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Hadoop Workloads Characterization for Performance 

and Energy Efficiency Optimizations on Microservers  
Maria Malik, Katayoun Neshatpour, Setareh Rafatirad, Houman Homayoun 

Abstract—The traditional low-power embedded processors such as Atom and ARM are entering into the high-performance server 

market. At the same time, big data analytics applications are emerging and dramatically changing the landscape of data center 

workloads. Emerging big data applications require a significant amount of server computational power. However, the rapid growth 

in the data yields challenges to process them efficiently using current high-performance server architectures. Furthermore, 

physical design constraints, such as power and density have become the dominant limiting factor for scaling out servers. 

Numerous big data applications rely on using Hadoop MapReduce framework to perform their analysis on large-scale datasets. 

Since Hadoop configuration parameters as well as system parameters directly affect the MapReduce job performance and energy-

efficiency, joint application, system and architecture level parameters tuning is vital to maximize the energy efficiency for Hadoop-

based applications. In this work, through methodical investigation of performance and power measurements, we demonstrate 

how the interplay among various Hadoop configuration parameters, as well as system and architecture level parameters affect 

not only the performance but also the energy-efficiency across various big data applications. Our results identify trends to guide 

scheduling decision and key insights to help improving Hadoop MapReduce applications performance, power and energy-

efficiency on microservers. 

Index Terms—Application Characterization, Hadoop MapReduce, big data, Microservers, Energy-Efficiency, Performance,  
Power and Performance Tuning Parameters  

------------------------------------------------------------   �   ------------------------------------------------------------ 

 INTRODUCTION

 ow power is one of the main constraints for the design 
of battery-operated embedded systems. However, this 

design objective has come into attention for high perfor-
mance and data center systems as well. The main reasons 
are power constraint of the processor and physical con-
straint of the chip as the semiconductor industry has 
reached its physical scaling limits. In fact, continuous in-
crease in the number of transistors on a chip has led to the 
so-called ‘‘dark silicon’’ phenomena, where the power den-
sity does not allow all the transistors to turn on simultane-
ously. There is a large body of research on harnessing dark 
silicon or maximizing performance under power con-
straints [1, 2, 4, 5]. Cost and environmental reasons are 
other motivations to govern energy-efficient and low 
power design. As a consequence, hardware design compa-
nies have considered energy efficiency as one of the main 
design concerns and have provided mechanisms to ease 
developing green applications. Intel provides RAPL inter-
face which enables the software developers to measure and 
control the power consumption at different domain, in-
cluding core, package, DRAM and embedded graphic [6]. 
ARM has introduced big.LITTLE technology, which allows 
migrating applications between simple and complex cores 
based on workload demands. IBM has employed low 
power little cores in BlueGene/Q to increase power effi-
ciency [7]. As it is evident by these latest developments, the 
paradigm shift has been occurring from the performance 

centric to energy-efficient centric design methodologies in 
the industry.  

The energy demand of data centers that support 
MapReduce model is increasing rapidly [8, 9], which is the 
main obstacle for their scalability. Moreover, since energy 
consumption in data centers contributes to major financial 
burden [10] and prolongs break-even point (when a data 
center makes a profit), designing energy-efficient data cen-
ters is becoming very important [23]. Current server de-
signs, based on commodity high-performance processors 
are not an efficient way to deliver green computing in 
terms of performance/watt. Therefore, the embedded pro-
cessors that are designed and developed based on energy 
efficiency metrics are finding their way in server architec-
tures [3]. Microservers employ embedded low power pro-
cessors as the main processing unit. These platforms are 
shown to be a promising solution to enhance energy-effi-
ciency and reduce cost in data centers. They follow the Sys-
tem-on-Chip (SoC) approach to render the CPU, I/O and 
networking components fully integrated onto a single 
chip. 

Several companies and academics have developed 
cluster architectures based on ARM or Intel Atom cores. 
An example is FAWN (Fast Array of WimpyNodes) [11], 
which composed of a large number of embedded and effi-
cient Intel Atom cores where each core is low power dissi-
pating only a few watts of power. X-Gene platform [12] de-
veloped by Applied Micro is another example of a server-
class SoC which is designed for cloud and enterprise serv-
ers based on ARM v8 64-bit core architecture. HP low-
power Moonshot servers [13] also uses ARM and Atom 
embedded cores on a single rack. Due to the wide adoption 
of x86-based architectures in servers, in this paper we 
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choose Atom to study, as it has a low power embedded mi-
cro-architecture with high-performance x86 ISA.  

The world of big data is changing constantly and pro-
ducing a large amount of data that creates challenges to 
process them using existing solutions. Big data applica-
tions heavily rely on deep machine learning and data min-
ing algorithms, running complex database software stack 
with significant interaction with I/O and OS [43]. The 
Apache Hadoop framework, a defacto standard for analyt-
ics, assists the processing of large datasets in a distributed 
computing environment. Numerous big data applications 
rely on using the Hadoop MapReduce framework to per-
form their analysis on large-scale datasets. Several research 
works have reported the performance analysis of Hadoop 
MapReduce applications on high performance servers 
such as Xeon [14, 15]. However, the important research 
question is whether low-power embedded architectures 
are suited to process big data and in particular MapReduce 
applications efficiently. To understand this, in a recent 
work [16], we evaluated big data applications on two dis-
tinct server architectures; high-performance Xeon server 
and low-power embedded Atom server. Our results 
demonstrate that while big Xeon core provides high per-
formance and more energy-efficiency for traditional CPU 
applications compared to little core, it is not power efficient 
to process big data applications. The results further show 
that the little core is more energy-efficient than big core in 
almost all studied applications, and in particular for com-
pute-intensive applications. Overall, low power embed-
ded architectures can provide significant energy-efficiency 
for processing big data analytics applications compared to 
conventional big high performance core.  

There have been several works on characterizing Ha-
doop MapReduce applications [17, 18, 19, 20], or optimiz-
ing them for performance or power [15, 21]. Most of these 
works either mainly focus on performance optimization 
[22], ignoring energy-efficiency, or mainly deployed on 
high performance big Xeon core. In addition, given that the 
performance and power of Hadoop MapReduce applica-
tions is sensitive to various tuning parameters at applica-
tion (application type, data size per node), system (HDFS 
block size, number of mappers running simultaneously 
per microserver node) and architecture levels (operating 
voltage and frequency of core), it is important to under-
stand the role of these parameters and the interplay among 
them for energy-efficiency optimizations. While prior 

work mainly ignored the interplay among these tuning pa-
rameters, in this work we characterize Hadoop applica-
tions across a wide range of tuning parameters to under-
stand the interplay effect and accordingly the optimization 
opportunities on microservers for enhancing their energy 
efficiency. 
Contributions: To the best of our knowledge this is the first 
paper that comprehensively analyzes the behavior of the 
emerging big data applications running in Hadoop 
MapReduce environment on microserver with respect to 
various system, application and architecture levels tuning 
parameters and the interplay among them. This analysis 
will assist guiding the scheduling decisions and help opti-
mizing for performance, power and energy-efficiency im-
provements. Grounded in empirical analysis, our main 
contributions are: 
• We analyze the impact of various tuning parameters at 

system-level (number of mappers running simultane-
ously per microserver node, HDFS block size), appli-
cation-level (application type and input data size) and 
architectural-level (operating voltage and frequency) 
on the performance, power and energy efficiency for 
various Hadoop micro-benchmarks and real-world 
applications. 

• We analyze how the interplay of various tuning pa-
rameters at application, system, and architecture lev-
els affects the power and performance sensitivity of 
the Big data applications. 

• We analyze the execution time breakdown of various 
phases of Hadoop micro-benchmarks. To guide power 
optimization using frequency scaling, we further ana-
lyze how the performance of these phases is sensitive 
to the operating frequency. 

• We evaluate real time system resources measurement 
including CPU utilization and memory footprint to 
understand the runtime behavior and resource con-
sumption of Hadoop micro-benchmarks when vary-
ing system, architecture and application level tuning 
parameters.  

Consequently, we make the following major observation: 
• The speedup obtained when increasing the number of 

available cores on microserver node outweighs the 
power overhead associated with increasing the num-
ber of cores. This indicates that utilizing the maximum 
number of available cores per node achieves the best 
energy-efficiency across all studied applications. 

• While utilizing all available cores on each microserver 
node provides the maximum energy-efficiency across 
all studied applications, concurrent fine-tuning of fre-
quency and HDFS block size reduces the reliance on 
the maximum number of cores. We can achieve a com-
petitive energy-efficiency with fewer number of cores 
compared to the maximum number of cores by simul-
taneously fine tuning the HDFS block size and the op-
erating frequency of the system. This helps freeing up 
cores on each node to accommodate scheduling co-
runner applications in a cluster computing environ-
ment. 

• Hadoop I/O bound applications can be scheduled at 
lower processor operating frequency on microserver 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1. A simple conceptual view of Hadoop data flow 
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to save power. Performance loss can be compensated 
to a significant extent by increasing the number of 
mappers, and therefore the number of cores, with a 
small impact on total power consumption. 

 
 HADOOP FRAMEWORK AND TUNING PARAME-

TERS 
Apache Hadoop is an open-source Java-based frame-

work of MapReduce implementation. It assists the pro-
cessing of large datasets in a distributed computing envi-
ronment and stores data in highly fault-tolerant distrib-
uted file system, HDFS. Figure 1 shows a simple concep-
tual view of steps involve in Hadoop MapReduce. When 
an application is submitted for scheduling, Hadoop splits 
its input data into a fixed data blocks where each block is 
assigned to a map task. A map task transforms the input 
data into intermediate key-value pairs. These generated in-
termediate values are transferred from the mappers to the 
appropriate reducers in the merge stage.  Shuffle and sort 
of key-values are done in this stage. As different subset of 
intermediate key-value pairs are assigned to each reducer, 
the reducers consolidate data into the final output. There 
are a number of parameters that directly impact the 
MapReduce application performance and energy-effi-
ciency. In this work, we study various parameters includ-
ing the number of mappers, operating voltage and fre-
quency of the core, HDFS block size, and the size of data 
per node that can be tuned by the user, scheduler or the 
system and are impacting the energy-efficiency.  
2.1 Application Diversity 

Hadoop cluster hosts a variety of big data applications 
running concurrently. We have included four micro-bench 

marks in our study, namely WordCount-WC, Sort-ST, 
Grep-GP and TeraSort-TS. We have selected these micro-
benchmarks as they are kernels in many big data applica-
tions representing diverse behavior [19]. These micro-
benchmarks stress-test different aspects of a microserver 
cluster [19]. We have also included two real-world applica-
tions namely Naïve Bayes -NB and Collaborative Recom-
mendation Filtering-CF) in our study by incorporating ma-
hout library [42]. Table 1 shows Hadoop micro-bench-
marks and real-world applications for this study along 
with their particular domain and data type.   
2.2 Interdependent Tuning Parameters 

We have studied the impact of the system, application, 
and architectural level performance and power tuning pa-
rameters including the HDFS block size (32MB, 128MB, 
256MB, 512MB, 1024MB), input data size of the application 
(10MB, 100MB, 1GB, 10GB, 25GB and 50GB), number of 
mappers that run simultaneously on a single node (1, 2, 4 
and 8), and frequency settings (1.2GHz, 1.6GHz, 2.0GHz, 
2.4GHz) to evaluate how these parameters affect energy ef-
ficiency of big data applications on microserver. Moreover, 
we thoroughly analyze the impact of these parameters on 
memory system and processor utilization.  

 MEASUREMENT AND METHODOLOGY 
The methodology in which our experiments are con-

ducted is presented in Figure 2. Our methodology is di-
vided into three major steps. 
3.1 Hardware/software infrastructure 

We conduct our study on Intel Atom C2758 server that 
has 8 processing cores per node and two levels of cache hi-
erarchy shown in table 2. The operating system is Ubuntu 
13.10 with Linux kernel 3.11. All experiments are per-
formed on eight-node Atom server with Hadoop 1.2.1. It is 
important to note that while network overhead in general 
is influencing the performance of studied applications and 
therefore the characterization results, for big data applica-
tions, as shown in a recent work [24], a modern high speed 
network introduces only a small 2% performance over-
head. We therefore used a high speed 1 Gbit/s network to 
avoid making it a performance bottleneck.  For this study 
we have selected parameters that are tunable at user, 
scheduler, application or system levels [41]. There could be 
certainly more parameters for performance and power 
tuning, however, this paper attempts to provide an in-
depth understanding of how concurrent tuning of these 
highly accessible and easy tunable parameters at various 
levels can significantly impact the performance and energy 

Table 1: Studied Hadoop Applications 

Type of Benchmark Application Domain Workloads 
Data 

Source 
Software Stacks 

Micro  

Benchmark 

I/O - CPU  testing 

micro program 

WordCount (WC) Text 

Hadoop 1.2.1 
Sort (ST) Table 

Grep (GP) Text 

TeraSort (TS) Table 

Real world  

Application  

Social Network Collaborative Filtering (CF) 
Text 

Hadoop 1.2.1, 

Mahout 0.6 E-commerce  Classification (NB) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Methodology 
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efficiency. 
3.2 Measurement  

We use Perf [39] to capture the performance character-
istics of the studied applications. Perf is a Linux profiler 
tool that records hardware performance counters data. Perf 
exploits Performance Monitoring Unit (PMU) in the pro-
cessor to measure performance as well as other hardware 
events at turn-time. For measuring power consumption, 
Wattsup PRO power meter [40] measures and records 
power consumption at one second granularity. The power 
reading is for the entire system, including core, cache, main 
memory, hard disks and on-chip communication buses. We 
have collected the average power consumption of the stud-
ied applications and subtracted the system idle power to 
estimate the power dissipation of the core. The same meth-
odology is used in [25], for power and energy analysis. Idle 
power is measured using Watts up power meter when the 
server is not running any application and is in the idle state 
(note that most of power consumption of the off-chip 
memory subsystems are due to leakage). Dstat [26] is used 
for main memory, disk and CPU utilization analysis. Dstat 
is a system-monitoring tool, which collects various statis-
tics of the system.  
3.3 Results analysis  

The resource utilizations including CPU utilization and 
memory footprint are saved at run-time in CSV file and 
then processed by R, an environment for statistical analy-
sis. MapReduce execution breakdown, including setup, 
map, reduce and clean up phases is obtained through pars-
ing the log files of Hadoop framework. The main analysis 
of this work includes performance, EDP, MapReduce exe-
cution time breakdown, CPU utilization and main memory 
footprint.  

 ENERGY EFFICIENCY ANALYSIS ON XEON VS 

ATOM  
In this section, we present energy efficiency analysis of 

the studied applications when changing the frequency on 
two very distinct microarchitectures; Intel Xeon- conven-
tional approach to design a high-performance server and 
Intel Atom- microserver that advocates the use of a low-
power core. Figure 3 and Figure 4 show the EDP results on 
Atom and Xeon. For each workload, the EDP values are 
normalized to the EDP result on Atom at the lowest fre-
quency of 1.2GHz and with 512MB HDFS block size. The 
low power characteristics of the Atom results in a lower 
EDP on Atom compared to Xeon for most applications 
with the exception of the Sort. This is due to the fact that 
the performance gap (in terms of execution time) for the 

I/O bound benchmarks is very large between Atom and 
Xeon. Since EDP is the function of the execution time and 
power, the total EDP on Xeon is lower for the Sort bench-
mark. In addition, the results show that increase in the fre-
quency reduces the total EDP. While increasing the fre-
quency increases the power consumption, it reduces the 
execution time of the application and consequently the to-
tal EDP.   

In addition, we carry out a sensitivity analysis of EDP 
ratio of the applications on Xeon to Atom. Figure 4 presents 
the EDP change with respect to the HDFS block size for a 
frequency of 1.8GHz. The results show that increasing 
HDFS block size increase the EDP gap between Atom and 
Xeon. Since in Atom, the performance bottleneck exists in 
the memory subsystem, improving memory subsystem 
performance by increasing HDFS block size enhances its 
performance more significantly compared to Xeon, and re-
duces the performance gap between the two architectures.   

Overall, Atom has shown to be significantly more sen-
sitive to tuning parameters. Therefore, the performance 
gap between the two architectures can be reduced signifi-
cantly through fine-tuning of the system and architectural 
parameters on Atom, allowing maximum energy effi-
ciency.   

 EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we discuss the power and performance 

characteristics of Hadoop micro-benchmarks and real-
world applications on Atom microserver with respect to 
the Hadoop configuration parameters.   
5.1 Execution Time Analysis 

Figure 5 (represented as a bar graph) shows the execu-
tion time of the studied Hadoop applications with respect 
to the number of mapper slots (cores), HDFS block size and 
operating frequency with the fixed input data size of 10GB 
per node for Hadoop micro-benchmarks and real-world 
applications, respectively For instance, 10GB input data 

 
 
 
 
 
 
 
 

 
Figure 4: EDP ratio of Hadoop applications on Xeon to Atom at 

various HDFS block size 
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Figure 3: EDP analysis of Hadoop applications on Xeon and Atom with frequency scaling 
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size per node presents 80GB input data size processed by 
application in an 8-node cluster. Hadoop exploits cluster-
level infrastructure with many nodes for processing big 
data applications, however, the experimental data should 
be collected at the node level to understand how various 
optimizations and scheduling decisions affects the perfor-
mance, architectural parameters and energy-efficiency at 
the node level. Across almost all studied applications, the 
HDFS block size of 32MB has the highest execution time. 
Small HDFS block size generates large number of map 
tasks [number of map task = Input data size /HDFS block 
size] that increases the interaction between master and 
slave node. The performance improves significantly with 
the increase in the HDFS block size. This behavior is con-
sistent across all studied applications when the number of 
mapper slots is less than 4. With few number of mapper 
slots (Mapper 2 and Mapper 1), large HDFS block size gen-
erates adequate number of map task to keep all mapper 
slots (cores) in the system busy and reduces the interaction 
between master and slave node. On the other hand, me-
dium HDFS block size of 256MB and 512MB are more pref-
erable for large number of mapper slots (cores) as it gener-
ates more number of map tasks to run simultaneously with 
a fast execution time per map task. In contrast to Sort, other 
applications such as WordCount, Grep, and Terasort show 
a parabolic behavior at large number of mapper 
slots/cores and achieve the minimum execution time at 
256MB or 512MB HDFS block size. Sort optimal HDFS 
block size is 1024MB whereas WordCount optimal block 
size is 256MB with the maximum number of mappers’ 
slots/cores. Similar to recent work [19], we observe that 
Terasort shows hybrid characteristics. Map phase of Tera-
sort is CPU-bound and Reduce phase is I/O-bound, there-
fore unlike Sort, Terasort optimal HDFS block size is 
512MB. Moreover, Grep also illustrates hybrid characteris-
tics with a 512MB optimal HDFS block size. Grep consists 
of two separate phases; search phase and sort phase run-
ning in sequence. Search phase is compute-bound that 

counts how many times a matching string occurs and sort 
phase is I/O-bound that matches strings with respect to 
their frequency.  

The parabolic behavior of WordCount, Grep, and Tera-
sort with respect to HDFS block size can be explained as 
follows: Small HDFS block size introduces a large number 
of map tasks that generates more interaction between mas-
ter and slave nodes. These interactions are necessary to re-
quest the HDFS block location information. On the other 
hand, large HDFS block size reduces the slave node inter-
action with the master node. Additionally, with a large 
block size, small metadata is required to be stored on the 
master node that can be placed in the memory which is 
faster to access. Conversely, storing large chunk size of 
data on a node can create performance bottleneck if the ap-
plication requires accessing the same data recursively. This 
explains the parabolic behavior in the compute-bound and 
hybrid applications. 

In addition, we have studied the impact of CPU oper-
ating frequency to understand how Hadoop applications 
are sensitive to processor frequency scaling. The results 
show that Sort application is least sensitive to the fre-
quency, compared to other applications. For this applica-
tion when CPU frequency is reduced to half, the perfor-
mance only drops by 20%. Sort is an I/O bound bench-
mark, which spends most of the execution time requesting 
data and waiting for I/O operations to complete. 

Figure 6 (bar graph) presents the execution time of the 
studied real-world applications for 1, 2, 4 and 8 number of 
mapper slots. Based on the micro-benchmark results, we 
run the real-world applications with the HDFS block size 
of 64MB --- 1024MB as 32MB HDFS block size has the max-
imum execution time. Similar to micro-benchmarks, CF 
and NB applications have shown significant reduction in 
the execution time when changing the HDFS block size 
and number of mappers. The optimal HDFS block size for 
CF and NB is 256MB. Both of these applications are com-
pute-bound applications as they have a higher CPU utili-
zation compared to the traditional CPU and parallel bench-
marks [16]. Additionally, by increasing the frequency from 
1.2GHz to 2.4GHz, we observe a 34.4% - 56.6% and 54.4% 
- 61.1% reduction in the execution time at the maximum 
number of mappers with the increase in the HDFS block 
size in CF and NB, respectively. 

Although, the optimal HDFS block size for the peak 
performance is closely decided by the application type, ex-
tensive experimental search to determine the best HDFS 
size can be avoided by assigning 256MB block size for com-
pute-bound and 1024MB for I/O- bound applications as an 
optimal choice to get close to the maximum achievable per-
formance.  
5.2 Energy-Efficiency Analysis 

EDP is a fair metric to compare various architectures, 
or even the impact of changing optimization knobs in an 
architecture. EDP (or PxDxD) represents a trade-off be-
tween power and performance. Without EDP and just us-
ing energy metric for comparison, we can simply reduce 
the voltage and frequency in an architecture, and reduce its 
energy, however at a cost of lowering the performance (in-
creased execution time). Therefore, performance along 

Table 2: Experimental Microserver Platform 
Hardware Type Parameter Value 

Motherboard Model 
Super micro 

A1SRM-2758F  

 

 

 

 

 

CPU 

 

 

 

 

 
(*BW= Bandwidth) 

Model Intel Atom C2758 

# Core 8 

Hyper-Threading  No 

Base Frequency 1.9 GHz 

Turbo Frequency No 

TDP 20 W 

L1 Cache 24 KB 

L2 Cache 4 * 1024 KB 

Memory Type  DDR3 1600 MHz 

Max. Memory BW* 25.6 GB/s 

Max. Memory  

Channels  
Dual Channel 

Disk 

(HDD) 

Model 
Seagate 

ST1000DM003-1CH1 

Capacity 1000 GB 

Speed 7200 RPM  

Network Inter-

face Card 

Model ST1000SPEXD4 

Speed 1000 Mbps 
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with energy is important to find out the impact of optimi-
zation parameters. Therefore, In order to characterize the 
energy efficiency, we evaluate Energy Delay Product (EDP) 
metric to investigate trade-off between power and perfor-
mance when tuning Hadoop and processor parameters, as 
shown in Figure 5 (represented as line graph). We observe 
that the increase in the number of mappers running simul-
taneously equal to the number of available cores, mini-
mizes the EDP. Worst EDP is reported with one mapper, 
while 8 mappers give the best EDP by effectively utilizing 
all available cores. The margin of EDP improvement be-
comes smaller with the increase in the number of mappers. 

The general observation is that the optimal energy ef-
ficiency is achieved when we utilize all available cores. In 

other words, the performance improvement achieved by 
adding more cores outweighs the power overhead associ-
ate with additional cores. However, the important obser-
vation is that we can reduce the reliance on the maximum 
number of available cores by fine-tuning the system and 
architecture parameters (discussed later in detail). In sec-
tion 5.4, we present the speedup improvement of each 
benchmark when increasing the number of mappers. The 
EDP trend is consistent with the execution time trend 
showing that in I/O-bound applications, the maximum en-
ergy efficiency is achieved with the largest HDFS block 
size, however compute-bound and hybrid applications 
achieve optimal EDP at 256MB and 512MB, respectively. 
Moreover, we have conducted the analyses of frequency 

 
Figure 5(a): Execution Time and EDP of WordCount with various mappers, HDFS block size and operating frequencies 

  
Figure 5(b): Execution Time and EDP of Sort with various mappers, HDFS block size and operating frequencies 

 
 
 
 
 
 
 
 
 
 

 
Figure 5(c): Execution Time and EDP of Grep with various mappers, HDFS block size and operating frequencies 

 
 
 
 
 
 
 
 
 
 

 
Figure 5(d): Execution Time and EDP of Terasort with various mappers, HDFS block size and operating frequencies 
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scaling on the EDP results. Energy efficiency is maximized 
at the highest frequency of 2.4GHz in all the studied appli-
cations with an exception of Sort. Sort operating at a fre-
quency of 1.6GHz provides the maximum energy effi-
ciency as opposed to 2.4GHz frequency. As discussed ear-
lier, Sort is an I/O bound application that spends a signifi-
cant amount of execution time reading data from and writ-
ing to HDFS. This behavior makes the performance of Sort 
almost insensitive to the operating frequency. 

As mentioned earlier the interesting observation is re-
garding the tuning of the HDFS block size and frequency 
for various number of mappers. The results show that by 
simultaneously fine-tuning the HDFS block size and oper-
ating frequency, we can reduce the number of mappers and 
yet be as energy-efficient as with the maximum number of 
mappers. For example, Grep of 512 MB block size and 2.4 
GHz frequency with 2 and 4 mappers achieves higher or 
similar energy-efficiency compared to the maximum num-
ber of mappers. This indicates that in the absence of avail-
able cores, for instance due to co-scheduling of other jobs 
on the server, with fewer mapper we can fine-tune fre-
quency and HDFS block size and still be energy-efficient 
competitive with more number of cores/mappers. 

There are several works that attempt to find which ap-
plications should co-schedule simultaneously on a CMP on 
high performance servers. [27] proposes a methodology to 
build models that predicts application execution time and 
energy consumption due to contention in shared cache and 
memory resources when co-located applications run sim-
ultaneously on the same node. This work analyzes the co-
location interference effects on execution time and energy 
dissipation caused by resources shared among the cores in 
a multicore processor for the HPC application simulated 
on the high-performance server, Xeon. [28] proposes the 

energy-aware thread-to-core scheduling policy for hetero-
geneous multicore processor. This study attempts to 
spread the shared resources contention uniformly across 
available cores by predicting the future thread behavior 
from the study of memory and performance demands of 
individual threads to maximize the energy efficiency. Bub-
ble-up [29], a characterization and profiling methodology, 
predicts the performance degradation between pairwise 
application co-locations.  

It is also important to note that most prior research 
showed promising results by co-scheduling applications, 
however, using SPEC and HPC applications on the high-
performance servers. Our work targets microservers and 
highlights the fact that Hadoop-based big data applica-
tions can also be co-scheduled onto one node by concur-
rent fine-tuning of frequency and HDFS block size and still 
remain as energy-efficient as using maximum number of 
cores.   

Figure 6 (line graph) presents the EDP analysis of the 
real-world applications when utilizing 1, 2, 4 and 8 cores 
(number of mappers). We have analyzed the effect of the 
HDFS block size and frequency scaling on the EDP. The re-
sults show that the most energy-efficient HDFS block size 
for compute bound applications - CF and NB is 256MB. 
The trend for these two real-world applications is similar 
to what we have already observed in micro-benchmarks 
where optimal HDFS block size for the compute bound ap-
plications is 256MB. Additionally, CF and NB provide the 
best EDP at the maximum frequency. The margin of EDP 
improvement becomes smaller with the increase in the 
HDFS block size at the maximum frequency. 
5.3 MapReduce Phase Breakdown Analysis 

There are several tasks involved in an end-to-end Ha-
doop MapReduce environment. The main tasks are map, 
reduce, shuffle, sort, setup and clean up. The first phase is 

 
 
 
 
 
 
 
 
 
 

 
  Figure 6(a): Execution Time and EDP of NB with various mappers, HDFS block size and operating frequencies 

 
Figure 6(b): Execution Time and EDP of CF with various mappers, HDFS block size and operating frequencies 
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the map that executes the user defined map tasks on the 
entire input data. During this phase, the input data is di-
vided into fixed-size blocks called splits and is converted 
into the <key,value> format. In the second phase, all <key, 
value> pairs of a particular key are sent to a single reduce 
task. To do so, shuffling is done to transfer intermediate 
data from mappers to the reducers. Shuffle phase starts 
shortly after the first map finishes, and does not complete 
until all the map tasks are done. Later on, sort phase occurs 
that sort <key,values> pairs to provide the correct form of 
mappers to the reducers. Sort phase finishes after the shuf-
fle phase ends. Setup and cleanup are other major phases 
of big data processing in Hadoop. The setup reads param-
eters from the configuration object and does all the 
bookkeeping before the map task execution starts. The 
setup time of JVM is included in the setup phase of MapRe-
duce application. Map and Reduce phases are the compu-
tational intensive portion of the application. The cleanup 
frees all of the resources that have allocated during execu-
tion and flush out any intermediate variable. 

In Figure 7, we present the normalized execution 
break-down of MapReduce phases for the studied micro-
benchmarks when we change frequency for 512MB HDFS 
block size and eight mappers. Note that for Sort bench-
mark, there is no reduce task. For Grep benchmark, which 

includes two separate phases (i.e., searching and then sort-
ing the results), the setup and cleanup contribute to a sig-
nificant portion of execution time. 

 Phase analysis is essential to profiling and character-
izing the application behavior. In Figure 8, we have ana-
lyzed the performance of various phases of MapReduce 
application to analyze the frequency impact on various 
phases of MapReduce application, while tuning parame-
ters at the application, system, and architecture levels. Our 
results show that reduce phase of Grep and Map phase of 
the sort application are less sensitive to the frequency as 
these phases are I/O intensive in nature. Therefore, run-
ning these phases at lower frequencies provides significant 
opportunity for reducing the power consumption with a 
negligible performance degradation. 

In Figure 8, we illustrate the impact of frequency scal-
ing on each phase of Hadoop MapReduce normalized to 
its corresponding phase running at minimum frequency, 
namely 1.2GHz. The trend of decreasing in execution time 
as the operating CPU frequency increases is consistent 
with the results in Figure 5. Figure 8 shows that setup and 
cleanup phase of micro-benchmarks are frequency sensi-
tive. Since the computation intensive part of the micro-
benchmarks lies on the map and reduce phase, it is critical 
to understand how sensitive they are to frequency scaling. 
Having no reduce phase, Sort application spends most of 
its execution time in the map phase. Interestingly, map 
phase in Sort is insensitive to the operating frequency as 
this phase spends a significant amount of execution time 
reading data to and from the HDFS. One can execute such 
phase at a lower frequency to save power. Another obser-
vation is regarding Grep reduce phase which shown to be 
less sensitive to the frequency. This is due to the fact that 
Grep benchmark consists of two independent steps that are 
Grep searching and Grep Sorting, the latter step is I/O 
bound. Consequently, unlike WordCount and TeraSort, the 
reduce phase of Grep exhibits a different behavior; reduc-
ing the CPU frequency by half, from 2.4 GHz to 1.2 GHz 
only results in an 18% reduction in the execution time, 
therefore, providing significant opportunity for reducing 
power consumption. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: MapReduce normalized execution time breakdown 
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Figure 8: MapReduce Phases normalized execution time to minimum frequency at various frequencies 
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5.4 Speedup 
In this section, we analyze performance improvement 

as the number of mappers increase with 32MB and 512MB 
HDFS block size. The results are presented in Figure 9(a)-
(b). All the values are normalized to the execution time of 
the application with one mapper. At the maximum fre-
quency, the speedup of 6.40, 5.76, 4.28 and 3.98 is achieved 
for Sort, WordCount, Grep and TeraSort, respectively. As 
Figure 9(b) shows, the increase in the HDFS block size re-
duces the speedup gains (2.18, 2.2, 1.71 and 2.82, respec-
tively). It is important to observe that TeraSort benchmark 
attain more speedup gain at 512MB than 32MB of HDFS 
block size. In other words, tuning the HDFS block size not 
only changes the execution time but also affects the 
speedup gain of big data applications, as the number of 
mappers’ increases.  

We also evaluate how the frequency scaling affects the 
speedup achieved for the studied benchmarks. Figure 10 
shows that when the frequency is reduced from 2.4GHz to 

1.2GHz, the speedup gain increases. For example, when 
the frequency reduces to the minimum, the speedup 
achieved in Figure 9(a) is increased to 7.55, 6.32, 4.70 and 
4.47, respectively. The speedup improvement is more 
when the HDFS block size is larger. In other words, when 
the application is operating at a lower frequency to save 
power, we can compensate the performance loss to some 
extend by increasing the number of mappers. This is the 
case, in particular for Sort benchmark, as at the minimum 
frequency the speed up improvement is almost 50% com-
pared to the maximum frequency for 512MB HDFS block 
size. Consequently, the most efficient configuration for this 
benchmark is with 8 mappers, 1.6GHz frequency and large 
HDFS block size as it is shown in Figure 5(b).  
5.5 Input Data Size Sensitivity Analysis 

In this section, we study the impact of input data size 
on power and performance. We conduct the data sensitiv-
ity analysis of Hadoop applications with the dataset of 
10MB, 100MB, 1GB, 10GB, 25GB and 50GB per node. In a 
distributed framework like Hadoop, the input data is di-
vided into data block and assigned to each node. Although 
Hadoop exploits cluster-level infrastructure with many 
nodes for processing big data applications, to understand 
the impact of various parameters and how their interplay 
impacts EDP, single node characteristics analysis is re-
quired. The number of mappers is fixed at 8 with the de-
fault HDFS block size (64MB) and governor is set as on-
demand. The results show that the execution time is pro-
portional to the input data size. Power consumption also 
increases slightly as the size of input data increases. How-
ever, the power and performance sensitivity to the input 

 

 

 

 

 

 

 

 

 

 

 

                               

Figure 9(a): Speed up with 32 MB HDFS block size   Figure 9(b): Speed up with 512 MB HDFS block size  

at maximum frequency 2.4GHz    at maximum frequency 2.4GHz 
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Figure 10: Maximum speed up improvement when cores oper-

ates at the minimum frequency normalized to the perfor-

mance at maximum frequency 
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data size is different across various applications. The exe-
cution time and power results are shown in Figure 11(a)-
(b), respectively. WordCount, which is a compute bound 
benchmark is less sensitive to the input data size, whereas, 
Sort execution time is shown to be highly affected by the 
input data size. With 10MB and 100MB input size there is 
not a significant variation in power consumption across all 
bench-marks, however, with larger data sizes the power 
consumption varies more noticeably and suddenly in-
creases. For Sort, the power consumption is more than 
other studied benchmarks when the input data size is 
small (i.e., 10MB and 1000MB). However, when the input 
size is large (i.e., 25GB and 50GB) the power consumption 
of WordCount and Grep becomes larger than Sort.  
5.6 System Resources Profiling and Utilization 

In this section, we present the real time system re-
sources profiling (CPU utilization and memory footprint) 
to understand the runtime behavior and resource utiliza-
tions of Hadoop micro-benchmarks. Real-world applica-
tions have not been included in the system resource utili-
zation study, as we have observed that they have similar 
behavior as compute-bound micro-benchmarks. In this set 
of experiments, we study the following parameters: num-
ber of mappers (1 and 8), HDFS black size (32MB and 512 
MB) and operating frequency (1.2GHz and 2.4 GHz).  
5.6.1 CPU Utilization Analysis 

Table 3 presents CPU utilization of Hadoop micro-
benchmarks that include overall CPUuser, CPUidle and 
CPUiowait utilization. We use the dstat profiling tool that 
classifies CPU utilization into different types including 
user, idle, wait, system, hardware interrupt and software 
interrupt. To evaluate the CPU utilization of an application 
under test, we have selected user, idle and wait parame-
ters. CPUuser utilization present the amount of time when 
the core is busy working on the user application and is not 
idle (CPUidle utilization) or stalled due to I/O (CPUiowait 

utilization). The CPU utilization trace is generated per sec-
ond and the reported values are the average utilization of 
all cores over the total execution time. 

CPUuser utilization decreases when the number of 
mappers increases. In the I/O bound application-Sort- 
CPU spends most of its execution time waiting for IO re-
quest. We have observed a similar trend in Table 3 where 
Sort has low CPUuser utilization and high CPUiowait 
readings compared to other applications. In WordCount, 
with HDFS block size of 32MB, the average CPUuser utili- 
zation decreases to 60%. However, with 512MB HDFS 
block size the utilization reduces to 28%. (CPUidle is 
70%). This is mainly due to the fact that large HDFS block 
size is under-utilizing the number of active cores.  

To illustrate the benchmark behavior, we have pres- 

          Table 3: CPU Utilization (%) 
  WC ST GP TS 

m1_32MB_F1.2 

user 96.29 93.52 93.16 89.92 

Idle 0.30 0.02 1.43 0.08 

iowait 0.04 0.00 0.07 0.56 

m1_512MB_F1.2 

user 96.54 81.40 88.96 86.17 

Idle 0.57 0.05 3.81 0.85 

iowait 0.02 0.48 0.13 0.70 

m8_32MB_F1.2 

user 61.38 66.16 56.64 47.23 

Idle 36.70 17.56 40.48 47.56 

iowait 0.18 1.48 0.22 0.81 

m8_512MB_F1.2 

user 28.12 33.95 23.11 34.21 

Idle 70.80 34.13 74.08 59.55 

iowait 0.37 22.99 0.80 1.44 

m1_32MB_F2.4 

user 96.21 93.52 92.32 88.81 

Idle 0.51 0.04 2.27 0.38 

iowait 0.08 0 0.08 1.04 

m1_512MB_F2.4 

user 95.32 73.44 80.22 85.02 

Idle 1.36 0.36 11.05 0.85 

iowait 0.78 6.72 1.03 0.97 

m8_32MB_F2.4 

user 60.15 63.48 49.97 47.77 

Idle 37.68 25.15 46.24 44.83 

iowait 0.16 6.7 0.98 2.97 

m8_512MB_F2.4 

user 28.3 19.17 19.53 30.38 

Idle 70.07 44.08 75.49 60.18 

iowait 0.95 31.52 3.09 5.21 

 

 
 
 
 
 
 
 
 
 

            
              Figure 12(a): CPU utilization trace of WordCount for HDFS       Figure 12(b): CPU utilization trace of Wordcount for 

block size comparison      number of mappers comparison 
 
 
 
 
 
 
 
 
 

          
                Figure 13(a): CPU utilization trace of Sort for HDFS         Figure 13(b): CPU utilization trace of Sort for  
                                  block size comparison      number of mappers comparison 
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ented the timeline based CPUuser utilization of Word-
Count and Sort benchmark with respect to the number of 
mappers and the HDFS block size in Figure 12(a)-(b) and 
Figure 13(a)-(b), respectively. In WordCount, as the HDFS 
block size increases from 32MB to 512 MB, the traces show 
a stable CPUuser utilization averaged at 60% and 25% with 
an exception that 32MB finishes earlier than the 512 MB. In 
contrast, CPUuser utilization reaches to almost 96% on av-
erage with single mapper (see Figure 12(b)). Sort bench-
mark also shows a similar trend. However, for this bench-
mark, the execution time with 512MB is less than 32MB 
HDFS block size. The average CPUuser utilization for Sort 
with maximum block size is only 19%. Moreover, this 
benchmark shows large variation in the CPUuser utiliza-
tion and stays below 15% for a considerable amount of 
time. The WordCount benchmark with one mapper almost 
keeps the CPU busy for nearly the entire duration of the 
application. Given that WordCount extracts a small 
amount of data from a large set of data, its job output is 
much smaller than the job input. Consequently, the Word-
Count is CPU bound having high average CPU utiliza-
tions. 

Increasing the operating frequency results in a slight 
reduction in the CPU utilization except for WordCount, 
which is more compute bound benchmark compared to 
others. Moreover, changing the block size almost does not 
change the utilization with a single mapper, however, it 
leads to considerable CPU utilization reduction when the 
number of mappers increases. This behavior exhibits that 

all cores are not actively working most of the time with the 
largest HDFS block size. The underutilized cores are wait-
ing for I/O, being synchronized with other cores or wait-
ing until the results of other cores produced.  

It is noteworthy that when the number of mappers in-
creases, the average CPUuser utilization reduces from 
73%-96% to 19%-60% with respect to the HDFS block size. 
To explain this behavior, we have analyzed the resource 
stalls introduced at the back-end of processor pipeline us-
ing Intel Vtune [30]. The back-end contains record buffer 
(ROB) and reservation stations (RS). When the ROB or RS 
becomes full, the back-end stalls and does not accept any 
new instruction. We have observed that with the increase 
in the number of mappers, ROB stalls do not change sig-
nificantly, however, the RS stalls increase from 0.2% to 15%. 
RS stalls occur when processor is waiting for inputs and 
resources to be available. This behavior illustrates that with 
the increase in the number of mappers, shared resources in 
the memory hierarchy including the cache, shared 
memory, and DRAM become the bottlenecks that results in 
a low CPUuser utilization. In other words, most of the time 
the cores are idle and dissipating leakage power. Such large 
idle time motivates employing the Dynamic Power Man-
agement (DPM) techniques [31] for big data applications 
when running large number of mappers. The low core uti-
lization indicates a significant potential to mitigate leakage 
power dissipation.  
5.6.2 Main Memory Footprint 

In this section, we present the analyses of memory 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14(a): Memory Footprints (MB) of WordCount       Figure 14(b): Memory Footprints (MB) of Sort 

 
Figure14(c): Memory Footprints (MB) of Grep        Figure14(d): Memory Footprints (MB) of TeraSort 



2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2749228, IEEE
Transactions on Multi-Scale Computing Systems

12 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 

 

footprints results. Figure 14(a)-(d) illustrates how much 
stress the memory (in MB) experiences while running the 
studied benchmarks. The increase in the number of map-
pers indicates that multiple cores are processing the bench-
mark, which eventually put more stress on the memory 
subsystem. We have observed 19% to 120 % increase in av-
erage memory footprint with the increase in the mappers 
from one to eight. Variation in the memory footprint is mi-
nor with changing the frequency. As the HDFS block size 
varies, minor changes are observed in the average memory 
footprint for most of the cases with the exception of Word-
Count.  

 DISCUSSION  
In this section, based on the results and discussions 

through-out the paper, the key findings are presented as 
follows: 
• The speedup obtained when increasing the number of 

available cores on a microserver node outweighs the 
power overhead associated with increasing the num-
ber of cores, making a configuration that uses the max-
imum number of available cores per node the most en-
ergy-efficient across all studied applications. Unlike 
microservers, for traditional high performance server 
the power consumption increase, as the number of 
mappers’ increases, outweighs the performance gains. 
Therefore, microservers introduces a new trade-offs to 
process the Big data applications for maximum en-
ergy-efficiency.  

• Increasing the number of mappers/cores, improves 
performance and reduces the CPU utilization. In all 
studied cases using maximum number of cores pro-
duces best results in terms of both performance and 
energy-efficiency. It was also observed that if the num-
ber of mappers exceeds available cores, mapper tasks 
are buffering which potentially reduces the perfor-
mance and impact the energy-efficiency.  

• Although utilizing all available cores on each micro-
server node provides maximum energy-efficiency 
across all studied applications, concurrent fine-tuning 
of frequency and HDFS block size reduces the reliance 
on the maximum number of cores, and instead make a 
configuration with fewer number of cores to be en-
ergy-efficient competitive with the maximum number 
of cores. This helps freeing up cores on each node to 
accommodate scheduling incoming applications in a 
cloud-computing environment.  

• Tuning the block size significantly affects the perfor-
mance and energy-efficiency of the system. I/O bound 
Hadoop applications provide the optimal execution 
time and EDP with the largest HDFS block size. De-
fault HDFS block size of 64MB is not optimal, neither 
for power nor for the performance.  

• The speed up improvement is more when the HDFS 
block size is larger. I/O bound applications can run at 
a lower frequency to save power. Performance loss can 
be compensated to a significant extend by increasing 
the number of mappers. 

• Increasing the number of mappers and the number of 
active cores result in drastic reduction in average core 

utilization. In other words, with more number of map-
pers most of the times the cores are becoming idle and 
dissipate leakage power. This motivates employing 
Dynamic Power Management (DPM) techniques [31] 
for big data applications when running large number 
of mappers. 

• Default Hadoop configuration parameters are not op-
timal for maximizing the performance and energy-ef-
ficiency. With fine tuning the Hadoop parameters 
along with the system configurations, a significant 
gain in performance and energy-efficiency can be 
achieved.  

 RELATED WORK 
Recently, there have been a number of efforts to under-

stand the behavior of big data and cloud scale applications 
by benchmarking and characterizing them, to find out 
whether state-of-the-art high performance server plat-
forms are suited to process them efficiently. The most 
prominent big data benchmarks, includes CloudSuite, 
HiBench, BigDataBench, LinkBench and CloudRank-D 
which mainly focus on the applications’ characterization 
on high performance servers [17, 18, 19, 20, 32]. CloudSuite 
benchmark was developed for Scaleout cloud workloads. 
HiBench is a benchmark suite for Hadoop MapReduce. 
The BigDataBench was released recently and includes 
online service and offline analytics for web service appli-
cations.  LinkBench is a real-world database benchmark for 
social network application. CloudCmp [33] use a system-
atic approach to benchmark various components of the 
cloud to compare cloud providers. These works analyze 
the application characterization of big data applications on 
the Hadoop platform, but they do not discuss the Hadoop 
configuration parameters for energy efficiency.  

Many recent works have investigated the energy effi-
ciency in the Hadoop system; Examples are energy-effi-
cient storage for Hadoop [8, 9], energy aware scheduling 
of MapReduce jobs [34] and GreenHadoop [35]. However, 
the focus of these works is on the reduction of operating 
cost of data centers for energy efficiency. Our study is dif-
ferent as it focuses on tuning Hadoop parameters to im-
prove the performance and energy efficiency. The impact 
of Hadoop configuration parameters is discussed briefly in 
[17] and [36] but they have not studied the impact of fre-
quency scaling and its interplay on Hadoop specific pa-
rameters such as HDFS block size and the number of map-
pers for optimizing the energy efficiency. [21] has focused 
on the resource utilization for performance and energy ef-
ficiency on Amdahl blades running Hadoop. However, 
they have studied only two applications with default Ha-
doop configuration parameters. Our study illustrates that 
default Hadoop configuration parameters (like HDFS 
block size of 64 MB) are not optimal for maximizing per-
formance and energy efficiency. In [15], authors analyzed 
the performance and throughput with the scale-up and 
scale-out cluster environment to figure out which cluster 
configuration is suitable for Hadoop Mapreduce jobs. Ad-
ditionally, they have presented the optimization applied to 
Hadoop like concurrency, network, memory and reduce-
phase optimization on the high performance server; Xeon. 
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However, this work has not discussed the power and en-
ergy efficiency. [22] presents a study of a Hadoop cluster 
for processing big data on ARM servers. Authors have 
evaluated three different hardware configurations to un-
derstand the limitations and constraints of the cluster. The 
energy usage and total cost of ownership for MapReduce 
applications has been analyzed on the Xeon and ARM 
big.LITTLE architecture in [37]. They have not evaluated 
the impact of the Hadoop configuration parameters for 
performance and energy efficiency. HDFS block size is one 
of the key design parameters and vital to the performance 
and power optimization. Additionally, this works does not 
discuss the interplay of system, architectural and applica-
tions parameters nor study the resource profiling that is es-
sential to understand the runtime behavior and resource 
utilization of the Hadoop applications. The work in [38] is 
the closest to our work as they conduct a study of micro-
server performance for Hadoop applications. However, 
their main focus is on the assessment of five different hard-
ware configuration clusters for performance, energy dissi-
pation and cost. In contrast, our work explores Hadoop 
configuration parameters such as number of mappers, 
HDFS block size and data input size as well as a system 
parameter (frequency scaling) for the performance and en-
ergy efficiency on microserver.  

Our work is different from all above work as it primar-
ily focuses on various Hadoop configuration parameters 
that directly affect the MapReduce job performance, power 
and energy efficiency on emerging x86 based low power 
cores microservers and help to understand the interplay of 
the Hadoop system, architecture and application parame-
ters to achieve the maximum performance and energy effi-
ciency improvement. 

 CONCLUSIONS 
In this paper, we present a comprehensive analysis of 

the impact of Hadoop system configuration parameters, as 
well as application and architecture level parameters, and 
the interplay among them on performance and energy-ef-
ficiency of various real-world big data applications run-
ning on Atom microserver, a recent trend in server design 
which advocates the use of low-power small cores to ad-
dress the power and energy-efficiency challenges. We 
showed that performance and energy efficiency of big data 
applications are highly sensitive to various Hadoop con-
figuration parameters, as well as system and architecture 
level parameters, demonstrating that the baseline Hadoop 
as well as system configurations are not necessarily opti-
mized for a given benchmark and data input size.  

Through performance and power measurements and 
analysis on Atom microserver, first, we showed that in-
creasing the number of mappers that run simultaneously 
along with increasing the number of active cores help to 
maximize energy efficiency. Second, our analysis showed 
that the overall energy efficiency is highly decided by the 
HDFS block size and is different for each benchmark, 
demonstrating that the default configuration parameters 
are not optimal. Third, we have explored the impact of 
scaling the operating frequency of the compute node for 
the performance and energy efficiency. Our results show 

that big data applications become less sensitive to fre-
quency with large number of mappers. Lastly, we con-
ducted the data size sensitivity analysis of Hadoop micro-
benchmarks. Results illustrate that the performance and 
power of compute bound applications are less sensitive to 
the input data size as compared to I/O bound applications. 
The results indicate that when not all cores are available, 
for instance due to co-scheduling of other jobs on the 
server, with fewer mapper/cores we still can be as energy-
efficient and competitive with a case when maximum 
cores/mappers are available by fine-tuning several param-
eters such as core frequency and HDFS block size. In addi-
tion, the results showed that increasing the number of 
mappers/active cores result in a noticeable reduction of 
average CPU utilization, which indicates the potential of 
using power management techniques when the number of 
mappers/available cores is at maximum. 

We believe that the analyses provided in this work and 
the trends identified help guiding the scheduling decision 
to better utilize microserver resources by jointly tuning the 
application, system and architecture level parameters that 
influence the performance and energy efficiency. 
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