
2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

Hadoop Workloads Characterization for Performance

and Energy Efficiency Optimizations on Microservers
Maria Malik, Katayoun Neshatpour, Setareh Rafatirad, Houman Homayoun

Abstract—The traditional low-power embedded processors such as Atom and ARM are entering into the high-performance server

market. At the same time, big data analytics applications are emerging and dramatically changing the landscape of data center

workloads. Emerging big data applications require a significant amount of server computational power. However, the rapid growth

in the data yields challenges to process them efficiently using current high-performance server architectures. Furthermore,

physical design constraints, such as power and density have become the dominant limiting factor for scaling out servers.

Numerous big data applications rely on using Hadoop MapReduce framework to perform their analysis on large-scale datasets.

Since Hadoop configuration parameters as well as system parameters directly affect the MapReduce job performance and energy-

efficiency, joint application, system and architecture level parameters tuning is vital to maximize the energy efficiency for Hadoop-

based applications. In this work, through methodical investigation of performance and power measurements, we demonstrate

how the interplay among various Hadoop configuration parameters, as well as system and architecture level parameters affect

not only the performance but also the energy-efficiency across various big data applications. Our results identify trends to guide

scheduling decision and key insights to help improving Hadoop MapReduce applications performance, power and energy-

efficiency on microservers.

Index Terms—Application Characterization, Hadoop MapReduce, big data, Microservers, Energy-Efficiency, Performance,
Power and Performance Tuning Parameters

-- � --

 INTRODUCTION

 ow power is one of the main constraints for the design
of battery-operated embedded systems. However, this

design objective has come into attention for high perfor-
mance and data center systems as well. The main reasons
are power constraint of the processor and physical con-
straint of the chip as the semiconductor industry has
reached its physical scaling limits. In fact, continuous in-
crease in the number of transistors on a chip has led to the
so-called ‘‘dark silicon’’ phenomena, where the power den-
sity does not allow all the transistors to turn on simultane-
ously. There is a large body of research on harnessing dark
silicon or maximizing performance under power con-
straints [1, 2, 4, 5]. Cost and environmental reasons are
other motivations to govern energy-efficient and low
power design. As a consequence, hardware design compa-
nies have considered energy efficiency as one of the main
design concerns and have provided mechanisms to ease
developing green applications. Intel provides RAPL inter-
face which enables the software developers to measure and
control the power consumption at different domain, in-
cluding core, package, DRAM and embedded graphic [6].
ARM has introduced big.LITTLE technology, which allows
migrating applications between simple and complex cores
based on workload demands. IBM has employed low
power little cores in BlueGene/Q to increase power effi-
ciency [7]. As it is evident by these latest developments, the
paradigm shift has been occurring from the performance

centric to energy-efficient centric design methodologies in
the industry.

The energy demand of data centers that support
MapReduce model is increasing rapidly [8, 9], which is the
main obstacle for their scalability. Moreover, since energy
consumption in data centers contributes to major financial
burden [10] and prolongs break-even point (when a data
center makes a profit), designing energy-efficient data cen-
ters is becoming very important [23]. Current server de-
signs, based on commodity high-performance processors
are not an efficient way to deliver green computing in
terms of performance/watt. Therefore, the embedded pro-
cessors that are designed and developed based on energy
efficiency metrics are finding their way in server architec-
tures [3]. Microservers employ embedded low power pro-
cessors as the main processing unit. These platforms are
shown to be a promising solution to enhance energy-effi-
ciency and reduce cost in data centers. They follow the Sys-
tem-on-Chip (SoC) approach to render the CPU, I/O and
networking components fully integrated onto a single
chip.

Several companies and academics have developed
cluster architectures based on ARM or Intel Atom cores.
An example is FAWN (Fast Array of WimpyNodes) [11],
which composed of a large number of embedded and effi-
cient Intel Atom cores where each core is low power dissi-
pating only a few watts of power. X-Gene platform [12] de-
veloped by Applied Micro is another example of a server-
class SoC which is designed for cloud and enterprise serv-
ers based on ARM v8 64-bit core architecture. HP low-
power Moonshot servers [13] also uses ARM and Atom
embedded cores on a single rack. Due to the wide adoption
of x86-based architectures in servers, in this paper we

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

L

• Maria Malik is with the Department of ECE, George Mason University,
Fairfax, VA. E-mail: mmalik9@gmu.edu.

• Katayoun Neshatpour is with the Department of ECE, George Mason
University, Fairfax, VA. E-mail: katayoun.neshatpour@gmail.com

• Setareh Rafatirad is with the Department of IST, George Mason Univer-
sity, Fairfax, VA. E-mail: srafatir@gmu.edu.

• Houman Houmayoun is with the Department of ECE, George Mason
University, Fairfax, VA. E-mail: hhomayou@gmu.edu.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

2 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

choose Atom to study, as it has a low power embedded mi-
cro-architecture with high-performance x86 ISA.

The world of big data is changing constantly and pro-
ducing a large amount of data that creates challenges to
process them using existing solutions. Big data applica-
tions heavily rely on deep machine learning and data min-
ing algorithms, running complex database software stack
with significant interaction with I/O and OS [43]. The
Apache Hadoop framework, a defacto standard for analyt-
ics, assists the processing of large datasets in a distributed
computing environment. Numerous big data applications
rely on using the Hadoop MapReduce framework to per-
form their analysis on large-scale datasets. Several research
works have reported the performance analysis of Hadoop
MapReduce applications on high performance servers
such as Xeon [14, 15]. However, the important research
question is whether low-power embedded architectures
are suited to process big data and in particular MapReduce
applications efficiently. To understand this, in a recent
work [16], we evaluated big data applications on two dis-
tinct server architectures; high-performance Xeon server
and low-power embedded Atom server. Our results
demonstrate that while big Xeon core provides high per-
formance and more energy-efficiency for traditional CPU
applications compared to little core, it is not power efficient
to process big data applications. The results further show
that the little core is more energy-efficient than big core in
almost all studied applications, and in particular for com-
pute-intensive applications. Overall, low power embed-
ded architectures can provide significant energy-efficiency
for processing big data analytics applications compared to
conventional big high performance core.

There have been several works on characterizing Ha-
doop MapReduce applications [17, 18, 19, 20], or optimiz-
ing them for performance or power [15, 21]. Most of these
works either mainly focus on performance optimization
[22], ignoring energy-efficiency, or mainly deployed on
high performance big Xeon core. In addition, given that the
performance and power of Hadoop MapReduce applica-
tions is sensitive to various tuning parameters at applica-
tion (application type, data size per node), system (HDFS
block size, number of mappers running simultaneously
per microserver node) and architecture levels (operating
voltage and frequency of core), it is important to under-
stand the role of these parameters and the interplay among
them for energy-efficiency optimizations. While prior

work mainly ignored the interplay among these tuning pa-
rameters, in this work we characterize Hadoop applica-
tions across a wide range of tuning parameters to under-
stand the interplay effect and accordingly the optimization
opportunities on microservers for enhancing their energy
efficiency.
Contributions: To the best of our knowledge this is the first
paper that comprehensively analyzes the behavior of the
emerging big data applications running in Hadoop
MapReduce environment on microserver with respect to
various system, application and architecture levels tuning
parameters and the interplay among them. This analysis
will assist guiding the scheduling decisions and help opti-
mizing for performance, power and energy-efficiency im-
provements. Grounded in empirical analysis, our main
contributions are:
• We analyze the impact of various tuning parameters at

system-level (number of mappers running simultane-
ously per microserver node, HDFS block size), appli-
cation-level (application type and input data size) and
architectural-level (operating voltage and frequency)
on the performance, power and energy efficiency for
various Hadoop micro-benchmarks and real-world
applications.

• We analyze how the interplay of various tuning pa-
rameters at application, system, and architecture lev-
els affects the power and performance sensitivity of
the Big data applications.

• We analyze the execution time breakdown of various
phases of Hadoop micro-benchmarks. To guide power
optimization using frequency scaling, we further ana-
lyze how the performance of these phases is sensitive
to the operating frequency.

• We evaluate real time system resources measurement
including CPU utilization and memory footprint to
understand the runtime behavior and resource con-
sumption of Hadoop micro-benchmarks when vary-
ing system, architecture and application level tuning
parameters.

Consequently, we make the following major observation:
• The speedup obtained when increasing the number of

available cores on microserver node outweighs the
power overhead associated with increasing the num-
ber of cores. This indicates that utilizing the maximum
number of available cores per node achieves the best
energy-efficiency across all studied applications.

• While utilizing all available cores on each microserver
node provides the maximum energy-efficiency across
all studied applications, concurrent fine-tuning of fre-
quency and HDFS block size reduces the reliance on
the maximum number of cores. We can achieve a com-
petitive energy-efficiency with fewer number of cores
compared to the maximum number of cores by simul-
taneously fine tuning the HDFS block size and the op-
erating frequency of the system. This helps freeing up
cores on each node to accommodate scheduling co-
runner applications in a cluster computing environ-
ment.

• Hadoop I/O bound applications can be scheduled at
lower processor operating frequency on microserver

Figure 1. A simple conceptual view of Hadoop data flow

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

M. MALIK ET AL.: HADOOP WORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCY OPTIMIZATIONS ON MICROSERVERS
 3

to save power. Performance loss can be compensated
to a significant extent by increasing the number of
mappers, and therefore the number of cores, with a
small impact on total power consumption.

 HADOOP FRAMEWORK AND TUNING PARAME-

TERS
Apache Hadoop is an open-source Java-based frame-

work of MapReduce implementation. It assists the pro-
cessing of large datasets in a distributed computing envi-
ronment and stores data in highly fault-tolerant distrib-
uted file system, HDFS. Figure 1 shows a simple concep-
tual view of steps involve in Hadoop MapReduce. When
an application is submitted for scheduling, Hadoop splits
its input data into a fixed data blocks where each block is
assigned to a map task. A map task transforms the input
data into intermediate key-value pairs. These generated in-
termediate values are transferred from the mappers to the
appropriate reducers in the merge stage. Shuffle and sort
of key-values are done in this stage. As different subset of
intermediate key-value pairs are assigned to each reducer,
the reducers consolidate data into the final output. There
are a number of parameters that directly impact the
MapReduce application performance and energy-effi-
ciency. In this work, we study various parameters includ-
ing the number of mappers, operating voltage and fre-
quency of the core, HDFS block size, and the size of data
per node that can be tuned by the user, scheduler or the
system and are impacting the energy-efficiency.
2.1 Application Diversity

Hadoop cluster hosts a variety of big data applications
running concurrently. We have included four micro-bench

marks in our study, namely WordCount-WC, Sort-ST,
Grep-GP and TeraSort-TS. We have selected these micro-
benchmarks as they are kernels in many big data applica-
tions representing diverse behavior [19]. These micro-
benchmarks stress-test different aspects of a microserver
cluster [19]. We have also included two real-world applica-
tions namely Naïve Bayes -NB and Collaborative Recom-
mendation Filtering-CF) in our study by incorporating ma-
hout library [42]. Table 1 shows Hadoop micro-bench-
marks and real-world applications for this study along
with their particular domain and data type.
2.2 Interdependent Tuning Parameters

We have studied the impact of the system, application,
and architectural level performance and power tuning pa-
rameters including the HDFS block size (32MB, 128MB,
256MB, 512MB, 1024MB), input data size of the application
(10MB, 100MB, 1GB, 10GB, 25GB and 50GB), number of
mappers that run simultaneously on a single node (1, 2, 4
and 8), and frequency settings (1.2GHz, 1.6GHz, 2.0GHz,
2.4GHz) to evaluate how these parameters affect energy ef-
ficiency of big data applications on microserver. Moreover,
we thoroughly analyze the impact of these parameters on
memory system and processor utilization.

 MEASUREMENT AND METHODOLOGY
The methodology in which our experiments are con-

ducted is presented in Figure 2. Our methodology is di-
vided into three major steps.
3.1 Hardware/software infrastructure

We conduct our study on Intel Atom C2758 server that
has 8 processing cores per node and two levels of cache hi-
erarchy shown in table 2. The operating system is Ubuntu
13.10 with Linux kernel 3.11. All experiments are per-
formed on eight-node Atom server with Hadoop 1.2.1. It is
important to note that while network overhead in general
is influencing the performance of studied applications and
therefore the characterization results, for big data applica-
tions, as shown in a recent work [24], a modern high speed
network introduces only a small 2% performance over-
head. We therefore used a high speed 1 Gbit/s network to
avoid making it a performance bottleneck. For this study
we have selected parameters that are tunable at user,
scheduler, application or system levels [41]. There could be
certainly more parameters for performance and power
tuning, however, this paper attempts to provide an in-
depth understanding of how concurrent tuning of these
highly accessible and easy tunable parameters at various
levels can significantly impact the performance and energy

Table 1: Studied Hadoop Applications

Type of Benchmark Application Domain Workloads
Data

Source
Software Stacks

Micro

Benchmark

I/O - CPU testing

micro program

WordCount (WC) Text

Hadoop 1.2.1
Sort (ST) Table

Grep (GP) Text

TeraSort (TS) Table

Real world

Application

Social Network Collaborative Filtering (CF)
Text

Hadoop 1.2.1,

Mahout 0.6 E-commerce Classification (NB)

Figure 2. Methodology

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

4 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

efficiency.
3.2 Measurement

We use Perf [39] to capture the performance character-
istics of the studied applications. Perf is a Linux profiler
tool that records hardware performance counters data. Perf
exploits Performance Monitoring Unit (PMU) in the pro-
cessor to measure performance as well as other hardware
events at turn-time. For measuring power consumption,
Wattsup PRO power meter [40] measures and records
power consumption at one second granularity. The power
reading is for the entire system, including core, cache, main
memory, hard disks and on-chip communication buses. We
have collected the average power consumption of the stud-
ied applications and subtracted the system idle power to
estimate the power dissipation of the core. The same meth-
odology is used in [25], for power and energy analysis. Idle
power is measured using Watts up power meter when the
server is not running any application and is in the idle state
(note that most of power consumption of the off-chip
memory subsystems are due to leakage). Dstat [26] is used
for main memory, disk and CPU utilization analysis. Dstat
is a system-monitoring tool, which collects various statis-
tics of the system.
3.3 Results analysis

The resource utilizations including CPU utilization and
memory footprint are saved at run-time in CSV file and
then processed by R, an environment for statistical analy-
sis. MapReduce execution breakdown, including setup,
map, reduce and clean up phases is obtained through pars-
ing the log files of Hadoop framework. The main analysis
of this work includes performance, EDP, MapReduce exe-
cution time breakdown, CPU utilization and main memory
footprint.

 ENERGY EFFICIENCY ANALYSIS ON XEON VS

ATOM
In this section, we present energy efficiency analysis of

the studied applications when changing the frequency on
two very distinct microarchitectures; Intel Xeon- conven-
tional approach to design a high-performance server and
Intel Atom- microserver that advocates the use of a low-
power core. Figure 3 and Figure 4 show the EDP results on
Atom and Xeon. For each workload, the EDP values are
normalized to the EDP result on Atom at the lowest fre-
quency of 1.2GHz and with 512MB HDFS block size. The
low power characteristics of the Atom results in a lower
EDP on Atom compared to Xeon for most applications
with the exception of the Sort. This is due to the fact that
the performance gap (in terms of execution time) for the

I/O bound benchmarks is very large between Atom and
Xeon. Since EDP is the function of the execution time and
power, the total EDP on Xeon is lower for the Sort bench-
mark. In addition, the results show that increase in the fre-
quency reduces the total EDP. While increasing the fre-
quency increases the power consumption, it reduces the
execution time of the application and consequently the to-
tal EDP.

In addition, we carry out a sensitivity analysis of EDP
ratio of the applications on Xeon to Atom. Figure 4 presents
the EDP change with respect to the HDFS block size for a
frequency of 1.8GHz. The results show that increasing
HDFS block size increase the EDP gap between Atom and
Xeon. Since in Atom, the performance bottleneck exists in
the memory subsystem, improving memory subsystem
performance by increasing HDFS block size enhances its
performance more significantly compared to Xeon, and re-
duces the performance gap between the two architectures.

Overall, Atom has shown to be significantly more sen-
sitive to tuning parameters. Therefore, the performance
gap between the two architectures can be reduced signifi-
cantly through fine-tuning of the system and architectural
parameters on Atom, allowing maximum energy effi-
ciency.

 EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we discuss the power and performance

characteristics of Hadoop micro-benchmarks and real-
world applications on Atom microserver with respect to
the Hadoop configuration parameters.
5.1 Execution Time Analysis

Figure 5 (represented as a bar graph) shows the execu-
tion time of the studied Hadoop applications with respect
to the number of mapper slots (cores), HDFS block size and
operating frequency with the fixed input data size of 10GB
per node for Hadoop micro-benchmarks and real-world
applications, respectively For instance, 10GB input data

Figure 4: EDP ratio of Hadoop applications on Xeon to Atom at

various HDFS block size

0

0.5

1

1.5

2

2.5

3

32 64 128 256 512

E
D

P
_

x
e

o
n

/
 E

D
P

_
a

to
m

HDFS block size [MB]

Wordcount Sort Grep Terasort

Figure 3: EDP analysis of Hadoop applications on Xeon and Atom with frequency scaling

0

0.5

1

1.5

2

2.5

3

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

1.2

GHz

1.4

GHz

1.6

GHz

1.8

GHz

Atom Xeon Atom Xeon Atom Xeon Atom Xeon

WC ST GP TS

ED
P

EDP analysis of Hadoop Applications on Xeon and Atom

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

M. MALIK ET AL.: HADOOP WORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCY OPTIMIZATIONS ON MICROSERVERS
 5

size per node presents 80GB input data size processed by
application in an 8-node cluster. Hadoop exploits cluster-
level infrastructure with many nodes for processing big
data applications, however, the experimental data should
be collected at the node level to understand how various
optimizations and scheduling decisions affects the perfor-
mance, architectural parameters and energy-efficiency at
the node level. Across almost all studied applications, the
HDFS block size of 32MB has the highest execution time.
Small HDFS block size generates large number of map
tasks [number of map task = Input data size /HDFS block
size] that increases the interaction between master and
slave node. The performance improves significantly with
the increase in the HDFS block size. This behavior is con-
sistent across all studied applications when the number of
mapper slots is less than 4. With few number of mapper
slots (Mapper 2 and Mapper 1), large HDFS block size gen-
erates adequate number of map task to keep all mapper
slots (cores) in the system busy and reduces the interaction
between master and slave node. On the other hand, me-
dium HDFS block size of 256MB and 512MB are more pref-
erable for large number of mapper slots (cores) as it gener-
ates more number of map tasks to run simultaneously with
a fast execution time per map task. In contrast to Sort, other
applications such as WordCount, Grep, and Terasort show
a parabolic behavior at large number of mapper
slots/cores and achieve the minimum execution time at
256MB or 512MB HDFS block size. Sort optimal HDFS
block size is 1024MB whereas WordCount optimal block
size is 256MB with the maximum number of mappers’
slots/cores. Similar to recent work [19], we observe that
Terasort shows hybrid characteristics. Map phase of Tera-
sort is CPU-bound and Reduce phase is I/O-bound, there-
fore unlike Sort, Terasort optimal HDFS block size is
512MB. Moreover, Grep also illustrates hybrid characteris-
tics with a 512MB optimal HDFS block size. Grep consists
of two separate phases; search phase and sort phase run-
ning in sequence. Search phase is compute-bound that

counts how many times a matching string occurs and sort
phase is I/O-bound that matches strings with respect to
their frequency.

The parabolic behavior of WordCount, Grep, and Tera-
sort with respect to HDFS block size can be explained as
follows: Small HDFS block size introduces a large number
of map tasks that generates more interaction between mas-
ter and slave nodes. These interactions are necessary to re-
quest the HDFS block location information. On the other
hand, large HDFS block size reduces the slave node inter-
action with the master node. Additionally, with a large
block size, small metadata is required to be stored on the
master node that can be placed in the memory which is
faster to access. Conversely, storing large chunk size of
data on a node can create performance bottleneck if the ap-
plication requires accessing the same data recursively. This
explains the parabolic behavior in the compute-bound and
hybrid applications.

In addition, we have studied the impact of CPU oper-
ating frequency to understand how Hadoop applications
are sensitive to processor frequency scaling. The results
show that Sort application is least sensitive to the fre-
quency, compared to other applications. For this applica-
tion when CPU frequency is reduced to half, the perfor-
mance only drops by 20%. Sort is an I/O bound bench-
mark, which spends most of the execution time requesting
data and waiting for I/O operations to complete.

Figure 6 (bar graph) presents the execution time of the
studied real-world applications for 1, 2, 4 and 8 number of
mapper slots. Based on the micro-benchmark results, we
run the real-world applications with the HDFS block size
of 64MB --- 1024MB as 32MB HDFS block size has the max-
imum execution time. Similar to micro-benchmarks, CF
and NB applications have shown significant reduction in
the execution time when changing the HDFS block size
and number of mappers. The optimal HDFS block size for
CF and NB is 256MB. Both of these applications are com-
pute-bound applications as they have a higher CPU utili-
zation compared to the traditional CPU and parallel bench-
marks [16]. Additionally, by increasing the frequency from
1.2GHz to 2.4GHz, we observe a 34.4% - 56.6% and 54.4%
- 61.1% reduction in the execution time at the maximum
number of mappers with the increase in the HDFS block
size in CF and NB, respectively.

Although, the optimal HDFS block size for the peak
performance is closely decided by the application type, ex-
tensive experimental search to determine the best HDFS
size can be avoided by assigning 256MB block size for com-
pute-bound and 1024MB for I/O- bound applications as an
optimal choice to get close to the maximum achievable per-
formance.
5.2 Energy-Efficiency Analysis

EDP is a fair metric to compare various architectures,
or even the impact of changing optimization knobs in an
architecture. EDP (or PxDxD) represents a trade-off be-
tween power and performance. Without EDP and just us-
ing energy metric for comparison, we can simply reduce
the voltage and frequency in an architecture, and reduce its
energy, however at a cost of lowering the performance (in-
creased execution time). Therefore, performance along

Table 2: Experimental Microserver Platform
Hardware Type Parameter Value

Motherboard Model
Super micro

A1SRM-2758F

CPU

(*BW= Bandwidth)

Model Intel Atom C2758

Core 8

Hyper-Threading No

Base Frequency 1.9 GHz

Turbo Frequency No

TDP 20 W

L1 Cache 24 KB

L2 Cache 4 * 1024 KB

Memory Type DDR3 1600 MHz

Max. Memory BW* 25.6 GB/s

Max. Memory

Channels
Dual Channel

Disk

(HDD)

Model
Seagate

ST1000DM003-1CH1

Capacity 1000 GB

Speed 7200 RPM

Network Inter-

face Card

Model ST1000SPEXD4

Speed 1000 Mbps

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

6 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

with energy is important to find out the impact of optimi-
zation parameters. Therefore, In order to characterize the
energy efficiency, we evaluate Energy Delay Product (EDP)
metric to investigate trade-off between power and perfor-
mance when tuning Hadoop and processor parameters, as
shown in Figure 5 (represented as line graph). We observe
that the increase in the number of mappers running simul-
taneously equal to the number of available cores, mini-
mizes the EDP. Worst EDP is reported with one mapper,
while 8 mappers give the best EDP by effectively utilizing
all available cores. The margin of EDP improvement be-
comes smaller with the increase in the number of mappers.

The general observation is that the optimal energy ef-
ficiency is achieved when we utilize all available cores. In

other words, the performance improvement achieved by
adding more cores outweighs the power overhead associ-
ate with additional cores. However, the important obser-
vation is that we can reduce the reliance on the maximum
number of available cores by fine-tuning the system and
architecture parameters (discussed later in detail). In sec-
tion 5.4, we present the speedup improvement of each
benchmark when increasing the number of mappers. The
EDP trend is consistent with the execution time trend
showing that in I/O-bound applications, the maximum en-
ergy efficiency is achieved with the largest HDFS block
size, however compute-bound and hybrid applications
achieve optimal EDP at 256MB and 512MB, respectively.
Moreover, we have conducted the analyses of frequency

Figure 5(a): Execution Time and EDP of WordCount with various mappers, HDFS block size and operating frequencies

Figure 5(b): Execution Time and EDP of Sort with various mappers, HDFS block size and operating frequencies

Figure 5(c): Execution Time and EDP of Grep with various mappers, HDFS block size and operating frequencies

Figure 5(d): Execution Time and EDP of Terasort with various mappers, HDFS block size and operating frequencies

0.0E+0

2.0E+6

4.0E+6

6.0E+6

8.0E+6

1.0E+7

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

Mapper 8 Mapper4 Mapper 2 Mapper1

E
D

P
 (

Js
e

c)

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c)

HDFS Block Size (MB)

WordCount

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 256MB Block Size

Best EDP: 8 mappers, 256MB Block Size, Frequency 2.4GHz

EDP:

Execution Time:

1628.5

0.0E+0

2.0E+7

4.0E+7

6.0E+7

8.0E+7

1.0E+8

1.2E+8

0

1000

2000

3000

4000

5000

6000

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

Mapper 8 Mapper4 Mapper 2 Mapper1

E
D

P
 (

Js
e

c)

E
xe

cu
ti

o
n

 T
im

e
 (

Se
c)

HDFS Block Size (MB)

Sort

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 1024MB Block Size

Best EDP: 8 mappers, 1024MB Block Size, Frequency 1.6GHz

5896.3

Execution Time:

EDP:

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

1.0E+6

1.2E+6

1.4E+6

0

100

200

300

400

500

600

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

Mapper 8 Mapper4 Mapper 2 Mapper1

ED
P

 (
Js

ec
)

Ex
ec

u
ti

o
n

 T
im

e
(S

e
c)

HDFS Block Size (MB)

Grep

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq
1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 512MB Block Size

Best EDP: 8 mappers, 512MB Block Size, Frequency 2.4GHz

630.1

Execution Time:
EDP:

0.0E+0

5.0E+5

1.0E+6

1.5E+6

2.0E+6

2.5E+6

3.0E+6

0

100

200

300

400

500

600

700

800

900

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

Mapper 8 Mapper4 Mapper 2 Mapper1

E
D

P
 (

Js
e

c)

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c)

HDFS Block Size (MB)

TeraSort

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 512MB Block Size

Best EDP: 8 mappers, 512MB Block Size, Frequency 2.4GHz

882.1Execution Time:
EDP:

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

M. MALIK ET AL.: HADOOP WORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCY OPTIMIZATIONS ON MICROSERVERS
 7

scaling on the EDP results. Energy efficiency is maximized
at the highest frequency of 2.4GHz in all the studied appli-
cations with an exception of Sort. Sort operating at a fre-
quency of 1.6GHz provides the maximum energy effi-
ciency as opposed to 2.4GHz frequency. As discussed ear-
lier, Sort is an I/O bound application that spends a signifi-
cant amount of execution time reading data from and writ-
ing to HDFS. This behavior makes the performance of Sort
almost insensitive to the operating frequency.

As mentioned earlier the interesting observation is re-
garding the tuning of the HDFS block size and frequency
for various number of mappers. The results show that by
simultaneously fine-tuning the HDFS block size and oper-
ating frequency, we can reduce the number of mappers and
yet be as energy-efficient as with the maximum number of
mappers. For example, Grep of 512 MB block size and 2.4
GHz frequency with 2 and 4 mappers achieves higher or
similar energy-efficiency compared to the maximum num-
ber of mappers. This indicates that in the absence of avail-
able cores, for instance due to co-scheduling of other jobs
on the server, with fewer mapper we can fine-tune fre-
quency and HDFS block size and still be energy-efficient
competitive with more number of cores/mappers.

There are several works that attempt to find which ap-
plications should co-schedule simultaneously on a CMP on
high performance servers. [27] proposes a methodology to
build models that predicts application execution time and
energy consumption due to contention in shared cache and
memory resources when co-located applications run sim-
ultaneously on the same node. This work analyzes the co-
location interference effects on execution time and energy
dissipation caused by resources shared among the cores in
a multicore processor for the HPC application simulated
on the high-performance server, Xeon. [28] proposes the

energy-aware thread-to-core scheduling policy for hetero-
geneous multicore processor. This study attempts to
spread the shared resources contention uniformly across
available cores by predicting the future thread behavior
from the study of memory and performance demands of
individual threads to maximize the energy efficiency. Bub-
ble-up [29], a characterization and profiling methodology,
predicts the performance degradation between pairwise
application co-locations.

It is also important to note that most prior research
showed promising results by co-scheduling applications,
however, using SPEC and HPC applications on the high-
performance servers. Our work targets microservers and
highlights the fact that Hadoop-based big data applica-
tions can also be co-scheduled onto one node by concur-
rent fine-tuning of frequency and HDFS block size and still
remain as energy-efficient as using maximum number of
cores.

Figure 6 (line graph) presents the EDP analysis of the
real-world applications when utilizing 1, 2, 4 and 8 cores
(number of mappers). We have analyzed the effect of the
HDFS block size and frequency scaling on the EDP. The re-
sults show that the most energy-efficient HDFS block size
for compute bound applications - CF and NB is 256MB.
The trend for these two real-world applications is similar
to what we have already observed in micro-benchmarks
where optimal HDFS block size for the compute bound ap-
plications is 256MB. Additionally, CF and NB provide the
best EDP at the maximum frequency. The margin of EDP
improvement becomes smaller with the increase in the
HDFS block size at the maximum frequency.
5.3 MapReduce Phase Breakdown Analysis

There are several tasks involved in an end-to-end Ha-
doop MapReduce environment. The main tasks are map,
reduce, shuffle, sort, setup and clean up. The first phase is

 Figure 6(a): Execution Time and EDP of NB with various mappers, HDFS block size and operating frequencies

Figure 6(b): Execution Time and EDP of CF with various mappers, HDFS block size and operating frequencies

0.0E+0

5.0E+7

1.0E+8

1.5E+8

2.0E+8

2.5E+8

3.0E+8

3.5E+8

4.0E+8

4.5E+8

0

2000

4000

6000

8000

10000

12000

64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512

Mapper8 Mapper 4 Mapper 2 Mapper 1

ED
P

 (
Js

ec
)

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
)

HDFS Block Size (MB)

NB

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 256MB Block Size Best EDP: 8 mappers, 256MB Block Size, Frequency 2.4GHz

Execution Time:

EDP:

0.0E+0

5.0E+9

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512

Mapper8 Mapper 4 Mapper 2 Mapper 1

ED
P

 (
Js

e
c)

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c)

HDFS Block Size (MB)

CF

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 256MB Block Size Best EDP: 8 mappers, 256MB Block Size, Frequency 2.4GHz

Execution Time:

EDP:

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

8 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

the map that executes the user defined map tasks on the
entire input data. During this phase, the input data is di-
vided into fixed-size blocks called splits and is converted
into the <key,value> format. In the second phase, all <key,
value> pairs of a particular key are sent to a single reduce
task. To do so, shuffling is done to transfer intermediate
data from mappers to the reducers. Shuffle phase starts
shortly after the first map finishes, and does not complete
until all the map tasks are done. Later on, sort phase occurs
that sort <key,values> pairs to provide the correct form of
mappers to the reducers. Sort phase finishes after the shuf-
fle phase ends. Setup and cleanup are other major phases
of big data processing in Hadoop. The setup reads param-
eters from the configuration object and does all the
bookkeeping before the map task execution starts. The
setup time of JVM is included in the setup phase of MapRe-
duce application. Map and Reduce phases are the compu-
tational intensive portion of the application. The cleanup
frees all of the resources that have allocated during execu-
tion and flush out any intermediate variable.

In Figure 7, we present the normalized execution
break-down of MapReduce phases for the studied micro-
benchmarks when we change frequency for 512MB HDFS
block size and eight mappers. Note that for Sort bench-
mark, there is no reduce task. For Grep benchmark, which

includes two separate phases (i.e., searching and then sort-
ing the results), the setup and cleanup contribute to a sig-
nificant portion of execution time.

 Phase analysis is essential to profiling and character-
izing the application behavior. In Figure 8, we have ana-
lyzed the performance of various phases of MapReduce
application to analyze the frequency impact on various
phases of MapReduce application, while tuning parame-
ters at the application, system, and architecture levels. Our
results show that reduce phase of Grep and Map phase of
the sort application are less sensitive to the frequency as
these phases are I/O intensive in nature. Therefore, run-
ning these phases at lower frequencies provides significant
opportunity for reducing the power consumption with a
negligible performance degradation.

In Figure 8, we illustrate the impact of frequency scal-
ing on each phase of Hadoop MapReduce normalized to
its corresponding phase running at minimum frequency,
namely 1.2GHz. The trend of decreasing in execution time
as the operating CPU frequency increases is consistent
with the results in Figure 5. Figure 8 shows that setup and
cleanup phase of micro-benchmarks are frequency sensi-
tive. Since the computation intensive part of the micro-
benchmarks lies on the map and reduce phase, it is critical
to understand how sensitive they are to frequency scaling.
Having no reduce phase, Sort application spends most of
its execution time in the map phase. Interestingly, map
phase in Sort is insensitive to the operating frequency as
this phase spends a significant amount of execution time
reading data to and from the HDFS. One can execute such
phase at a lower frequency to save power. Another obser-
vation is regarding Grep reduce phase which shown to be
less sensitive to the frequency. This is due to the fact that
Grep benchmark consists of two independent steps that are
Grep searching and Grep Sorting, the latter step is I/O
bound. Consequently, unlike WordCount and TeraSort, the
reduce phase of Grep exhibits a different behavior; reduc-
ing the CPU frequency by half, from 2.4 GHz to 1.2 GHz
only results in an 18% reduction in the execution time,
therefore, providing significant opportunity for reducing
power consumption.

Figure 7: MapReduce normalized execution time breakdown

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.2 1.6 2 2.4 1.2 1.6 2 2.4 1.2 1.6 2 2.4 1.2 1.6 2 2.4

WordCount Sort Grep Terasort

Frequency Scaling (GHz)

Map Shuffle Sort Reduce Setup Cleanup Others

Figure 8: MapReduce Phases normalized execution time to minimum frequency at various frequencies

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

M. MALIK ET AL.: HADOOP WORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCY OPTIMIZATIONS ON MICROSERVERS
 9

5.4 Speedup
In this section, we analyze performance improvement

as the number of mappers increase with 32MB and 512MB
HDFS block size. The results are presented in Figure 9(a)-
(b). All the values are normalized to the execution time of
the application with one mapper. At the maximum fre-
quency, the speedup of 6.40, 5.76, 4.28 and 3.98 is achieved
for Sort, WordCount, Grep and TeraSort, respectively. As
Figure 9(b) shows, the increase in the HDFS block size re-
duces the speedup gains (2.18, 2.2, 1.71 and 2.82, respec-
tively). It is important to observe that TeraSort benchmark
attain more speedup gain at 512MB than 32MB of HDFS
block size. In other words, tuning the HDFS block size not
only changes the execution time but also affects the
speedup gain of big data applications, as the number of
mappers’ increases.

We also evaluate how the frequency scaling affects the
speedup achieved for the studied benchmarks. Figure 10
shows that when the frequency is reduced from 2.4GHz to

1.2GHz, the speedup gain increases. For example, when
the frequency reduces to the minimum, the speedup
achieved in Figure 9(a) is increased to 7.55, 6.32, 4.70 and
4.47, respectively. The speedup improvement is more
when the HDFS block size is larger. In other words, when
the application is operating at a lower frequency to save
power, we can compensate the performance loss to some
extend by increasing the number of mappers. This is the
case, in particular for Sort benchmark, as at the minimum
frequency the speed up improvement is almost 50% com-
pared to the maximum frequency for 512MB HDFS block
size. Consequently, the most efficient configuration for this
benchmark is with 8 mappers, 1.6GHz frequency and large
HDFS block size as it is shown in Figure 5(b).
5.5 Input Data Size Sensitivity Analysis

In this section, we study the impact of input data size
on power and performance. We conduct the data sensitiv-
ity analysis of Hadoop applications with the dataset of
10MB, 100MB, 1GB, 10GB, 25GB and 50GB per node. In a
distributed framework like Hadoop, the input data is di-
vided into data block and assigned to each node. Although
Hadoop exploits cluster-level infrastructure with many
nodes for processing big data applications, to understand
the impact of various parameters and how their interplay
impacts EDP, single node characteristics analysis is re-
quired. The number of mappers is fixed at 8 with the de-
fault HDFS block size (64MB) and governor is set as on-
demand. The results show that the execution time is pro-
portional to the input data size. Power consumption also
increases slightly as the size of input data increases. How-
ever, the power and performance sensitivity to the input

Figure 9(a): Speed up with 32 MB HDFS block size Figure 9(b): Speed up with 512 MB HDFS block size

at maximum frequency 2.4GHz at maximum frequency 2.4GHz

1

2

3

4

5

6

7

1 2 4 8

Number of Mappers

Sp
e

e
d

 U
p

WC-F2.4 S-F2.4

G-F2.4 TS-F2.4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 4 8

Number of Mappers

Sp
ee

d
 U

p

WC-F2.4 S-F2.4

G-F2.4 TS-F2.4

Figure 10: Maximum speed up improvement when cores oper-

ates at the minimum frequency normalized to the perfor-

mance at maximum frequency

0

10

20

30

40

50

60

Wordcount Sort Grep TeraSort

M
ax

. S
p

ee
d

U
p

 im
p

ro
ve

m
e

n
t

(%
)

32MB 512MB

Figure 11(a): Execution time of Hadoop micro-benchmarks Figure 11(b): Power of Hadoop micro-benchmarks

with various data sizes with various data sizes

0

2000

4000

6000

8000

10000

12000

14000

E
x

e
c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data Size (MB)

Wordcount

Sort

Grep

TeraSort

0

2

4

6

8

10

12

Wordcount Sort Grep TeraSort

P
o

w
e

r
(W

)

Data Size (MB)
10 100 1000

10000 25000 50000

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

10 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

data size is different across various applications. The exe-
cution time and power results are shown in Figure 11(a)-
(b), respectively. WordCount, which is a compute bound
benchmark is less sensitive to the input data size, whereas,
Sort execution time is shown to be highly affected by the
input data size. With 10MB and 100MB input size there is
not a significant variation in power consumption across all
bench-marks, however, with larger data sizes the power
consumption varies more noticeably and suddenly in-
creases. For Sort, the power consumption is more than
other studied benchmarks when the input data size is
small (i.e., 10MB and 1000MB). However, when the input
size is large (i.e., 25GB and 50GB) the power consumption
of WordCount and Grep becomes larger than Sort.
5.6 System Resources Profiling and Utilization

In this section, we present the real time system re-
sources profiling (CPU utilization and memory footprint)
to understand the runtime behavior and resource utiliza-
tions of Hadoop micro-benchmarks. Real-world applica-
tions have not been included in the system resource utili-
zation study, as we have observed that they have similar
behavior as compute-bound micro-benchmarks. In this set
of experiments, we study the following parameters: num-
ber of mappers (1 and 8), HDFS black size (32MB and 512
MB) and operating frequency (1.2GHz and 2.4 GHz).
5.6.1 CPU Utilization Analysis

Table 3 presents CPU utilization of Hadoop micro-
benchmarks that include overall CPUuser, CPUidle and
CPUiowait utilization. We use the dstat profiling tool that
classifies CPU utilization into different types including
user, idle, wait, system, hardware interrupt and software
interrupt. To evaluate the CPU utilization of an application
under test, we have selected user, idle and wait parame-
ters. CPUuser utilization present the amount of time when
the core is busy working on the user application and is not
idle (CPUidle utilization) or stalled due to I/O (CPUiowait

utilization). The CPU utilization trace is generated per sec-
ond and the reported values are the average utilization of
all cores over the total execution time.

CPUuser utilization decreases when the number of
mappers increases. In the I/O bound application-Sort-
CPU spends most of its execution time waiting for IO re-
quest. We have observed a similar trend in Table 3 where
Sort has low CPUuser utilization and high CPUiowait
readings compared to other applications. In WordCount,
with HDFS block size of 32MB, the average CPUuser utili-
zation decreases to 60%. However, with 512MB HDFS
block size the utilization reduces to 28%. (CPUidle is
70%). This is mainly due to the fact that large HDFS block
size is under-utilizing the number of active cores.

To illustrate the benchmark behavior, we have pres-

 Table 3: CPU Utilization (%)
 WC ST GP TS

m1_32MB_F1.2

user 96.29 93.52 93.16 89.92

Idle 0.30 0.02 1.43 0.08

iowait 0.04 0.00 0.07 0.56

m1_512MB_F1.2

user 96.54 81.40 88.96 86.17

Idle 0.57 0.05 3.81 0.85

iowait 0.02 0.48 0.13 0.70

m8_32MB_F1.2

user 61.38 66.16 56.64 47.23

Idle 36.70 17.56 40.48 47.56

iowait 0.18 1.48 0.22 0.81

m8_512MB_F1.2

user 28.12 33.95 23.11 34.21

Idle 70.80 34.13 74.08 59.55

iowait 0.37 22.99 0.80 1.44

m1_32MB_F2.4

user 96.21 93.52 92.32 88.81

Idle 0.51 0.04 2.27 0.38

iowait 0.08 0 0.08 1.04

m1_512MB_F2.4

user 95.32 73.44 80.22 85.02

Idle 1.36 0.36 11.05 0.85

iowait 0.78 6.72 1.03 0.97

m8_32MB_F2.4

user 60.15 63.48 49.97 47.77

Idle 37.68 25.15 46.24 44.83

iowait 0.16 6.7 0.98 2.97

m8_512MB_F2.4

user 28.3 19.17 19.53 30.38

Idle 70.07 44.08 75.49 60.18

iowait 0.95 31.52 3.09 5.21

 Figure 12(a): CPU utilization trace of WordCount for HDFS Figure 12(b): CPU utilization trace of Wordcount for

block size comparison number of mappers comparison

 Figure 13(a): CPU utilization trace of Sort for HDFS Figure 13(b): CPU utilization trace of Sort for
 block size comparison number of mappers comparison

0

20

40

60

80

100

120

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (sec)

m8-32MB-F2.4 m8-512MB-F2.4

0

20

40

60

80

100

120

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (sec)

m1-512MB-F2.4 m8-512MB-F2.4

0

20

40

60

80

100

120

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

6
1

7

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (sec)

m8-32MB-F2.4 m8-512MB-F2.4

0

20

40

60

80

100

120

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

Time (sec)

m1-512MB-F2.4 m8-512MB-F2.4

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

M. MALIK ET AL.: HADOOP WORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCY OPTIMIZATIONS ON MICROSERVERS
 11

ented the timeline based CPUuser utilization of Word-
Count and Sort benchmark with respect to the number of
mappers and the HDFS block size in Figure 12(a)-(b) and
Figure 13(a)-(b), respectively. In WordCount, as the HDFS
block size increases from 32MB to 512 MB, the traces show
a stable CPUuser utilization averaged at 60% and 25% with
an exception that 32MB finishes earlier than the 512 MB. In
contrast, CPUuser utilization reaches to almost 96% on av-
erage with single mapper (see Figure 12(b)). Sort bench-
mark also shows a similar trend. However, for this bench-
mark, the execution time with 512MB is less than 32MB
HDFS block size. The average CPUuser utilization for Sort
with maximum block size is only 19%. Moreover, this
benchmark shows large variation in the CPUuser utiliza-
tion and stays below 15% for a considerable amount of
time. The WordCount benchmark with one mapper almost
keeps the CPU busy for nearly the entire duration of the
application. Given that WordCount extracts a small
amount of data from a large set of data, its job output is
much smaller than the job input. Consequently, the Word-
Count is CPU bound having high average CPU utiliza-
tions.

Increasing the operating frequency results in a slight
reduction in the CPU utilization except for WordCount,
which is more compute bound benchmark compared to
others. Moreover, changing the block size almost does not
change the utilization with a single mapper, however, it
leads to considerable CPU utilization reduction when the
number of mappers increases. This behavior exhibits that

all cores are not actively working most of the time with the
largest HDFS block size. The underutilized cores are wait-
ing for I/O, being synchronized with other cores or wait-
ing until the results of other cores produced.

It is noteworthy that when the number of mappers in-
creases, the average CPUuser utilization reduces from
73%-96% to 19%-60% with respect to the HDFS block size.
To explain this behavior, we have analyzed the resource
stalls introduced at the back-end of processor pipeline us-
ing Intel Vtune [30]. The back-end contains record buffer
(ROB) and reservation stations (RS). When the ROB or RS
becomes full, the back-end stalls and does not accept any
new instruction. We have observed that with the increase
in the number of mappers, ROB stalls do not change sig-
nificantly, however, the RS stalls increase from 0.2% to 15%.
RS stalls occur when processor is waiting for inputs and
resources to be available. This behavior illustrates that with
the increase in the number of mappers, shared resources in
the memory hierarchy including the cache, shared
memory, and DRAM become the bottlenecks that results in
a low CPUuser utilization. In other words, most of the time
the cores are idle and dissipating leakage power. Such large
idle time motivates employing the Dynamic Power Man-
agement (DPM) techniques [31] for big data applications
when running large number of mappers. The low core uti-
lization indicates a significant potential to mitigate leakage
power dissipation.
5.6.2 Main Memory Footprint

In this section, we present the analyses of memory

Figure 14(a): Memory Footprints (MB) of WordCount Figure 14(b): Memory Footprints (MB) of Sort

Figure14(c): Memory Footprints (MB) of Grep Figure14(d): Memory Footprints (MB) of TeraSort

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

12 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

footprints results. Figure 14(a)-(d) illustrates how much
stress the memory (in MB) experiences while running the
studied benchmarks. The increase in the number of map-
pers indicates that multiple cores are processing the bench-
mark, which eventually put more stress on the memory
subsystem. We have observed 19% to 120 % increase in av-
erage memory footprint with the increase in the mappers
from one to eight. Variation in the memory footprint is mi-
nor with changing the frequency. As the HDFS block size
varies, minor changes are observed in the average memory
footprint for most of the cases with the exception of Word-
Count.

 DISCUSSION
In this section, based on the results and discussions

through-out the paper, the key findings are presented as
follows:
• The speedup obtained when increasing the number of

available cores on a microserver node outweighs the
power overhead associated with increasing the num-
ber of cores, making a configuration that uses the max-
imum number of available cores per node the most en-
ergy-efficient across all studied applications. Unlike
microservers, for traditional high performance server
the power consumption increase, as the number of
mappers’ increases, outweighs the performance gains.
Therefore, microservers introduces a new trade-offs to
process the Big data applications for maximum en-
ergy-efficiency.

• Increasing the number of mappers/cores, improves
performance and reduces the CPU utilization. In all
studied cases using maximum number of cores pro-
duces best results in terms of both performance and
energy-efficiency. It was also observed that if the num-
ber of mappers exceeds available cores, mapper tasks
are buffering which potentially reduces the perfor-
mance and impact the energy-efficiency.

• Although utilizing all available cores on each micro-
server node provides maximum energy-efficiency
across all studied applications, concurrent fine-tuning
of frequency and HDFS block size reduces the reliance
on the maximum number of cores, and instead make a
configuration with fewer number of cores to be en-
ergy-efficient competitive with the maximum number
of cores. This helps freeing up cores on each node to
accommodate scheduling incoming applications in a
cloud-computing environment.

• Tuning the block size significantly affects the perfor-
mance and energy-efficiency of the system. I/O bound
Hadoop applications provide the optimal execution
time and EDP with the largest HDFS block size. De-
fault HDFS block size of 64MB is not optimal, neither
for power nor for the performance.

• The speed up improvement is more when the HDFS
block size is larger. I/O bound applications can run at
a lower frequency to save power. Performance loss can
be compensated to a significant extend by increasing
the number of mappers.

• Increasing the number of mappers and the number of
active cores result in drastic reduction in average core

utilization. In other words, with more number of map-
pers most of the times the cores are becoming idle and
dissipate leakage power. This motivates employing
Dynamic Power Management (DPM) techniques [31]
for big data applications when running large number
of mappers.

• Default Hadoop configuration parameters are not op-
timal for maximizing the performance and energy-ef-
ficiency. With fine tuning the Hadoop parameters
along with the system configurations, a significant
gain in performance and energy-efficiency can be
achieved.

 RELATED WORK
Recently, there have been a number of efforts to under-

stand the behavior of big data and cloud scale applications
by benchmarking and characterizing them, to find out
whether state-of-the-art high performance server plat-
forms are suited to process them efficiently. The most
prominent big data benchmarks, includes CloudSuite,
HiBench, BigDataBench, LinkBench and CloudRank-D
which mainly focus on the applications’ characterization
on high performance servers [17, 18, 19, 20, 32]. CloudSuite
benchmark was developed for Scaleout cloud workloads.
HiBench is a benchmark suite for Hadoop MapReduce.
The BigDataBench was released recently and includes
online service and offline analytics for web service appli-
cations. LinkBench is a real-world database benchmark for
social network application. CloudCmp [33] use a system-
atic approach to benchmark various components of the
cloud to compare cloud providers. These works analyze
the application characterization of big data applications on
the Hadoop platform, but they do not discuss the Hadoop
configuration parameters for energy efficiency.

Many recent works have investigated the energy effi-
ciency in the Hadoop system; Examples are energy-effi-
cient storage for Hadoop [8, 9], energy aware scheduling
of MapReduce jobs [34] and GreenHadoop [35]. However,
the focus of these works is on the reduction of operating
cost of data centers for energy efficiency. Our study is dif-
ferent as it focuses on tuning Hadoop parameters to im-
prove the performance and energy efficiency. The impact
of Hadoop configuration parameters is discussed briefly in
[17] and [36] but they have not studied the impact of fre-
quency scaling and its interplay on Hadoop specific pa-
rameters such as HDFS block size and the number of map-
pers for optimizing the energy efficiency. [21] has focused
on the resource utilization for performance and energy ef-
ficiency on Amdahl blades running Hadoop. However,
they have studied only two applications with default Ha-
doop configuration parameters. Our study illustrates that
default Hadoop configuration parameters (like HDFS
block size of 64 MB) are not optimal for maximizing per-
formance and energy efficiency. In [15], authors analyzed
the performance and throughput with the scale-up and
scale-out cluster environment to figure out which cluster
configuration is suitable for Hadoop Mapreduce jobs. Ad-
ditionally, they have presented the optimization applied to
Hadoop like concurrency, network, memory and reduce-
phase optimization on the high performance server; Xeon.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

M. MALIK ET AL.: HADOOP WORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCY OPTIMIZATIONS ON MICROSERVERS
 13

However, this work has not discussed the power and en-
ergy efficiency. [22] presents a study of a Hadoop cluster
for processing big data on ARM servers. Authors have
evaluated three different hardware configurations to un-
derstand the limitations and constraints of the cluster. The
energy usage and total cost of ownership for MapReduce
applications has been analyzed on the Xeon and ARM
big.LITTLE architecture in [37]. They have not evaluated
the impact of the Hadoop configuration parameters for
performance and energy efficiency. HDFS block size is one
of the key design parameters and vital to the performance
and power optimization. Additionally, this works does not
discuss the interplay of system, architectural and applica-
tions parameters nor study the resource profiling that is es-
sential to understand the runtime behavior and resource
utilization of the Hadoop applications. The work in [38] is
the closest to our work as they conduct a study of micro-
server performance for Hadoop applications. However,
their main focus is on the assessment of five different hard-
ware configuration clusters for performance, energy dissi-
pation and cost. In contrast, our work explores Hadoop
configuration parameters such as number of mappers,
HDFS block size and data input size as well as a system
parameter (frequency scaling) for the performance and en-
ergy efficiency on microserver.

Our work is different from all above work as it primar-
ily focuses on various Hadoop configuration parameters
that directly affect the MapReduce job performance, power
and energy efficiency on emerging x86 based low power
cores microservers and help to understand the interplay of
the Hadoop system, architecture and application parame-
ters to achieve the maximum performance and energy effi-
ciency improvement.

 CONCLUSIONS
In this paper, we present a comprehensive analysis of

the impact of Hadoop system configuration parameters, as
well as application and architecture level parameters, and
the interplay among them on performance and energy-ef-
ficiency of various real-world big data applications run-
ning on Atom microserver, a recent trend in server design
which advocates the use of low-power small cores to ad-
dress the power and energy-efficiency challenges. We
showed that performance and energy efficiency of big data
applications are highly sensitive to various Hadoop con-
figuration parameters, as well as system and architecture
level parameters, demonstrating that the baseline Hadoop
as well as system configurations are not necessarily opti-
mized for a given benchmark and data input size.

Through performance and power measurements and
analysis on Atom microserver, first, we showed that in-
creasing the number of mappers that run simultaneously
along with increasing the number of active cores help to
maximize energy efficiency. Second, our analysis showed
that the overall energy efficiency is highly decided by the
HDFS block size and is different for each benchmark,
demonstrating that the default configuration parameters
are not optimal. Third, we have explored the impact of
scaling the operating frequency of the compute node for
the performance and energy efficiency. Our results show

that big data applications become less sensitive to fre-
quency with large number of mappers. Lastly, we con-
ducted the data size sensitivity analysis of Hadoop micro-
benchmarks. Results illustrate that the performance and
power of compute bound applications are less sensitive to
the input data size as compared to I/O bound applications.
The results indicate that when not all cores are available,
for instance due to co-scheduling of other jobs on the
server, with fewer mapper/cores we still can be as energy-
efficient and competitive with a case when maximum
cores/mappers are available by fine-tuning several param-
eters such as core frequency and HDFS block size. In addi-
tion, the results showed that increasing the number of
mappers/active cores result in a noticeable reduction of
average CPU utilization, which indicates the potential of
using power management techniques when the number of
mappers/available cores is at maximum.

We believe that the analyses provided in this work and
the trends identified help guiding the scheduling decision
to better utilize microserver resources by jointly tuning the
application, system and architecture level parameters that
influence the performance and energy efficiency.
ACKNOWLEDGMENTS
This work is supported by the Nation Science Foundation un-
der grant no. CNS 1526913.

REFERENCES
[1] A. Venkat, et al., "Harnessing ISA diversity: Design of a heteroge-

neous-ISA chip multiprocessor." In ISCA, 2014
[2] B. Raghunathan, et al., "Cherry-picking: exploiting process varia-

tions in dark-silicon homogeneous chip multi-processors."
In DATE, 2013

[3] M. Malik, et. al., ‘‘Big Data on Low Power Cores Are Low Power
Embedded Processors a good fit for the Big Data Workloads?’’,
in ICCD, 2015

[4] M. B. Taylor, "Is dark silicon useful?: harnessing the four horsemen
of the coming dark silicon apocalypse." In DAC, 2012

[5] T. S. Muthukaruppan, et al., "Hierarchical power management for
asymmetric multi-core in dark silicon era." In DAC, 2013

[6] Intel, Intel 64 and IA-32 Architecture Software Development Man-
ual, http://www.intel.com/content/www/us/en/proces-
sors/architectures-software-developer-manuals.html, Aug 2012

[7] P. Boyle, "The bluegene/q supercomputer." PoS LATTICE2012 20
[8] R. T. Kaushik, et al., "Greenhdfs: towards an energy-conserving,

storage-efficient, hybrid hadoop compute cluster." In Proceedings
of the USENIX annual technical conference, p. 109. 2010

[9] R. T. Kaushik, et al., "Evaluation and analysis of greenhdfs: A self-
adaptive, energy-conserving variant of the hadoop distributed file
system." In CloudCom, 2010

[10] L. A. Barroso, et al., "The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines." Synthesis lectures
on computer architecture 8, 2013

[11] V. Vasudevan, et al., "Energy-efficient cluster computing with
FAWN: Workloads and implications." In ICEECN, 2010

[12] X-Gene™, https://www.apm.com/products/data-center/x-
gene-family/x-gene/

[13] Moonshot System, http://www8.hp.com/us/en/products/serv-
ers/moonshot/

[14] M. Zaharia, et al., "Improving MapReduce Performance in Heter-
ogeneous Environments." In OSDI, 2008.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

14 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS

[15] R. Appuswamy, et al., "Scale-up vs Scale-out for Hadoop: Time to
rethink?." In SoCC, 2013

[16] M. Malik, et al., "System and architecture level characterization of
big data applications on big and little core server architectures."
In Big Data, 2015

[17] C. Luo, et al., "Cloudrank-d: benchmarking and ranking cloud
computing systems for data processing applications." Frontiers of
Computer Science 6, 2012

[18] M. Ferdman, et al., "Clearing the clouds: a study of emerging scale-
out workloads on modern hardware." In ACM SIGPLAN, 2012

[19] S. Huang, et al.,"The HiBench benchmark suite: Characterization
of the MapReduce-based data analysis." In ICDEW, 2010

[20] T. G. Armstrong et al., "LinkBench: a database benchmark based
on the Facebook social graph." In ACM SIGMOD, 2013

[21] Da Zheng, Alexander Szalay, and Andreas Terzis. "Hadoop in
Low-Power Processors." arXiv preprint arXiv:1408.2284 (2014)

[22] C. Kaewkasi, et al., "A study of big data processing constraints on
a low-power hadoop cluster." In ICSEC, 2014

[23] Maria Malik, Katayoun Neshatpour, Tinoosh Mohsenin, Avesta
Sasan, Houman Homayoun, ‘‘Big vs Little Core for Energy-Effi-
cient Hadoop Computing’’, in DATE, 2016

[24] K. Ousterhout, et al. "Making Sense of Performance in Data Ana-
lytics Frameworks." NSDI. Vol. 15. 2015.

[25] E. Blem, et al., "Power struggles: Revisiting the RISC vs. CISC de-
bate on contemporary ARM and x86 architectures." In HPCA, 2013

[26] Dstat http://lintut.com/dstat-linux-monitoring-tools/
[27] D. Dauwe, et al., ‘‘HPC node performance and energy modeling

with the co-location of applications,’’ The Journal of Supercompu-
ting, 72(12), 2016, pp.4771-4809

[28] R. Nishtala, et al., ‘‘Energy-aware thread co-location in heterogene-
ous multicore processors’’ In EMSOFT, 2013.

[29] J. Mars, et al., ‘‘Bubble-up: Increasing utilization in modern ware-
house scale computers via sensible co-locations,’’ In MICRO, 2011

[30] Intel Vtune, https://software.intel.com/en-us/intel-vtune-ampli-
fier-xe?language=de 2016

[31] L. Benini, et al., "A survey of design techniques for system-level
dynamic power management." In VLSI, 2000

[32] W. Gao, et al. "Bigdatabench: a big data benchmark suite from web
search engines." ASBD 2013 in conjunction with ISCA 2013

[33] A. Li, et al., "CloudCmp: comparing public cloud providers." In
ACM SIGCOMM conf. on Internet measurement. ACM, 2010

[34] N. Yigitbasi, et al., "Energy efficient scheduling of mapreduce
workloads on heterogeneous clusters." In GCM. ACM, 2011

[35] Í. Goiri, et al., "GreenHadoop: leveraging green energy in data-pro-
cessing frameworks." Proc. of the 7th ACM EuroSys, 20122

[36] Z. Guo, et al., "Investigation of data locality in mapreduce."
In CCGRID, 2012

[37] D. Loghin, et al., "A performance study of big data on small
nodes."Proceedings of the VLDB Endowment 8, no. 7 (2015)

[38] A. Anwar, et al., "On the use of microservers in supporting hadoop
applications." In CLUSTER, 2014

[39] Perf https://perf.wiki.kernel.org/index.php/Main_Page
[40] WattsUpPro meter https://www.wattsupmeters.com/
[41] M. Malik, et. al., ‘‘Characterizing Hadoop Applications on Micro-

servers for Performance and Energy Efficiency Optimizations’’, in
ISPASS, 2016

[42] Apache Mahout: http://mahout.apache.org/
[43] K. Neshatpour, et. al., ‘‘Accelerating Machine Learning Kernel in

Hadoop Using FPGAs’’, in CCGRID, 2015

 Maria Malik is currently working to-
wards the Ph.D. degree in Electrical
and Computer Engineering depart-
ment, at George Mason University,
VA. She has received the M.S. de-
gree in Computer Engineering from
the George Washington University,
DC and B.E. degree in Computer
Engineering from the Center of Ad-

vanced Studies in Engineering, Pakistan. Her research interests
are in the field of Computer Architecture with the focus of perfor-
mance characterization and energy optimization of big data ap-
plications on the high performance servers and low-power em-
bedded servers, accelerating machine learning kernels, parallel
programming languages and parallel computing.

Katayoun Neshatpour is a PhD stu-
dent at the department of Electrical and
Computer Engineering at George Ma-
son University. She is a recipient of the
three-year Presidential Fellowship and
a 1-year supplemental ECE department
scholarship. Advised by Dr.
Homayoun and co-advised by Dr. Sa-
san, her PhD research is on Hardware
Acceleration of Big data applications,
with a focus on the implementation of
several machine learning algorithms in

Apache Hadoop and efficient implementation of convolutional neural
networks. Katayoun got her Master's degree from Sharif University of
Technology, where she worked on the VLSI implementation of a
MIMO detector applied to the LTE.

Setareh Rafatirad is an Assistant Pro-
fessor of the IST department at George
Mason University. Prior to joining
George Mason, she spent four years as
a Research Assistant at UC Irvine. Prior
to that, she worked as a software devel-
oper on the development of numerous
industrial application systems and tools.
As a known expert in the field of Data
Analytics and Application Design, she
has published on a variety of topics re-
lated to big data, and served on the

panel of scientific boards. Setareh received her PhD degree from the
Department of Information and Computer Science at the UC Irvine in
2012. She was the recipient of 3-year UC Irvine CS department chair
fellowship. She received her MS degree from the Department of Infor-
mation and Computer Science at the UC Irvine in 2010.

Houman Homayoun is an Assistant
Professor of the ECE department at
George Mason University. He also
holds a joint appointment with the Com-
puter Science department. Prior to join-
ing GMU, he spent two years at the UC
San Diego, as NSF Computing Innova-
tion (CI) Fellow awarded by the CRA
and CCC. Houman is currently leading
a number of research projects, includ-
ing the design of heterogeneous archi-

tectures for big data and non-volatile logics to enhance design secu-
rity, which are funded by National Science Foundation (NSF), General
Motors Company (GM) and Defense Advanced Research Projects
Agency (DARPA). Houman received his PhD degree from the Depart-
ment of Computer Science at the UC Irvine in 2010, an MS degree in
computer engineering in 2005 from University of Victoria, and his BS
degree in electrical engineering in 2003 from Sharif University of tech-
nology.

