tuning is negligible before the acceleration (i.e., an
average of 2% and 0.9% improvement on Xeon and Atom,
respectively over fair parallel scheduling for the 4 studied
workloads); its impact on the post-acceleration performance
is significant (i.e., an average of 37% and 24% improve-
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ment on Xeon and Atom, respectively over fair parallel
scheduling). Thus, hardware acceleration provides more
opportunities for fine-tuning of optimization parameters to
further enhance the performance.

11 SCALABILITY IN A MULTI-NODE ARCHITEC-
TURE

In order to understand the scalability of the acceleration
method presented in this paper, in this section, we study
HW+SW acceleration in a multi-node cluster and across
a large range of input data size. We use a 12-node (1
NameNode and 11 DataNodes) cluster, each with dual
Intel Xeon E5-2670 (2.60GHz) 8 core CPUs allowing upto
176 mapper/reducer slots. We execute the applications for
various data sizes. The HDFS block size is set to 128MB.
Thus, based on the input data size, the number of data
splits vary (i.e, 8, 40, 80, 160 and 800 for input data of 1,
5,10, 20 and 100GB, respectively). Table 6 shows the result
collected on the cluster, where mapper shows the number
of occupied slots among the available slots. The rest of the
slots are utilized for other tasks, including reduce. Table 6
shows that the HW+SW acceleration of mapper functions, in
a cluster is as effective as their acceleration of a single-node
platform.

Also as shown in Table 6, the execution times before and
after the acceleration changes semi-logarithmically with the
size of input data. Also note that while in some cases the
overall speed up after acceleration increases as the size of
data increases (e.g., in K-means), in other cases the speed up
reduces as the size of data grows. In fact changing the size of
data changes the amount of intra-node communication and
consequently affects «, which is the contribution of map
time to the total time.

12 RELATED WORK

The performance and bottlenecks of Hadoop MapReduce
have been extensively studied in recent work [6], [25]-[29].
To enhance the performance of MapReduce and based on
the bottlenecks found for various applications, hardware
accelerators are finding their ways in system architectures.

the authors compare two generations of Intel FPGAs (Arria
10, Stratix10) against the latest highest performance Titan X
Pascal GPU. For a ResNet case study, their results show that
for Ternary ResNet [35], the Stratix 10 FPGA can deliver
60% better performance over Titan X Pascal GPU, while
being 2.3x better in performance/watt showing that FPGAs
may become the platform of choice for accelerating next-
generation DNNs.

Various platforms have been deployed to leverage the
power of FPGA for acceleration and energy-efficiency pur-
poses [36]-[38]. Traditionally, the integration of the FPGA
to CPU has been realized through the PCl-e. In Microsoft
Catapult project [37] a composable, reconfigurable fab-
ric was built to accelerate portions of large-scale software
services, which consists of 6 x 8 2-D torus of Stratix V
FPGAs embedded into a half-rack of 48 machines. The
FPGAs are accessible through PCle. The catapault platfrom
is further improved in the Configurable Cloud [39] to allow
the datapath of cloud communication to be accelerated
with programmable hardware too. Another example is the
Alpha Data FPGA board with Xilinx FPGA fabric. In Alpha
Data, accelerators are developed in C/C++ and OpenCL
languages through the Xilinx SDAccel development envi-
ronment [40].

Alternatively, hybrid chips that integrate FPGAs with
processors reduce the overhead of data transfers, allowing
low-cost on-chip communication between the two. Hetero-
geneous architecture research platform (HARP), is one such
platform that integrates Intel CPU with Altera FPGAs [41]
through QPI. Another example is Zyng-7000 SoC platform,
which integrates ARM cores with Xilinx FPGAs through
AXlI-interconnect.

In [36], a MapReduce framework on FPGA (FPMR) is
described in which, hardware accelerators are introduced
for RankBoost application, along with an on-chip processor
scheduler that maximizes the utilization of computation
resources. In [42], a MapReduce framework on FPGA accel-
erated commodity hardware is presented, which consists of
FPGA-based worker nodes operating extended MapReduce
tasks to speed up the computation process, and CPU-based
worker nodes, which run the major communications with
other worker nodes. In [43], a MapReduce programming
model is evaluated that exploits the computing capacity in
a cluster of nodes equipped with hardware accelerators (i.e.,
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cluster of Cell BE processors).

In [6], a hardware accelerated MapReduce implementa-
tion of Terasort is proposed on Tilera’s many core processor
board. In this architecture, data mapping, data merging and
data reducing are offloaded to the accelerators. In Zcluster
[15], hardware acceleration of FIR is explored through an
eight-salve Zyng-based MapReduce architecture. In [16],
a configurable hardware accelerator is used to speed up
the processing of reduce tasks in MapReduce framework.
They showed upto 1.8 system speedup of the MapReduce
applications. In [44], a detailed MapReduce implementation
of the K-means application is presented.

In [18] the authors provide programming and runtime
support for enabling easy and efficient deployments of
FPGA accelerators in data centers and improve the system
throughput by upto 3x. In [17] the authors explore an
FPGA-enabled Spark cluster that features batch processing
to alleviate communication overhead. The share FPGAs
among multiple CPU threads and improve the performance
of DNA sequencing applications by 2.6 x compare to a CPU-
only cluster.

In [45], microarchitectural characteristics of state-of-the
art PCle-based ( [37], [39], [46]) and QPI-based ( [41], [47])
platforms has been evaluated. They show that the on-
chip integrated QPI-based platform expresses impressive
advantage on fine grained communication latency (<4KB).
It should be noted that, that the data-access pattern of map
functions is highly regular and data in-dependent. This
allows offloading of small sub-functions to the FPGA while
each sub-function requires a low-volume data transfer and
thus low communication latency. Thus this paper, we evalu-
ate how offloading compute-intensive sub-functions within
map functions to on-chip integrated FPGA accelerates the
MapReduce Applications. In addition, we analyzes how
various parameters affects the benefits of HW acceleration.

It should be noted that Hadoop and Spark are two major
open source projects for handling big data analytics. Spark
can do it in-memory, while Hadoop MapReduce has to
read from and write to a disk. Thus, Spark may be up to
100 times faster. On the other hand, Hadoop MapReduce
is able to work with larger and distributed data sets than
Spark [48]. In this study, we focus on improving the perfor-
mance of the applications on the MapReduce. However, the
same methodology can be applied to computation-intensive
phases of Spark applications.

13 CONCLUSIONS

In this paper we demonstrate the performance and energy-
efficiency advantages of FPGA acceleration for Hadoop
applications to find architectural insight and understand
the implications of hardware acceleration on various ar-
chitectural trade-offs in a heterogeneous CPU+FPGA archi-
tecture. We evaluated the Hadoop MapReduce on a 12-
node server equipped with FPGA hardware accelerators.
We offload the mapper to FPGA and fully implement the
hardware accelerated functions on the FPGA board. We
measured power, and execution time on the server and
the FPGA board. We also account for the interconnection
overhead between FPGA and the CPU core. We accelerated
SVM, K-means, KNN and naive Bayes in this framework.
The results show promising speedups as well as energy-
efficiency gains of upto 5.7x and 16X, respectively using

a semi-automated high level synthesis method scalable for
cloud computing infrastructure. We further studied how
application, system, and architecture level parameters affect
the performance and power-efficiency benefits of Hadoop
Streaming hardware acceleration. The results show that
HW+SW acceleration yields higher speedup on little Atom
cores, therefore significantly reducing the performance gap
between little and big cores after acceleration. This is due
to the fact that on Atom the map phase accounts for a
higher portion of the execution time. As a result a larger
portion of the application is accelerated on Atom at a higher
rate, making its performance comparable to Xeon. The re-
sults show that hardware accelerator solution significantly
improves the energy-efficiency on high performance core,
and substantially enhances the performance on low power
cores, therefore simultaneously bridging the performance
and energy-efficiency gap between the two architectures. In
addition, in presence of hardware acceleration we can re-
duce the number of mapper/reducer slots (active cores) and
yet be as energy-efficient as a case in which, all the available
cores are active without any performance loss. This is most
beneficial for scheduling decisions by significantly freeing
up cores on each node to accommodate scheduling of other
incoming applications in a cloud-computing environment.
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