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Big data processing on hardware gained immense interest among hardware research community to take
advantage of fast processing and re-configurability. Though the computation latency can be reduced using
hardware, big data processing cost is dominated by data transfers. In this paper, we propose a low overhead
framework based on compressive sensing (CS) to reduce data transfers up to 67% without affecting signal
quality. CS has two important kernels “sensing” and “reconstruction”, in this paper we focus on CS recon-
struction is using orthogonal matching pursuit (OMP) algorithm. We implement OMP CS reconstruction
algorithm on domain specific PENC many-core platform, and low power Jetson TK1 platform consisting of
ARM CPU, and K1 GPU. Detailed performance analysis of OMP algorithm on each platform suggests that
PENC many-core platform has 15× and 18× less energy consumption and 16× and 8× faster reconstruction
time as compared to low power ARM CPU, and K1 GPU, respectively. Furthermore we implement proposed
CS-based framework on heterogeneous architecture, in which the PENC many-core architecture is used as
an “accelerator” and processing is performed on ARM CPU platform. For demonstration, we integrate the
proposed CS-based framework with hadoop MapReduce platform for face detection application. The results
show that the proposed CS-based framework with PENC many-core as an accelerator achieves 26.15% data
storage/transfer reduction, with an execution time and energy consumption overhead of 3.7% and 0.002%,
respectively for 5000 image transfers. Compared to the CS-based framework implementation on low power
Jetson TK1 ARM CPU+GPU platform, the PENC many-core implementation is 2.3× faster for the image
reconstruction part, while achieving 29% higher performance and 34% better energy efficiency for complete
face detection application on hadoop MapReduce platform.
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1. INTRODUCTION
IoT and cloud computing applications such as health monitoring, video surveillance,
and wireless sensor networks generate humongous amount of data every hour with
unprecedented rate. To evaluate big data sets, hadoop platform using distributed pro-
cessing on clusters of commodity computers is extensively used. Processing of big data
sets demands large number of computational resources to enhance application run
time, however these computing resources should have low latency and power. There-
fore to improve energy efficiency, the trend has started to adopt hardware accelera-
tors such as FPGAs, GPUs, and domain specific many-cores. Furthermore it has been
also demonstrated that the domain specific many-core architectures are exceptional in
terms of energy efficiency and throughput per area [Gautschi et al. 2016] [Tavana et al.
2015] [Conti and Benini 2015] [Stillmaker et al. 2012]. However, big data processing
on many-core platforms faces various challenges such as storage and data transfer re-
quirements. For example AsAP many-core platform [Stillmaker et al. 2012] [Liu and
Baas 2013] has 16KB memory, whereas Power Efficient Nano Clusters (PENC) many-
core platform [Kulkarni et al. 2016a], [Kulkarni et al. 2016c], [Page et al. 2016] has
382KB. Thus for efficient big data processing on hardware accelerators, reducing stor-
age space and data transfers is of utmost importance. In this paper, we propose a low
overhead and scalable CS-based framework to curtail storage requirements and data
transfer.
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Fig. 1. Proposed low overhead CS-based heterogeneous framework for big data acceleration, compressive
sampling is performed using our previous work [Kulkarni et al. 2016a], CS reconstruction is achieved on
accelerator platform using OMP algorithm, and application processing is performed on host platform on
reconstructed data.

In past few years various compression algorithms have been proposed to reduce data
transfers, however these solutions encounter various challenges such as : 1. Ineffi-
cient for continuously changing big data sets, 2. Hardware overhead of decompression
at processing platform, and 3. High decompression error rate. Compressive Sensing
(CS) has demonstrated exceptional decompression (reconstruction) error rate [Tropp
and Gilbert 2007], [Candès and Wakin 2010], [Needell and Vershynin 2010], how-
ever the reconstruction of CS is computationally intensive [Septimus and Steinberg
2010], [Kulkarni et al. 2014], [Kulkarni and Mohsenin 2015]. CS is a novel technique
in which compression of the data set is performed by obtaining fewer linear combi-
nations of data, thus reducing storage and data transfers. CS consists of two kernels:
sensing and reconstruction; “sensing” is performed before data communications to ac-
quire compressed measurements, whereas goal of the “reconstruction” kernel is to re-
cover sparse data using very small number of linearly transformed measurements.
Compressive sampling and OMP reconstruction architecture adopted in this paper are
reconfigurable, scalable and can be readily applied to different signal processing or ma-
chine learning applications. Compressive sensing enables up to 67% of data reduction
with 3.81dB SRER.

The goal of this paper is to reduce data transfers for big data acceleration to per-
form efficient big data processing using hardware platforms. Heterogeneous architec-
tures have emerged as a promising solutions in energy efficient and high performance
computing by allowing applications to run on a computing core that matches the re-
source needs more closely than a single one-size-fits-all general purpose core. Hetero-
geneous chip architecture integrates cores with various micro-architectures or instruc-
tion set architectures with on-chip accelerators to provide more opportunities for effi-
cient workload mapping so that the application can find a better match among various
components to achieve execution deadline and energy efficiency. Examples of hetero-
geneous architectures in embedded domains are Xilinx ZYNQ (CPU+FPGA), nVIDIA
Tegra (CPU+GPU), Qualcomm Snapdragon (CPU+DSP+GPU) and Samsung Exynos
(Big+Little CPU+GPU). Furthermore, heterogeneous big data frameworks consisting
of FPGAs as accelerators such as Corse-Grained Pipelined Accelerators (CGPA) [L.
et al. 2014], and Software Defined Accelerators (SODA) [Wang et al. 2015] show
speedup of 4× to 46× respectively. SODA is component based programming model
and consists of dataflow execution phases whereas CGPA can identify and split paral-
lelizable sections for individual loops with complex control flow and irregular memory
access. The objective of this paper is to accelerate the computationally intensive OMP
CS reconstruction algorithm with low hardware overhead in terms of execution time,
energy consumption, and throughput per area, while host processor performs applica-
tion processing on reconstructed data.
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In this paper, we propose a low overhead CS-based heterogeneous framework that
can reduce data up to 67% without affecting signal quality. In the proposed framework
as shown in Figure 1, we adopt deterministic sampling to sketch (sample) original
signal [Kulkarni et al. 2016a], [Jafari and Mohsenin 2015] and orthogonal matching
pursuit (OMP) algorithm for reconstruction of signal. We propose a flexible and fully
parallel architecture for OMP which can efficiently reconstruct a wide range of sig-
nal sizes. We evaluate the proposed architecture in terms of power consumption and
execution time on different platforms including, low power nvidia TK1 platform con-
sisting of quad-core ARM CPU and K1 GPU combination, and PENC many-core plat-
form to choose the best platform as an accelerator for CS reconstruction. Finally, for
the demonstration of a real application, the proposed framework is integrated with
hadoop MapReduce platform for face detection application. The performance of face
detection application is shown in terms of reconstruction quality, hardware overhead
cost for end-to-end framework, and overall reduction in data transfers.

The main contributions of this paper include:

— Introducing a low overhead and scalable CS-based heterogeneous framework for big
data acceleration. The heterogeneous framework consists of an accelerator for low
overhead CS recovery using a fully flexible and parallel reconstruction using OMP
architecture and a host processor for post processing.

— OMP algorithm implementation and characterisation on various platforms including
low power ARM CPU, K1 GPU combination and PENC many-core platform with
respect to power, execution time and core usage parameters for wide ranges of image
sizes.

— Integration of the proposed CS-based heterogeneous framework with hadoop MapRe-
duce platform for face detection application.

— Comparison of hadoop MapReduce with CS-based framework implementation on
PENC+ARM CPU platform and ARM CPU only implementation with respect to exe-
cution time and energy consumption overhead.

— Face detection quality, data transfer reduction and hardware overhead analysis of
the proposed CS-based framework implementation of face detection as a case study,
where PENC many-core acts as an accelerator and ARM CPU as a processing plat-
form.

The rest of the paper is organized as follows: Section 2 presents a survey of related
work on accelerating big data processing using compressive sensing. OMP algorithm
used for recovery of compressive sampled data is discussed in section 3. In this paper
we implement fully flexible and parallel OMP architecture on three different plat-
forms, the processing platform architectures and implementations are discussed in
section 4. Section 5 describes results and comparison analysis of OMP algorithm im-
plementation on different platforms. Finally, section 6 demonstrates efficiency of the
proposed CS-based framework with hadoop platform integration for face detection ap-
plication.

2. RELATED WORK
Hardware acceleration for Big Data processing using ASIC, FPGA, GPU and domain
specific many-cores interests many researchers due to its low energy consumption and
fast processing capabilities. Acceleration architectures such as SparcNet [Page et al.
2017] and DianNao [Chen et al. 2016] shows speedup of about 117× and reduce up
to 21× energy consumption for machine learning algorithms. SparcNet is a heteroge-
neous architecture consisting of ARM CPU and FPGA platforms, whereas DianNao
architecture is implemented on 65nm CMOS technology. However, number of data
transfers can be a potential bottleneck for large weight matrix and input data trans-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

fers [Neshatpour et al. 2015], [Malik et al. 2015]. In this paper, we reduce data trans-
fers to accelerate Big Data processing on hardware platforms using a low overhead
CS-based framework.

Most researchers used hardware platforms such as FPGA or ARM micro-
architectures to accelerate big data processing. A MapReduce framework on FPGA
has been implemented by [Shan et al. 2010], demonstrating 31.8× speedup on FPGA as
compared to CPU for RankBoost machine learning algorithm using MapReduce frame-
work. Recent work on MapReduce framework using heterogeneous architecture has
shown significant efficiency advantage over single processing architecture when run-
ning various big data benchmarks. In [Neshatpour et al. 2015] computational power
of big data applications is reduced by adopting a low power xilinx zynq platform. The
paper implements computationally complex kernels on FPGA to achieve speed up and
energy reduction. The MapReduce application is implemented on two different micro-
architectures; server and Atom platform. Overall results indicate the benefit of Atom
(small cores) in terms of energy efficient hardware acceleration. [Malik et al. 2015]
demonstrates that size of data and performance constraints affects choice of big vs lit-
tle core-based servers for efficient big data processing. Furthermore, the paper demon-
strates that required number of data transfers can be a potential bottleneck for large
data transfers.

In past compressive sensing has been effectively practiced in data collection scheme
for wireless sensor networks. [Liu et al. 2015] models the data collection process as a
nonuniform sparse random projection (NSRP) to reduce error bound. In this paper we
perform deterministic random projections to reduce hardware complexity with min-
imum error rate. The trend to reduce data using compressive sensing for big data
applications began with [Zhang et al. 2014] and it is still in preliminary phases of
research. [Zhang et al. 2014] implements compressive sensing based storage for big
data analytics; authors convey that for many big data analytics workloads approx-
imate results suffice. In [Yan et al. 2015] CS-based framework is incorporated into
Hadoop and evaluated it on real web-scale production data. It shows reduction in data
shuffling I/O up to 99%, and end-to-end job duration by up to 40%. In both [Zhang
et al. 2014], [Yan et al. 2015] implementations were performed on software platforms
thus best performance can be achieved if implemented on hardware platforms such as
FPGAs or domain specific many-cores.

In our previous papers, we implemented parallel and reconfigurable OMP algorithm
on FPGA virtex-7 platform to reconstruct images ranging from 128 × 128 to 512 × 512
with fixed sparsity value and 33% measurements in [Kulkarni et al. 2014]. We also
discussed the effect of sparsity and number of measurements on reconstruction qual-
ity and hardware complexity of the design. Furthermore, we proposed platform inde-
pendent architecture for OMP algorithm in [Kulkarni and Mohsenin 2015], [Kulkarni
et al. 2014]. We also demonstrated the efficiency of CS sampling based on determin-
istic random matrix generator to decrease hardware overhead for machine learning
application [Kulkarni et al. 2016a] [Jafari and Mohsenin 2015]. In [Kulkarni et al.
2016], [Kulkarni and Mohsenin 2017] we proposed low overhead reconstruction algo-
rithm called GD-OMP based on OMP algorithm for big data acceleration.

3. BACKGROUND
3.1. Compressive Sensing Problem
Let us assume x to be a k-sparse signal of length N . Let φ be the measurement ma-
trix projected onto the original signal, x. Measurement matrix (φ) must be incoherent
with the basis of the sparse signal, x. If x is not sparse in its original bases, it can be
transformed to another domain in which the signal is sparse. Then the measurement
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Fig. 2. Basic block diagram of OMP CS reconstruction algorithm.

Algorithm 1 OMP Reconstruction Algorithm
1:Initialization

— R0 =y, Λ0=∅, Q0 =∅ and t = 0

2:Identification
— Find Index λt= maxj=1...n subject to | < φjRt−1 > |

3:Augmentation
— Update Λt=Λt−1

⋃
λt

— Update Qt=[Qt−1 QΛt
]

4:Residual Update
— Solve the Least Squares Problem

xt= minx || y - Qy x || 2

— Calculate new approximation: αt= Qt xt
— Calculate new residual: Rt= y-αt

5: Increment t, and repeat from step 2 if t < k After all the iterations, we can find
correct sparse signals.

matrix has to be uncorrelated with the signal in the transformed domain [Candès and
Wakin 2010]. The size of φ is M × N , where M<<N and represents the number of
measurements. y is a M length vector containing the measurements obtained by the
projection of φ onto x. Therefore, signal need to be converted to a transformed basis,
Ψ, to induce sparsity and y is obtained as:

y = φΨx = Φx (1)

In this paper, deterministic compressive sampling (DRM) technique is used to trans-
form streaming data to lower dimensional data structure. In DRM instead of obtaining
a few samples of the signal, few linear combinations are sampled. Using fewer mea-
surements, a signal can be reconstructed almost perfectly under certain conditions [Ja-
fari and Mohsenin 2015]. In our previous work, reconfigurable data sketching archi-
tecture using DRM technique is implemented [Kulkarni et al. 2016a]. We evaluated
compressive sampling with respect to different data sizes, and impact on application
error rate with respect to change in sparsity value and data reduction.

3.2. Orthogonal Matching Pursuit Algorithm
Among a variety of CS reconstruction algorithms, iterative greedy algorithms have

lower complexity and low signal to reconstruction error rate [Tropp and Gilbert
2007] [Needell and Vershynin 2010]. OMP is an iterative greedy algorithm, which is
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widely used due to its capability to solve large dimensional problems and competitive
performance. In our previous work, we showed that, OMP algorithm is scalable to re-
construct large amount of data [Kulkarni et al. 2014] and can withstand continuously
changing streaming data [Korde et al. 2013].

OMP is a greedy algorithm, which finds the sparsest solution iteratively by comput-
ing support of x and subtracting it from measurement vector y at every iteration. As
shown in Figure 2 and Algorithm 1, OMP has three different phases, Identification,
Augmentation and Residual Update. In Identification phase, index (i) of highest mag-
nitude of φ ∗R is chosen as potential vector to find closest approximation to x. At each
iteration, index (i) is added to the list of estimated support vectors from the Augmenta-
tion phase. The Residual update phase generates the next residual for next iteration.
In this phase, first the formed Q augmented matrix is used in a Least Square regres-
sion model to find linear relationship between augmented matrix (Q) and measured
vector (y). Next, the amount of contribution that column y provides is subtracted to
obtain a residue. The OMP algorithm repeats sparsity (k) times to determine correct
set of columns [Tropp and Gilbert 2007].

The variables used in the Algorithm 1 are defined below:

— N× N = Images size (e.g 128× 128...768× 768)
— M = Measurements (e.g 42...252)
— k = Sparsity (e.g 32)
— R = Residual matrix (size : M × 1)
— φ = Measurement matrix (size : M ×N)
— λ = Maximum index after dot product
— t = No. of iterations (k)

The computational complexity for each step is explained below:

(1) Identification phase < φR > requires matrix multiplication of φ, which is M × N
matrix with R, which is a 1 ×M vector. Thus computational complexity of O(MN).
Maximum of < φR >, which gives a N × 1 vector. Hence, it has a computational
complexity of O(N).

(2) In residual update phase consist of the least squares problem. At each iteration, i, Φ
has i columns of size M . Hence, the new matrix, Q, is of size i ×M . Doing a (QTQ)
gives a i × i resulting matrix. Thus, a cost of O(iM). The cost of inverting this i × i
matrix by LU Decomposition is O(i3). The cost of QT y is O(i2).

(3) To calculate the new approximation: αt = Qt xt
Q is of size i×M and x is of size 1× i. Thus computational complexity of O(iM).

(4) Compute new residual: Rt = y − αt, y and αt are M × 1 matrices. The subtraction at
each iteration will take M computations, hence, O(M).
Therefore, the total cost per iteration will be O(MN). If the signal is k-sparse, this
algorithm will be iterated k times, giving a total computation complexity ofO(kMN).

4. PROPOSED FRAMEWORK
4.1. Processing Platform Architecture
In this paper we propose a CS-based heterogeneous framework for reducing data
transfers to accelerate big data processing on hardware platforms. The heterogeneous
framework consists of an accelerator for efficient CS recovery using a fully flexible and
parallel reconstruction using OMP architecture and a host processor to perform post
processing. An accelerator is a programmable platform adopted to perform compute-
intensive CS-reconstruction while achieving low power and high-speed computations.
Recent research has shown that heterogeneous architecture platforms provide signifi-
cant advantages in enabling energy-efficient or area-efficient computing. For example,
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Fig. 3. (A) Power Efficient Nano Clusters (PENC), many-core architecture (B) Bus-based cluster architec-
ture (C) Post-layout view of bus-based cluster implemented in 65nm, 1V TSMC CMOS technology (D) Block
diagram of core architecture (E) Post-layout implementation results of bus-based cluster (consisting 3 cores
+ bus + cluster memory).

nvidia Jetson TK1 combines the benefits of the parallelism of GPU and the scalability
of a multi-core CPU architecture. Although integration with GPU has provided oppor-
tunities to enhance the performance, it comes with significant power cost. To address
the need for programmability, low power consumption, area efficiency and parallel
computing platform, we adopt PENC many-core platform. In order to determine best
platform for CS reconstruction, OMP architecture is implemented on three different
platforms. nvidia Jetson TK1 platform consisting low power combination of nvidia ke-
pler GPU and qual-core ARM CPU which provide both programmable and parallel
solutions and a domain specific PENC many-core is also adopted which provides pro-
grammability, parallelism and energy efficiency. Each platform has substantially dif-
ferent architectural and memory sub-system, middle-ware support, and programming
style. Thus to determine best accelerator, we also address performance with respect to
overhead in design flow and I/O budgets.

4.1.1. ARM CPU/K1 GPU. Today’s off-the-shelf processors provide a wide range of ca-
pabilities at different power targets. We use the popular nvidia Jetson TK1 platform
which has low power commercial-of-the-shelf (COTS) in market, to evaluate power pri-
orities related to implementing OMP architecture. The system-on-chip (SoC) combines
the kepler graphics processing unit, GPU, and a 4-plus-1 ARM processor arrangement
on a single chip. The 4-plus-1 processor configuration, also known as variable symmet-
ric multiprocessing (vSMP,) consists of five cortex A15 ARM processors, four high per-
formance processors and one low power processor. Each ARM CPU has a 32KB L1 data
and instruction cache supporting 128-bit NEONTM general-purpose single instruction,
and SIMD instructions. All processors in the 4-plus-1 configuration have shared access
to a 2MB L2 cache. The K20a GPU is available to either processor power configuration
and consists of a single streaming multiprocessor (SMX). The SMX has a CUDATM

compute capability of 3.2, which provides a majority of the architectural benefits of
the K20c only scaled down to a single SMX group. The Jetson TK1 has 2GB of DDR3
memory that is shared between the ARM CPU and K1 GPU and is rated to run up
to 933MHz. In this paper we use different combinations of the four high performance
cortex A15 ARM processors and the GPU for comparison.

4.1.2. PENC Many-Core Architecture. Power Efficient Nano Clusters (PENC), many-core
architecture is composed of 64 processing clusters (192 Cores) connected through
routers in a three-level GALS hierarchical tree. The lowest level consists of four clus-
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ters connected by a router with five ports: one for each cluster and one for communi-
cation to the next level. GALS hierarchical tree structure of PENC many-core allows
us distributed computing and scalability, thus efficient embedding of an extra process-
ing core or cluster to the chip. The lightweight cores also help to ensure that all used
cores are fully utilized. While the lightweight cores are ideal for CS kernels, they of-
ten require large amounts of memory for their model data. This is addressed with the
cluster-level shared memory that is interfaced to the bus. The shared memory can be
accessed within the cluster on the bus and from other clusters through the router. Sec-
tion 5.3 provides experimental results showing how each of these many-core features
are well suited for OMP CS kernels. Figure 3 shows the block diagram of PENC many-
core with the details of bus-based cluster and processor block diagram. It also gives
brief idea of implementation results on 65nm, 1V TSMC CMOS technology. Below are
key characteristics of the PENC many-core platform.

Bus-Based Cluster. Each 16-bit core consists of a six-stage processor pipeline, 128-
deep instruction and data memories, and 16 registers. For all ALU instructions, the
sources and destinations can be either registers or local data memory references. In
either case, the read data is available before the execute stage, eliminating the need
for separate LD and ST instructions for applications whose state fits in the local data
memory. Register accesses are resolved in the Instruction-Decode stage, and accesses
to a core’s local data memory are resolved in the Memory-Decode stage.

Cores use the IN and OUT instructions to communicate with each other. When a core
executes an OUT instruction, the data and relevant addressing information is packe-
tized and sent to its output FIFO. When data is present in a core’s output FIFO, it
requests to use the bus. The bus then arbitrates between requests, only granting those
whose transactions can be completed. Each core has an input FIFO, and if the input
FIFO corresponding to the OUT is not full, the OUT can be completed. The node wraps
the processing core pipeline with layers of buffering and is the level that interacts with
the bus. The architecture in Figure 3 shows input and output FIFOs to store data to be
sent to and received from the bus. The destination core is used by the bus to forward
the packet to the appropriate location, and the source core is used by the request-
ing node to satisfy its corresponding IN instruction. The destination address and data
fields instructs the recipient core address of the data to be stored.

The Processing core contains additional buffering on the input in the form of a 32-
element content-addressable memory (CAM). It is used to store packets from the bus
and allow a finite state machine to find a word where the source core field corresponds
to that in the IN instruction itself. For example, if the core is executing IN 3, the FSM
searches through the CAM to find the first word whose source core is equal to three.
This word is then presented to the processing core and processing continues.

Distributed Cluster Memory. Within each cluster, three 1024×16 SRAM cells
compose a distributed cluster memory (DCM). The processor nodes within the clus-
ter can all access the cluster memory via the bus. To access the memory, cores use
two memory instructions: LD and ST. The maximum depth of the cluster memory is
216 words since registers and data memory are both 16-bits wide and can therefore
supply a 16-bit memory address. Using data memory as operands for instructions is
still beneficial to using LD and ST from an efficiency standpoint because of the one-cycle
read/write capability. Referencing data from the cluster memory has latency and re-
quires a separate instruction, which reduces the overall instructions per cycle that the
pipeline can complete. However, the LD and ST instructions enable the use of a much
larger addressable space, which allows the PENC to support this application.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:9

4.2. Platform Implementation and Experimental Set-up
The paper implements OMP algorithm on PENC many-core platform, low power ARM
CPU and K1 GPU combination. We carefully implement OMP algorithm on different
platforms while considering available cache size, processing cores and adopting to plat-
form specific libraries.

4.2.1. ARM CPU/ K1 GPU: nvidia Jetson TK1. For each choice of platform, a series of
benchmarks related to run-time and power are evaluated to determine the solution
with the best energy efficiency. For the CPU solution, OpenBLAS library is selected
based on its performance and usability, it builds the library specifically tuned for the
targeted architecture. Single Program Multiple Thread (SPMT) approach is adopted
to align with the GPU’s execution model. In SPMT configuration, the OMP program
utilizes one main process thread and several child processing threads. Each thread is
assigned a chunk of the total number of columns to work based on equation (2).

Work Chunk =
Number of Columns

Active Threads
(2)

The CPU program operates in three steps: 1. Memory allocation 2. Spawn child threads
3. Processing on allocated memory. Each child thread executes a series of matrix opera-
tions with minimal memory movements, and once the main thread is finished, it tears
down the child threads leaving the completed sparse matrix present in the passed
reference memory.

In case of GPU implementations, we use compute unified device architecture BLAS
(cuBLAS) library in CUDA R©version 6.5. The GPU implementation follows same steps
as outlined for CPU implementation, however the work flow is modified for concur-
rency and CUDA streams. CUDA streams provided by nvidia platform allows concur-
rent implementation i.e. it has ability to execute a kernel while enabling asynchronous
memory transfers. The amount of concurrency achieved by a device is dependent on a
series of different capabilities such as: CUDA compute capability, the number of CUDA
processing cores, the number of warps per multiprocessor, the number of threads per
multiprocessor, and max registers per thread.

The TK1 platform has a single SMX containing 192 CUDA cores, a single DMA
engine, and a true unified GPU/CPU memory architecture. Due to the low number
of SMX resources the maximum kernel concurrency is dependent on the occupancy
of the kernel in the SMX. We evaluated each kernel using the nvidia visual profiler
to assess its performance and hence its importance in optimization. The TK1 uses a
shared memory architecture with the ARM CPU and thus explicit memory movements
are not required. However, in this approach we still utilize host-to-device and device-
to-host copies for data movement.

Evaluation Methodology of TK1 Platform. The nvidia TK1 platform does not
have an easily accessible power measurement sensors. Additionally, board layout ex-
poses only a single load resistor for sub system power measurements. In this paper
we present data based on total system level current consumption which includes the
subsystems of the CPU and GPU. The current is measured using a sense resistor con-
nected in series with the platform’s 12.15V supply voltage [Stokke et al. 2015].

To efficiently measure only CPU and GPU performance and avoid measurements
contributing to subsystems of TK1 platform we revised the original set up. Our re-
vised set up use an external sensor system comprised of a TI INA219 and an Arduino
Uno as shown in Figure 4. The INA219 is designed to measure the voltage across a
sense resistor connected in series to a power rail. The electrical resistance of the sense
resistor must be an order of magnitude smaller than the main circuity to avoid affect-
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Fig. 4. TK1 current measurement setup using a TI INA219 and an Arduino Uno.

Fig. 5. (A) Current analysis of multi-threaded OMP implementation in C++ on four ARM CPU
cores at 2320.5 MHz. (B) Current analysis of OMP implementation in CUDA with one ARM CPU
core and the K1 GPU at 852 MHz, with a 12.15v power supply.

ing the total system load. The INA219 operates by sampling the voltage drop across
the sense resistor and digitizes the sample to calculate the loads current drain.

For accurate power measurements inactive devices or peripherals, such as HDMI,
are explicitly disabled. All external USB devices have been disconnected and only the
ethernet port kept active. To eliminate OS scheduled scaling the CPU is configured to
disable voltage/frequency scaling [eli 2016]. Energy estimates presented in Section 5.2
are based on the average energy consumption for a task during the OMP implemen-
tation. Figure 5A shows current analysis w.r.t execution time for multithreaded OMP
implementation on CPU cores. Figure 5B shows the current analysis for the OMP al-
gorithm on K1 GPU (nvidia Jetson TK1 platform) sampled at 667 samples per second.
It shows a portion of the OMP algorithm execution focusing on the first four iterations
of the processing which utilizes 16 CUDA R© streams calculating sixty-four columns.

4.2.2. PENC Many-Core Platform. In this section we discuss parallel OMP algorithm
mapping on PENC many-core platform. Figure 6 shows the task graph for OMP ar-
chitecture mapping on PENC platform. In identification phase, dot and sort kernel
performs dot product between the measurement matrix φ and residual vector R, and
performs on the fly sorting of evaluated dot product. We preloaded the measurement
matrix φ into DCM whereas, index λt of highest element of the dot product is stored
on core data memory (DMEM). The index λt of the measurement matrix is fetched to
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Fig. 6. Task graph for OMP algorithm mapping for 256 × 256 image size (4× implementation), requiring
108 cores and 32 cluster memories on PENC many-core platform.

obtain Q matrix in augmentation phase. The residue update phase consists of least
square kernel, it performs matrix-matrix multiplication, matrix-vector multiplication
and matrix inversion. The Q matrix is accessed from DCM based on stored index λt in
DMEM. At each iteration, the size of QtQ matrix increments, hence a reconfigurable
matrix inversion is implemented using LU decomposition algorithm. Finally residual
R is updated based on least square matrix xt and augmented matrix Q.

OMP algorithm has interdependent kernels, thus cores can be reused to reduce re-
source consumption. We implemented parallel OMP algorithm in which each kernel is
implemented in parallel also called as “kernel-level” parallelism. In case of kernel-level
parallelism execution time per column is reduced, at the expense of core count. How-
ever in OMP algorithm each column of an image can be reconstructed independently
hence keeping low core count allows us to implement more copies of OMP algorithm
on PENC platform reducing overall execution time called as “core-level” parallelism.
For example, the 128× 128 image size, with kernel-level parallelism requires 12.41ms
on 192 processing cores, however for core-level parallelism each column can be recon-
structed in 0.96ms on 8 cores requiring 5.76 ms to reconstruct whole image with 24
copies on 192 cores. The advantage of core-level parallelism can be observed for higher
image sizes. Analysis of reconstruction time, and energy efficiency of the algorithm is
discussed in section 5.3.

PENC many-core platform has limited shared memory thus reconstructing image
sizes higher than 512×512 is challenging. Therefore to allow implementation of higher
matrix sizes we implement block OMP algorithm [Rouhani et al. 2015]. However block
OMP needs large number of memory transfers from external cache for a new seg-
ment of φ matrix hence compromising overall reconstruction time. For example, we
segmented 768×768 image into two segments of 384 × 256 which requires 32 cluster
memory for storage and similarly 1024×1024 image was segmented into four segments
of 256×512 each requiring 43 cluster memory.

Evaluation Methodology of PENC Many-Core Platform. Our many-core devel-
opment environment includes an architecture simulator written in java. The simula-
tor serves as a reference implementation of the architecture; its purpose is to make
testing, refining, and enhancing the architecture easier. Each task of OMP algorithm
is first implemented in assembly language on every processing core using many-core
simulator. The simulator reads in the assembled code as well as an initial state for
the register file and data memory in each core. It then models the functionality of the
processor and calculates the final state of register files and data memories. Binary
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Fig. 7. (A) Quality of Reconstruction in terms of PSNR and SRER with respect to change in number of
measurements. (B) Fixed point implementation effect on quality of reconstruction.
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Fig. 8. Execution time and energy efficiency analysis on different ARM CPU configurations and clock rates
on various image sizes (A) Execution time ARM CPU at 204MHz frequency. (B) Execution time ARM CPU
at 2320.5MHz frequency. (C) Energy ARM CPU speed 204MHz frequency. (D) Energy ARM CPU speed at
2320MHz frequency.

files generated by many-core compiler are used to program each core individually. For
execution time and energy consumption analysis the OMP binaries obtained using
many-core compiler are mapped on the hardware model of the many-core platform
and simulated using cadence nc-verilog. The activity factor is then derived and is used
by the Cadence Encounter tool for accurate power computation.The many-core sim-
ulator reports statistics such as the number of cycles required for ALU, branch, and
communication instructions which are used for the throughput analysis of the PENC
many-core architecture.

5. IMPLEMENTATION RESULT ANALYSIS
This section presents OMP CS reconstruction algorithm implementation and analy-
sis of execution time and energy consumption on low power ARM CPU, and K1 GPU
combination and PENC many-core platform. PENC many-core implementations are
performed in fixed-point format, whereas CPU / GPU implementations are performed
in floating point format. For each platform, signal size N ranges from 128×128 to
1024×1024, where sparsity k = N

8 and with 33% measurements, it achieves 67% data
reduction. For all platforms, the measurement matrix φ is stored on-chip to reduce ex-
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ternal memory overhead. Furthermore, Monte-Carlo simulations are performed since
measurement matrix and sparse image is based on random variables. Finally in Sec-
tion 5.5 we compare ARM CPU, K1 GPU and PENC many-core platform and best
platform is selected for real-time application implementation.

5.1. Experimental Set-up & Performance Metric
Figure 7A shows quality of reconstruction in terms of PSNR for image reconstruction
and SRER for Gaussian signal reconstruction. The SRER is measured as mean square
error between original signal X and reconstructed signal X̂. Figure 7B shows fixed
point implementation analysis for reconstruction quality.

5.1.1. Experimental Set-up. Image reconstruction experiments are performed on differ-
ent level of information content of n×n1 where n = 512, k = 32, m = 128 and T = 1000.

(1) Randomly generate sensing matrix using Gaussian source.
(2) Measurement vector is computed using wavelet transform and Gaussian signal vec-

tor.
(3) For each column in an image, compute measurement vector y = φX and apply to

CS reconstruction algorithm independently.
(4) Increment “T” (iteration count) and repeat experiment (step i to iii) for T times (T

= 1000). Then evaluate algorithm performance using average PSNR and SRER.

5.1.2. Performance Metric

— Signal to Reconstruction Error ratio is a mean square error between original signal
X and reconstructed signal X̃.

SRER = 10 log (
E‖X‖2

E‖X − X̃‖2
) (3)

— PSNR is measured via mean square error (MSE) between original image X and
reconstructed image X̃.

MSE =
1

mn

i=m−1∑
i=0

j=n−1∑
j=0

X(i, j)− X̃(i, j)]2 (4)

PSNR = 20 log10 (
MAXpixel√

MSE
) (5)

5.2. ARM CPU/K1 GPU
In this section, we discuss implementation results in terms of execution time and en-
ergy consumption analysis for low power ARM CPU/ K1 GPU combination on nvidia
Jetson TK1 platform w.r.t. frequency and core usage parameters. Figure 8 shows lin-
ear increase in execution time and energy consumption with increasing computational
complexity of OMP algorithm. The trend shows that, increasing the core count de-
creases the time necessary to solve the problem set. For all image sizes, the least
amount of energy among ARM CPU configurations is observed for the quad-core con-
figuration. Enabling second core, the average execution time is decreased by 88%, 42%
drop in execution time is achieved by enabling the third core, and 22% reduction by en-
abling the fourth core of ARM CPU. Similarly, the energy consumption is decreased by

1For convenience to explain, we selected row and column size to be same. In real-time streaming data can
be of different column and row sizes

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14

128x128 256x256 384x384 512x512 768x768 1024x1024

101

103

105
Ex

ec
ut

io
n 

Ti
m

e 
(m

s)

Image Size 
      (A)        

GPU 72MHz GPU 252MHz GPU 468MHz GPU 648MHz GPU 852MHz

128x128 256x256 384x384 512x512 768x768 1024x1024
100

105

1010

Image Size
(B)

En
er

gy
 (m

J)

Fig. 9. Execution time and energy efficiency analysis on different K1 GPU clock rates with various images
sizes at 852MHz.
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Fig. 10. Execution time and energy efficiency analysis of quad-core ARM CPU at different frequencies vs
maximum GPU clock rate at 852MHz.

59% when enabling a second core, 24% reduction with three cores and 10% by enabling
the fourth core of ARM CPU. Figure 9 shows increasing the clock frequency, produces
a linear trend for execution time and energy consumption per frequency, however in-
creasing clock frequency comes with the cost of increasing power consumption.

Figures 10 and 11 details the comparison in both execution time and energy con-
sumption between the ARM CPU and K1 GPU at various configurations. Figure 10
shows analysis of quad-core ARM CPU at three different frequencies and the high-
est clock frequency of K1 GPU at 852MHz. The quad-core CPU at highest frequency
of 2320.5MHz has the best performance up to 512×512 image size and K1 GPU per-
formance is best for 768×768 and 1024×1024 image sizes. Figure 11 shows that the
quad-core ARM CPU at its highest frequency has the best performance in terms of
execution time and energy consumption for image sizes from 128×128 to 512×512,
however for large image sizes K1 GPU has best performance. In conclusion, ARM CPU
performs best for smaller image sizes and K1 GPU performs better for large image
sizes i.e. for higher computational complexity.

5.3. PENC Many-Core
In this section, we evaluate OMP algorithm mapping on many-core platform in terms
of execution time, energy consumption, and area efficiency. The execution time and
energy consumption is evaluated on post layout implementation (65nm CMOS tech-
nology) using cadence tools, whereas area efficiency is measured based on throughput
per core metric.

5.3.1. Execution Time Analysis. Parallel and reconfigurable OMP architecture mapping
is performed to achieve higher computation-to-communication ratio. The memory
transfers are hidden by computation cycles to reduce latency. Figure 12A shows ex-
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Fig. 11. Comparison of execution time and energy on different ARM CPU configurations at 2320.5MHz
and K1 GPU at maximum clock rate at 852MHz.

128x128 256x256 384x384 512x512 768x768 1024x1024

102

104

106

Image Size 
    (A)        

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

128x128 256x256 384x384 512x512 768x768 1024x1024

102

104

106

Image Size 
      (B)        

En
er

gy
 (m

J)

Core Level Paralelism Kernel Level Paralelism

1.21x

2.15x

1.54x
2.81x

1.81x

1.31x 2.24x

1.73x

3.49x6.45x1.28x
1.27x

Fig. 12. Execution time and energy consumption analysis of OMP algorithm on PENC many-core platform,
experiments were performed on six image sizes and different level of parallelism.

ecution time analysis for core-level and kernel-level parallelism. For 128 × 128 image
size, core-level parallelism it requires 5.76ms and performs 2.1× faster as compared
to kernel-level parallelism. It can be observed that core-level parallelism has less la-
tency as compared to kernel-level parallelism for small image sizes. However for large
images, core-level parallelism performs better than kernel-level parallelism. For exam-
ple, 1024× 1024 image kernel-level parallelism is 2.8× faster as compared to core-level
parallelism. We also projected our findings from PENC many-core (192 core) archi-
tecture to 2000 core architecture as shown in Figure 13A. As the number of cores
increased we could map more copies of independent OMP modules, thus the overall
execution time decreases as a stair-case function. It can be observed that after certain
number of cores, execution time saturates. The saturation point occurs when the num-
ber of cores is large enough that only one run is needed and each copy will process
only one column of image data. For example 128 × 128 image size, 1024 cores is this
saturation point.

5.3.2. Energy Efficiency Analysis. Each core on the PENC platform can operate up to
1GHz at 1v. Detailed power analysis of PENC platform is enumerated in Table I. PENC
is connected through GALS hierarchical tree routing architecture hence the un-used
clusters can be shut down. The power of the processor drops to leakage power when the
processor clock is halted and the power consumption is reduced by almost 50% when
its stalling.

Figure 12B shows the energy consumption of OMP mapping for different sizes of im-
ages on PENC many-core platform. It closely follows execution time trend, core-level
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Fig. 13. (A) Execution time analysis vs number of cores with core-level parallelism. (B) Throughput per
Core (TPC) analysis for core-level and kernel-level parallelism.

Table I. Post-layout power analysis of the PENC many-
core architecture at 1GHz and 1V, implemented in 65nm
TSMC CMOS technology.

Kernel 100% Active Stall Leakage
(mW) (mW) (mW)

Processor 37.5 19.49 0.3
Cluster-Bus 3.19 - 0.05
Hierarchical 97.3 - 0.8

Router
Cluster 115.8 - 1.69

parallelism consumes less energy as compared to kernel-level parallelism for small im-
age sizes. However for large image sizes 768×768 and 1024×1024, energy consumption
of kernel-level parallelism is reduced by 3.4× and 2.2×, respectively as compared to
core-level parallelism.

5.4. Area Efficiency Analysis
One of the important aspects of adopting domain specific PENC many-core is higher
performance with low area. To evaluate area efficiency we use ThroughputPerCore
(TPC) metric, where TPC is the ratio between the throughput of each design to the
number of cores used for implementation as calculated in equation (6). The throughput
is calculated based on number of clock cycles required to process each pixel of an image
(input data).

Throughput Per Core =
Total Throughput

Number of Cores
(KBytes/Sec) (6)

Following techniques were adapted for core area optimization:

— Dot product kernels are reused for matrix-vector multiplications in least square and
residual update kernel.

— For least square kernel implementation, QtQ and LU decomposition kernels were
fused together saving 6 cores.

— Residual update kernels i.e calculating new approximation αt and residual Rt were
fused together saving another 12 cores in the same implementation.

Figure 13B shows the throughput analysis for different image sizes, it can be observed
that kernel-level parallelism has better throughput as compared to core-level paral-
lelism irrespective of image size.
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Fig. 14. Comparison of OMP algorithm on quad-core ARM CPU, K1 GPU at maximum clock rate of
2320.5MHz and 852MHz respectively, with PENC many-core implementations at 1GHz (A) execution time
(B) energy consumption analysis.

Table II. Comparison of OMP algorithm implementation on different platforms.

Tech- Max Chip Execution
Platforms Signal Sparsity nology Frequency Area Vdd Power Time

Size (nm) (MHz) (mm2) (V) (W) (ms)
128× 128 16 12.75 45.3

ARM 256× 256 32 12.75 701.7
CPU 384× 384 48 12.75 4,182

(This Work) 512× 512 64 28 2320.5 16 0.9 12.75 18,307
768× 768 96 12.75 97,869

1024× 1024 128 12.75 378,120
128× 128 16 9.52 1,023

K1 GPU 256× 256 32 9.52 4,323
384× 384 48 9.52 10,295

(This Work) 512× 512 64 28 852 37 0.9 9.52 21,328
768× 768 96 9.52 60,543

1024× 1024 128 9.52 169,225
128× 128 16 6.39 5.7

PENC 256× 256 32 8.67 318.83
Many-Core 384× 384 48 6.39 6,041

(This Work) 512× 512 64 65 996 29.2 1 8.67 6,859
768× 768 96 8.67 10,532

1024× 1024 128 8.67 38,019

5.5. Comparison Results
In last decade, different modifications to OMP algorithm are proposed to improve
PSNR, SRER, Structural Similarity Index measure (SSIM) for specific application.
For example, Look Ahead OMP improves the SRER performance for Gaussian sig-
nals [Swamy et al. 2014], Thresholding OMP (tOMP) improves reconstruction time,
and Gradient Descent OMP (GDOMP) reduces hardware complexity for image pro-
cessing application while achieving satisfactory range of PSNR [Kulkarni and Mohs-
enin 2017]. To allow different OMP architectures based on application requirements,
processing platform needs to be programmable. In our previous work [Kulkarni et al.
2016] we implemented tOMP and GDOMP algorithm in PENC many-core platform
to reduce area and execution time overhead, respectively, of CS-based framework for
image processing application.

In [Kulkarni and Mohsenin 2017] we implemented OMP and its variants on 65nm
CMOS technology (ASIC platform), it can reconstruct the signal 4.5× faster and con-
sume 8× less energy as compared to PENC many-core solution, however they are not
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programmable. In [Kulkarni et al. 2014] we implemented OMP algorithm on Xilinx
FPGA platform, it can reconstruct 1.8× faster. In OMP algorithm, identification and
residual update phase require at least “n×m” multiplications and “n” subtraction for
efficient parallel implementation. These operations are performed using DSP slices,
however low power FPGA devices have rigid constraints on number of DSP slices.
Limiting DSP slices will restrict parallel implementation thus reducing reconstruc-
tion performance for large image sizes. In conclusion, though ASICs and FPGAs are
energy efficient solutions, they are application-specific hardware. Therefore we do not
compare them with PENC many-core and GPU acceleration platforms which allow
programmability, reconfigurability, and energy efficient parallel implementation.

To choose best platform for CS reconstruction acceleration in CS-based framework,
we evaluate each platform with respect to execution time, energy consumption and
chip area as shown in Table II. Compared to ARM CPU and K1 GPU implementation
PENC many-core platform performs 8× and 177× faster and saves 15× and 200× en-
ergy consumptions, respectively. Additionally considering chip area for TK1 platform
in 28nm and PENC platform in 65nm, PENC many-core platform is the most efficient
choice for OMP CS kernels.

6. APPLICATION CASE STUDY AND ANALYSIS
To demonstrate the efficiency of the proposed CS-based framework, we integrate it
with hadoop MapReduce for face detection application as shown in Figure 15. Table II
shows that PENC many-core platform has lowest hardware overhead as compared
to ARM CPU and K1 GPU platforms. Therefore we select PENC many-core plat-
form for efficient CS-OMP reconstruction in the proposed CS-based framework. We
demonstrate efficiency of CS-based framework targeting two different AR-face detec-
tion database [Martinez and Benavente 1998] and UMass-FDDB [Jain and Learned-
miller 2010] big data benchmarks for face detection. AR-face detection data set con-
tains 4000 of images and UMass-FDDB data set contains 2845 images. In this section
we discuss hadoop MapReduce integration with the proposed CS-based framework and
its implementation results for face detection application.

The MapReduce framework is a parallel programming model, designed to process big
data applications. In hadoop framework data is uploaded into the file systems before
processing commences. This process of adding data requires bandwidth and storage
to be available on the distributed file system and there needs to be enough available
storage to allow for redundancy. Depending on the size of the data there can be a long
delay before an application can be executed, as the system must first distribute the
data to each of the MapReduce nodes. A particular example of this would be in the use
of MapReduce for image and video processing.

We propose to use compressive sensing to reduce data storage and transfer require-
ments. However data reduction brings two important challenges: 1. cost of computa-
tion, 2. decompression error rate. In this paper we measure computation cost for data
reduction in terms of execution time and energy consumption overhead, whereas de-
compression error rate is measured in terms of mis-classification rate. For the demon-
stration we implemented face detection application on MapReduce with CS-based
framework as discussed in Section 6.1.

6.1. Face Detection Application
In last two years much research has been performed in big data and face detection,
thus to demonstrate efficiency of the proposed CS-based framework we implement
face detection application. We implement Haar feature based cascade classifier in
OpenCV [Viola and Jones 2001],[Girshick 2015]. Cascade classifier consists of several
simple classifier stages applied to region of interest until the candidate image is passed
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Fig. 15. Integration of proposed CS-based heterogeneous framework with hadoop MapReduce, compressive
sampling is performed using our previous work [Kulkarni et al. 2016a] and compressive reconstruction is
achieved using OMP algorithm on PENC many-core platform, Map and Reduce is performed on ARM CPU
We perform all tests on a single mapper as shown by dotted lines.

Fig. 16. Visual representation of image before and after each stage of processing. (A) Original Image (B) Re-
constructed image from the stored compressed image (C) Successful facial identification of the reconstructed
image

or rejected [Cas 2016]. Cascade classifier typically consists of two stages training and
detection. In this experiment we use 20-stage cascaded classifier trained with 5000
images of size 512×512 consisting of 60% positive sample [Lienhart et al. 2003],[Sinha
et al. 2006]. For detection stage, different number of images ranging from 25 to 1000
with up to 6 faces in each image. The CS-based algorithm can be efficiently adopted
for different machine learning algorithms. CS-based framework has been evaluated for
different machine learning algorithms including support vector machine, nave bayes,
logistic regression, and k-nearest neighbors [Kulkarni et al. 2016a]. For seizure de-
tection application, computations are reduced by 16× while energy consumption of
processing is reduced up to 68%.

In following Section 6.2 we perform face detection analysis with CS-framework.

6.2. Face Detection Application Analysis
A MapReduce face detection implementation was created using both PENC many-
core platform and the low power nvidia Jetson TK1 platform, where PENC is used
as an accelerator and TK1 platform as the main processing engine. We adopt hadoop
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Table III. Execution time analysis of MapReduce integrated with CS-based framework for face detection
application. In ARM CPU only implementation the CS reconstruction and processing performed on ARM
CPU whereas in PENC+ARM CPU, CS reconstruction is performed on PENC and processing on ARM CPU.

Size Data Transfer Application Execution Time Execution
of Data Reduction ARM Only PENC + ARM Improvement time

Through CS (%) (secs) (secs) (%) Overhead(%)
25 Images (11MB) 26.15 17 14 22.26 8.76
50 Images (22MB) 26.15 34 27 26.22 6.75

250 Images (108MB) 26.15 183 144 26.97 4.49
500 Images (217MB) 26.15 359 281 27.90 4.36

1000 Images (434MB) 26.15 741 583 27.01 4.08
2500 Images(1.08GB) 26.15 1,884 1,473 27.90 3.99
5000 Images(2.17GB) 26.15 3,906 3,015 29.55 3.78

Table IV. Energy consumption analysis of MapReduce integrated with CS-based frame-
work for face detection application. In ARM CPU only implementation the CS reconstruc-
tion and processing performed on ARM CPU whereas in PENC+ARM CPU, CS reconstruc-
tion is performed on PENC and processing on ARM CPU.

Size Application Energy Consumption Energy
of Data ARM Only PENC + ARM Improvement Consumption

(Joules) (Joules) (%) Overhead(%)
25 Images (11MB) 223 166 34.31 0.007
50 Images (22MB) 436 322 35.52 0.005

250 Images (108MB) 2,309 1,736 32.94 0.003
500 Images (217MB) 4,536 3,391 33.74 0.003
1000 Images (434MB) 9,349 7,060 32.41 0.003
2500 Images (1.08GB) 22,769 17,044 33.58 0.003
5000 Images (2.17GB) 46,946 35,210 33.33 0.002

2.6.3 [apc 2016] platform, and the native hadoop libraries were built from source for
the platform. Figure 15 shows integration of hadoop MapReduce framework with the
proposed CS-based framework, to evaluate face detection application with all tests on
a single mapper. The experiment is performed in four different stages: 1. Images to
be analyzed are converted to grey scale and sampled using compressive sensing with
33% measurements i.e only 33% of the image is transferred. The resulting transformed
images are stored as binary files for distribution. 2. SequenceFile is used to create a
persistent data structure for binary key-value pairs. The key is generated from the
name of the file and a value is the binary data from the compressed file. It ensures
that the binary data of each image is not segmented before facial recognition occurs.
3. At the consumer (mapper) end, reconstruction of the sampled image is performed
using PENC many-core platform. While the reconstructed image is placed into a queue
for the consumer thread, the producer thread reads in the next key-value pair. 4. Fi-
nally, the consumer thread passes reconstructed data to OpenCV’s Haar feature based
cascade classifiers for face detection application.

In order to analyse decompression error rate, reconstruction performance analysis
is performed in terms of mis-classifcation analysis. Figure 16 shows the example of
original image transition to reconstructed image and face detection on hadoop MapRe-
duce platform with CS-based framework. Table III shows execution analysis of the
proposed CS-based framework integrated with hadoop MapReduce for face detection
application. The proposed CS-based framework reduces data transfers by 26% with
67% reduction in data. To demonstrate efficiency of the PENC CS reconstruction ac-
celeration, we implemented MapReduce platform in two different cases, 1. ARM CPU
is used for CS reconstruction and processing i.e for master, CS reconstruction and map-
per, reducer. 2. Combination of PENC and ARM CPU, in which PENC is used for CS re-
construction and ARM CPU is used for master, mapper and reducer. Compare to ARM
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CPU implementation, PENC + ARM implementation reduces application processing
time by 22-29% and saves 32-34% energy consumption as shown in Table IV. Addi-
tionally we also perform hardware overhead analysis of CS reconstruction on hadoop
MapReduce platform. CS framework has very low execution time overhead of 3.7%
and negligible energy consumption overhead of 0.002% when tested for 5000 images.
Table III and IV shows that, the increase in number of data sizes CS-based framework
will have insignificant execution and energy consumption overhead.

7. CONCLUSION
In this paper we propose novel a CS-based framework for efficient big data processing
on hardware. We focus on computationally complex CS-reconstruction kernel which we
implemented using OMP algorithm. We performed characterisation and implementa-
tion of OMP algorithm on various platforms including domain specific PENC many-
core platform, and low power Jetson TK1 platform consisting of ARM CPU, and K1
GPU. The PENC many-core platform is evaluated for execution time, energy efficiency
and throughput per core on 65nm ,1v CMOS technology. Low power nvidia Jetson TK1
platform consisting of ARM CPU and K1 GPU is evaluated based on different fre-
quencies, and different number of cores for execution time and energy consumption.
All three platforms are compared based on execution time, energy consumption, and
chip area for 6 different image sizes. OMP algorithm analysis to reconstruct image
data from 33% of measurements shows that PENC many-core architecture consume
15× and 18× less energy and 16× and 8× faster reconstruction time as compared to
low power ARM CPU, and K1 GPU respectively while achieving satisfactory range
of signal quality. Based on hardware overhead analysis we chose PENC platform as
“accelerator” and ARM CPU platform for big data processing. To demonstrate effi-
ciency of the proposed framework, we integrated CS-based framework with hadoop
MapReduce platform for face detection application. The master who schedules the
tasks and the mapper which executes face detection are implemented on ARM CPU
platform whereas, CS reconstruction is performed on PENC many-core platform. The
CS-framework achieves 26.17% reduction in data transfers with very low execution
overhead of 3.7% and negligible energy overhead of 0.002% when tested for 5000 num-
ber of images on PENC many-core platform. Additionally we compare PENC+ARM
CPU implementation with ARM CPU only implementation, the results show that
PENC+ARM CPU implementation reduces 29% execution time and saves 34% energy
consumption of face detection application.

7.1. Discussions
The 3Vs in big data sets, Volume, Velocity, and Variety, provide challenges in many dif-
ferent aspects of real-time systems. CS-based framework is adopted to reduce data
transfers while achieving low hardware overhead with lower reconstruction error
rates. In this paper, the experiments are conducted on nvidia TK1 platform with data
sizes from 11MBytes to 2.17GBytes, we observe that as the data size increases ex-
ecution time and energy consumption overhead is reducing. The execution and en-
ergy overhead, largely depends on accelerating platform efficiency, based on available
cache size, number of parallel threads, allowed maximum frequency, and its overall
architecture. Therefore, careful characterization of acceleration platform needs to be
performed. Based on the experiments conducted in section 5 and 6, we believe that
affordable volume and velocity for the heterogeneous CS-based framework depends on
acceleration platform, and processing platform.

Current embedded big data processing platform should adapt to continuously chang-
ing data, our scalable CS-based framework is practiced with three different applica-
tions including seizure detection [Kulkarni et al. 2016b], face detection, and object
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identification [Kulkarni et al. 2017] to provide data reduction with low hardware over-
head. In [Kulkarni et al. 2016a], CS-based framework is presented to accelerate multi-
channel EEG based Seizure detection application and its performance efficiency is ex-
perimented for four different machine learning algorithms. The CS-based framework
could reduce up to 72% data transfers while achieving 2% and 2.9% degradation in
sensitivity and specificity. For each sample window, computations are reduced by 16×
while energy consumption of processing is reduced up to 68%. In [Kulkarni et al. 2017]
we show that the CS-based framework not only reduces data but also enables encryp-
tion for embedded big data applications. To demonstrate the efficiency, we performed
experiments on two different datasets for object identification application. CS-based
framework requires 2× less transfer time and achieves 2.25× higher throughput per
watt compared to MapReduce platform. Furthermore, [Zhang et al. 2014] shows that
CS-based frameworks can be adopted for real web-scale production data. Thus CS-
based frameworks have potential in most of the big data applications.
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