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1 INTRODUCTION
While demand for data center computational resources continues
to grow as the size of data grows, the semiconductor industry
has reached scaling limits and is no longer able to reduce power
consumption in new chips. Unfortunately, the promise of analytics
running on large systems (e.g., data-centers) over huge data, and
scaling those systems into the future, coincides with an era when
the end of Dennard scaling brings into serious question our ability
to provide scalable computational power without prohibitive power
and energy costs.

One of the most promising solution to address the computational
efficiency crisis is heterogeneity and specialization.

In particular, heterogeneous hardware accelerators have received
renewed interest in recent years in cloud scale architectures [1] [2],
mainly due to slowing of MooreâĂŹs law scaling, along with com-
pute and latency requirements of cloud workloads that is increasing
beyond CPU-only capabilities. Several GPU and FPGA-based het-
erogeneous accelerators, have been proposed for big data analytics
and cloud computing and in particular for MapReduce program-
ming model, a de facto standard for big data analytics. Table 1
summarizes a number of these efforts.

As shown in Table 1, the recent efforts mainly focus on accel-
erating a particular MapReduce application and deploying it on
a specific architecture that fits well the performance and power
requirements of the application. Given the diversity of architec-
tures presented in Table 1, the important research question is which
architecture is better suited to meet the performance, power and
energy-efficiency requirements of a wide and diverse range of ma-
chine learning applications implemented in MapReduce. To the best
of our knowledge, there has been no prior effort on performing
design space exploration to find the choice of hardware accelerator
architecture that can be deployed in cloud for MapRecue analytics
applications.

Thus in this paper we explore a large architecture space which
spans FPGA technology (high-end vs low-end), core technology
(big vs little core server), and interconnection technology (on-chip
vs off-chip) to understand the benefits of hardware acceleration and
power and performance trade-offs offered in each of these design
points to gain architectural insights. Figure 1 shows the overview
of the design space exploration of MapReduce in this paper.

Our experiments answer the questions of what is the role of pro-
cessor after acceleration in a heterogeneous architecture; whether
a high-end server equipped with big or a low-end server equipped
with little core is most suited to run big data applications post

Table 1: Latest effort on hardware accelerator for cloud com-
puting

Interface Processor FPGA
[3] Ethernet Duo Core Intel Xilinx Virtex-II Pro
[4] PCIe Intel Pentium 4 Altera Stratix II
[5] AXI-Stream Atom Artrix-7
[6] PCIe ARM Artrix-7 (Zynq)
[7] QPI Intel Xeon Altera Stratix V
[8] PCIe Intel Core i5 Xilinx Kintex-7
[9] AXI4 - Xilinx Virtex-7

Figure 1: Hadoop MapReduce Framework and the mapping
decisions

hardware acceleration? More specifically we answer the important
architecture research question of whether on-chip heterogeneity is
needed for a diverse range of ML-based MapReduce applications
and how the core architecture needs to be integrated with the ac-
celerator; whether off-chip (such as with PCIe) or on-chip (such
as with AXI), and whether a high-end FPGA (such as Virtex-6) is
needed or a low-end FPGA (such as Artix-7) is sufficient for energy-
efficiency. The former question is particularly important as due to
yield and other manufacturing challenges, it is not yet cost-efficient
to integrate large reconfigurable fabric with the CPU architecture
on the same die. Even recent integration technologies such as 2.5D
interposer [10, 11], which enabled higher yields for integrating



reconfigurable fabrics, are not scalable cost-efficient solutions for
server class architectures.

Based on the experimental data of accelerating several major
Hadoop based machine learning algorithms on CPU+FPGA acceler-
ated prototype platforms, this paper makes the following important
observations:

• HWacceleration yields significantly higher speedup onAtom
server, and more significant power reduction on Xeon server,
reducing both the performance and power gap between little
Atom and big Xeon after the acceleration.

• The type of CPU is the most important factor in determining
the execution time and the power in CPU+FPGA architecture.
The integration technology is the second most important
design parameter. The type of FPGA is important only when
the integration technology allows fast transfer of data be-
tween the CPU and the FPGA.

• The high bandwidth of recent off-chip interconnection pro-
tocols such as PCIe Gen-3, allows the data transfer time to
be masked by the computation time in the highly parallel
map functions, therefore eliminates the need for a high cost
on-chip integration of FPGA and CPU in MapReduce.

• Considering the server capital cost, Atom with low-end
FPGA is the most-cost-efficient solution. Combining Atom
with high-end FPGA is not cost-efficient, as the resulting
acceleration gain is small compared to additional cost of
FPGA.

The rest of the paper is organized as follows. Section 2 intro-
duces the experimental setup. Section 3 describes the modeling of
MapRedue hardware acceleration. Section 4 presents the results,
followed by a discussion on architectural decisions and how they
effect the overall performance in section 5. Section 6 covers the
related work. Finally in section 7 we conclude the paper.

2 EXPERIMENTAL SETUP
MapReduce is the programming model developed by Google to
handle large-scale data analysis [12]. The MapReduce framework
is a well-utilized implementation for processing and generating
large data sets in which, the programs are parallelized and executed
on a large cluster of commodity servers. MapReduce consists of
map and reduce functions where, the map functions parcel out
work to different nodes in the distributed cluster, and the reduce
functions collate the work and resolve the results. Fig. 1 shows
Hadoop MapReduce Framework.

2.1 System architecture
Fig. 2 shows the system architecture of a single node of the studied
platform, where eachmapper/reducer slot is mapped to a core that is
integrated with the FPGA. For implementation purposes, we studied
two very distinct server microarchitectures; a high performance
big Xeon core and another a low power embedded-like little Atom
core. These two types of servers represent two schools of thought
on server architecture design: using big core like Xeon, which is a
conventional approach to designing a high-performance server, and
the Atom, which is a new trajectory in server design that advocates
the use of a low-power core to address the dark silicon challenge
facing servers [13].

For the choice of FPGA technology we studied two different
generations of FPGAs, an Artix-7 representing a low-end FPGA
and a Virtex-6 representing a high-end FPGA.

It should be noted that on-chip integration of the accelerator
with the core allows faster transfer of data between the core and the
accelerator. On the other hand, off-chip integration results in slower
transfer rate between the two, but allows more flexibility, since the
type of the FPGA and the core are selected without being confined
to using the limited available on-chip FPGA+CPU platforms. To
study the impact of integration technology, we model existing off-
chip and on-chip interconnect protocols, PCI-Express Gen3 and
AXI-interconnect, respectively.

2.2 Methodology
While native C/C++ injection into Hadoop is on the way, vari-
ous utilities have been used to allow Hadoop to run applications,
the map and reduce functions of which, are developed in lan-
guages other than Java. We employ Hadoop streaming [14], a utility
that along with the standard Hadoop distribution, allows running
MapReduce jobs with any executable or script as the mapper and/or
the reducer. We provide C-based map and reduce functions, which
allows using HLS tools to provide a Hardware Descriptive Language
(HDL) representation for the desired accelerators. Subsequently, we
carry out two levels of profiling.

• Profiling of the Application on MapReduce: In order to calcu-
late the potential speedup on the Hadoop platform after the
acceleration of map/reduce functions, we carry out a detailed
analysis and profiling for various phases.(i.e. map, reduce,
shuffle, etc.) with various profiling tools including Intel V-
tune [15] to find out the contribution of each phase to the
total execution time and identify the performance hotspot
for acceleration. As we will present later in this paper, we
identified map function to be the dominant performance
hotspot across all studied applications.

• Profiling of the map function: To accelerate the map functions
through HW+SW co-design, we profile them to find out the
execution time of different sub-functions and select the sub-
functions to be offloaded to the FPGA. The HDL description
of the selected sub-functions is created utilizing HLS tools
[16]. Each map function is carried out on data splits that are
mostly the size of one HDFS block for data locality purposes,
which varies from 64MB, 128MB to even higher [17]. For each
application, we execute the map function on the data splits
and profile it on the two big and little server architectures.

3 MODELING THE HARDWARE-SOFTWARE
CO-DESIGN

A comparison of variousmodels of computation for hardsware+software
co-design has been presented by [18]. The classical FSM representa-
tion or various extension of it are the most well-known models for
describing control systems, which consists of a set of states, inputs,
outputs and a function which defines the outputs in terms of inputs
and states, and a next-state function. Since they do not allow the
concurrency of states and due to the exponential growth of the
number of their states as the system complexity rises, they are not
the optimal solution for modeling HW+SW co-design. Dataflow
graphs have been quite popular in modeling data-dominated sys-
tems [19]. In such modeling, computationally intensive systems



Figure 2: System architecture of HW accelerator for a single
node.

Figure 3: The queuing network with three identical HW ac-
celerators and the pipeline timing of the accelerator.

and/or considerable transportation of data is conveniently repre-
sented by a directed graph where the nodes describe computations
and the arcs represent the order in which the computations are
performed.

In case of acceleration of the map phase in a MapReduce plat-
form, what needs to be taken into account is the highly parallel
nature of the map functions, which allows higher acceleration by
concurrent processing of multiple computations that have no data
dependencies. Most efforts for modeling of the hardware+software
co-design have found data dependencies to be an important barrier
in the extent to which a function is accelerated, however this is
not the case for MapReduce, In the mapper part of most machine-
learning applications a small function, i,e., an inner product or a
Euclidean distance calculation is the most time-consuming part
of the code, where multiple instances of a small function can be
executed in parallel with no data dependencies. In such cases, a
simple queuing network can be deployed to model a map function,
with only one accelerated sub-function.

Queuing system models are useful for analyzing systems where
inputs arrive sporadically or the processing time for a request may
vary [19]. In a queuing model, customers (in this case, the data to
be processed by the accelerator) arrive at the queue at some rate;
the customer at the head of the queue is immediately taken by
the processing node (the accelerator hardware), but the amount of
time spent by the customer in processing must be specified (service
time). Typically, both the customer arrival rate and processing time
are modeled as Poisson random variables. In our case, however,
since we are using one or multiple copies of the same accelerator,
the service time for all data is fixed and is determined by the max-
imum frequency of the accelerator on the FPGA and the number
of clock cycles it takes to finish the processing of each batch of

data. Moreover, we assume that the data arrives at the accelerator
at a fixed rate, determined by the bandwidth of the interconnect
(transmission link).

Considering efficient buffer sizes, when the first batch of input
data required for one call of the accelerated function arrives at the
FPGA, the FPGA starts processing of data. Extensive pipelining
allows the FPGA to start the processing of the next batch of data
before the processing of the previous batch is finished. Fig. 3 shows
the processing time of the batches of data, where TL is the latency
(the time it takes to produce the first output in accelerator) and Ti
is the interval, which is the time before the accelerator can initiate
a new set of reads and process the next set of input data.

Fig. 3 assumes a pipelined architecture in which, the interface
provides the input data at the same rate as it is being consumed
by the FPGA. Thus, the processing of the data is optimal in FPGA.
Based on Fig. 3 The total processing time is f unc_call × Ti + TL ,
and Ti < TL . However, in a non-pipelined architecture the process-
ing time is f unc_call ×TL , which leaves less room for exploiting
parallelism.

Moreover, since all function calls are data independent, multiple
instances of the same function can be implemented on FPGA (con-
sidering FPGA resources). However, the data movement overhead
of the inputs becomes a potential bottleneck. In other words, the
data arrival rate, which is decided by the interconnect bandwidth,
should optimally be less or equal to the service time, otherwise the
processing time is limited by the transfer time since the computa-
tion units have to wait for the data to arrive at the FPGA. Assuming
a pipelined architecture consisting of N accelerators, in which the
transmission link is not the bottleneck, the total processing time is
reduced to ∗

f unc_call
N ×Ti +TL .

3.1 On-chip vs off-chip interconnect
Due to yield and other manufacturing challenges, it is not cost-
efficient to integrate large reconfigurable fabric with the CPU ar-
chitecture on the same die. While recent integration technologies
such as 2.5D interposer enabled higher yield for integrating recon-
figurable fabrics, still primarily due to cost, they are not scalable
solutions, in particular for server class architectures. Another exam-
ple is the Zedboard which integrate two 667 MHz ARM CortexA9
with an Artix-7 FPGA with 85 KB logic cells and 560 KB block RAM.
While interconnection between the two is established through the
AXI-interconnect, which achieves maximum bandwidths of 600-
9600 MBps, depending on the physical DDR3 data width (8-128 bits)
and Memory clock (300-400MHz) [20], the FPGA is much smaller
than other stand-alone Xilinx FPGAs including Kintex-7 and Virtex-
7 with upto 215K and 475K logic cells and 4MB and 8MB block
RAM, respectively. On the other hand off-chip integration allows
connection to wide range of processors including Intel Atom and
Intel Xeon. However, their interconnection would be through stan-
dard off-chip bus protocols such as PCI-type interconnects, which
are typically slower than on-chip interconnect.

The specified per lane maximum transfer rate of generation 1
(Gen1), Gen2 and Gen3 PCI EXpress is 312.5 MBps, 625MBps and
1GBps, respectively [21]. It is important to note that, these rates
specify the raw bit transfer rate per lane in a single direction. Effec-
tive data transfer rate is lower due to overhead and other system
trade-offs including transaction layer packets (TLP) overhead and
the traffic overhead. While Gen1 and Gen2 protocols use an 8B/10B



Table 2: Architectural parameters

Processor Intel Atom C2758 Intel Xeon E5-2420
Operating Frequency 2.4 GHz 1.9 GHz
Micro-architecture Silvermont Sandy Bridge

L1i Cache 32 KB 32 KB
L1d Cache 24 KB 32 KB
L2 Cache 4×1024 KB 256 KB
L3 Cache - 15MB
PageTable 16972 KB 4260 KB

System Memory 8 GB 32 GB
TDP 20 W 95 W

network interface
model ST1000SPEXD4
speed 1000Mbps

encoding scheme on the transmission lane to maintain DC balance,
Gen3 uses a 128/130B encoding scheme. The encoding schemes
guarantee a transition-rich data stream at the cost of 20% through-
put loss in Gen1 and Gen2, and 2% in Gen3. Thus the effective
bandwidth of Gen1, Gen2 and Gen3 transmission line drops to 250,
500 and 1000 MBps per direction lane, respectively [21]. It should
be noted that, the data link layer and physical layer add overhead
to each TLP, thereby further reducing the effective data transfer
rate.

For our experiments for on-chip integration, we assume an AXI
interconnect with the DDR2 data bandwidth of 64bits, memory
clock of 400MHz, and a the maximum bandwidth of 6400MBps [20].
For the PCI-Express Gen3 we use the effective Bandwidth of 1GBps.

4 IMPLEMENTATION RESULTS
A total of eight machine learning algorithms including Kmeans,
K nearest neighbor (KNN), singular value decomposition (SVD),
support vector machine (SVM), hideen markov models (HMM),
logistic regression (LR), collaborative filtering (CF) and Naive Bayes
are implemented in Hadoop MapReduce, based on [22], [23], [24],
[25], [26], [27] ,[28] and [29], respectively. Subsequently, we profile
each application with 1 TB of input data, with HDFS block size of
64MB, 8 mappers on a 4-node cluster of Intel Atom and Intel Xeon
servers. The processor cores deployed in these two servers have
different microarchitectures (see Table 2). Therefore it is important
to consider the microarchitecture differences when comparing the
two design. We take into the capital cost when comparing these
two servers post FPGA acceleration.

Due to space limitation, when we present the results per bench-
mark, we only report KNN, Kmeans, SVM, and Naive Bayes results.
The average results, however, takes all studied applications data
into account.

4.1 FPGA results
The map functions of the studied applications are profiled for 64MB
(The size of the HDFS block size) using GPROF on both Atom
and Xeon. Based on the profiling, for each application one sub-
function is selected within the map phase, which takes up most of
the execution time, to be offloaded onto the FPGA. Most of these
sub-functions include adder trees, and a collective of MAC units.
The Vivado high-level synthesis tool (HLS) is used to automatically
generate accelerator IPs for the selected sub-functions. Pipelining,

Table 3: FPGA implementation of map one instance of sub-
function on Artrix, (multiple instances can work in parallel
to enhance the processing power)

Resources Available Utilization (%)
SVM K-means KNN Naive Bayes

FF 35200 24.2 8.7 4.2 22.3
LUT 17600 22.4 40.9 7.1 15.1
BRAM 60 13.04 32.2 47.5 32.5
DSP48 80 4 30 0 0

Maximum frequency [MHz] 86 125 300 333
Ti on Artrix [ns] 4431 8 6.66 3
TL on Artrix [ns] 40646 208 198 21

Table 4: FPGA implementation of one instance of map sub-
functions on Virtex (multiple instances can work in parallel
to enhance the processing power.

Resources Available Utilization (%)
SVM K-means KNN Naive Bayes

FF 301440 7.2 2.0 2.1 9.2
LUT 150720 14.3 4.2 6.3 5.2
BRAM 832 2.1 32.1 13.2 7.1
DSP48 768 1 7 2 0

Maximum frequency [MHz] 173 289 289 333
Ti on virtex [ns] 2010 3.3 3.33 3
TL on virtex [ns] 34726 130 50 21

loop-unrolling and other techniques are used to reduce the latency
and most importantly the interval (the time before the accelerator
can initiate a new set of reads and process the next set of input data).
The throughput and FPGA power of the accelerator are proportional
to the inverse of the interval (Ti ), however, the first data will only
be ready after TL (see Fig. 3). Based on this data the time per each
accelerator call is calculated and compared to the time per call on
Atom and Xeon. Table 3 and 4 shows the results on Artrix-7 and
Virtex-6 FPGAs, respectively.

Based on the results in Table 3 and 4, the time per call for each
accelerator is Ti , however, the first results is generated on TL after
which, one output is generated after each Ti seconds (Fig. 3). The
FPGA resources and FPGA processing time of each accelerated
sub-function is different based on the levels of granularity that is
explored in the the acceleration of the map function. For instance,
in SVM the inner product for a large vector is implemented on the
FPGA, while for KNN a small adder tree is accelerated.

The resource utilization in Table 3 and 4 shows that none of the
accelerators take up all the resources, even for an FPGA as small
as Artix, suggesting that where the transfer bandwidth allows,
multiple instances of the same accelerator can be implemented on
the FPGA and work in parallel. Similarly, common accelerators for
different functions can be offloaded to the same FPGA, eliminating
the need to re-program the FPGA for each new application.

Based on the results in Table 3 and 4, we compare the resource
utilization and FPGA processing time between a high-end Virtex
FPGA and a much smaller low-end Artix FPGA. The results show
that as expected, the high-end FPGA can achieve higher frequen-
cies. Moreover they allow more pipelining, which in turn reduces



Figure 4: Breakdown of the Hadoop timing on various
phases.

the interval time. The high-end FPGA incorporates more resources
in terms of flip-flops, BRAMS, LUTs allowing more instances to
be configured and run in parallel. However this does not necessar-
ily mean whether using a high-end FPGA is more beneficial for
speedup purposes. This can be the case only if the execution time
on the FPGA is one of the bottlenecks of the overall design.

Based on the the number of bytes required for each call of the ac-
celerated sub-function, and the number of sub-function calls during
the processing of one HDFS block in the map phase, we calculate
the data transfer overhead for various types of interconnects. It
should be noted that, since the accelerator is pipelined, the incom-
ing data does not need to wait for the previous processing to be
finished. While in absence of data dependency the transfer time
is masked by the accelerator processing time of the previous data,
in case the data transfer rate is slower than the processing rate of
the accelerator, the transfer time becomes the bottleneck. Thus, the
execution time of the map function is determined by the maximum
of the accelerator processing time and the data transfer time. Re-
gardless, the latency for the the first accelerator call and transfer
latency of the first batch of data is added to the execution time,
which is negligible when the number of sub-function calls is high
(which is the case is our experiments).

4.2 Execution time after acceleration
To calculate the contribution of the map phase acceleration in an
end-to-end Hadoop MapReduce environment, we illustrate the
breakdown of the timing of different phases for the studied applica-
tions in Fig. 4, which shows that the fraction of the time spent in the
map phase is higher for the Atom server compared to Xeon. This is
expected, since the computation-intensive part of the MapReduce
lies in the map and reduce phase, and Atom server is designed with
less aggressive superscalar features compared to Xeon. Based on
this figure, we expect Atom server to gain higher speedup through
acceleration.

Fig. 5 shows the execution time per GB of the accelerated MapRe-
duce at various transfer bandwidths for the studied applications.
We also include the non-accelerated execution time in the captions
for reference.

As shown in Table 3 and 4, the FPGA resources of the both FG-
PAs allow multiple substantiations of each accelerator, thus we
report the results for both FPGAs with maximum resource uti-
lization, .i.e., we instantiate as many accelerators as possible on
each FPGA. It should be noted, that while making a higher use of
available resources of the FPGA increases the processing capabil-
ity of the platform and is beneficial in terms of energy efficiency
(The utilization of the FPGA does not affect its power consumption

significantly), in absence of sufficient transfer bandwidth, it does
not enhance the performance of the end-to-end system; and, con-
versely, it increases the need for larger number of buffers resulting
in increased execution time due to transmission delays.

4.3 power
An important benefit of HW+SW acceleration is the improvement
in the energy-efficiency. General-purpose CPUs such as Atom and
Xeon are not designed to provide energy-efficient solution for every
application. Accelerators help improve the efficiency by not only
speeding up the execution time, but also executing the task with
just enough required hardware resources. To this end, we measure
the power and calculate the energy delay product (EDP) both before
and after the acceleration.

Wattsup prometer [30] was used for power readings on Xeon and
Atom servers.Wemeasured the average power for individual phases
on Xeon and Atom using Wattsup pro power meter. Moreover,
for each mapper function on the FPGA board, we used picoScope
digital oscilloscope. For the power dissipated by the transfer of data,
we investigated two specific cases, .i.e. AXI-interconnect and the
PCI-e Gen3. The AXI interconnect is implemented on the FPGA,
and the power is calculated from the FPGA. For the PCI-e, we
use the specifications for the synopsys low Power PCI Express
3.1 IP Solution in [31], which reduces standby power to less than
10 uW/lane and active power to well below 5 mW/Gb/lane while
meeting the PCIe Gen-3.1 electrical specification.

5 DISCUSSION
To better understand how various architectural decisions affect
the performance, power and energy efficiency, the results for each
application were normalized to the largest number. Due to space
limitations the average results are presented in Fig. 6, where the
top bar shows the least efficient design and the bottom bar shows
the most efficient one.

5.1 Integration technology between FPGA and
CPU

As we deploy a higher-end FPGA, the integration technology be-
tween FPGA and CPU become more influential in performance.
Moreover, saturating point is pushed to the right, as shown in the
Fig. 5z.

Fig. 6-a shows that the off-chip integration of the FPGA increases
the average execution time of the application. Fig. 6-b shows that, by
deploying an efficient PCI-e [31], with reduced standby and active
power, the power of the off-chip FPGA is lower than the higher
transfer rate off-chip FPGAs. Taking into account both execution
delay and power in EDP and ED2P metrics, Fig. 6-c show that on-
chip integration is a more efficient design, regardless of the type of
CPU and the FPGA technology that is being deployed.

5.2 FPGA Technology
Results show that on-chip integration benefits more from an ad-
vanced FPGA technology, since at transfer rates achievable only by
the on-chip integration of the core and the FPGA, the transfer rate
is less likely to become the performance bottleneck. While, Fig. 6
shows that deploying a lower-end FPGA reduces the power con-
sumption, taking into account both execution delay and power, EDP
results show that a high-end FPGA is still more energy-efficient.
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Figure 5: Execution time per GB of the accelerated MapReduce at various transfer bandwidths for (a) Kmeans (b) KNN (c) SVM
(d) Naive Bayes.

5.3 CPU technology
The results shows that the acceleration reduces the execution time
on Atom more significantly than that of Xeon, reducing the gap be-
tween the Atom and Xeon. Moreover, Fig. 5 shows that the impact
of the type of FPGA is more significant on Xeon at high transfer
rates, since the faster execution of the software parts of the applica-
tion on Xeon pushes the bottleneck toward the hardware part of the
application, allowing more room for performance gains by deploy-
ing a higher-end FPGA technology. While the power reduction due
to the acceleration is more significant on Xeon reducing the power
gap between the two servers, even after the acceleration, the power
consumption of the Atom and Xeon servers are not comparable.

5.4 Interplay effect of design parameters
Fig. 7 sums up the normalized results to better understand the
importance of architectural parameters on both power and perfor-
mance. As expected, Atom exhibits higher execution delays and
lower power, while Xeon has lower execution time and higher
power. We use the gap between various data points presented in
the figure to find architectural insights. A major observation from
Fig. 7 and Fig. 6 is that the type of CPU is the most important factor
in determining the execution time and the power. The integration
technology is the second important design parameter considering
both power and execution time. The type of FPGA becomes of
high importance only when the integration technology allows fast
transfer of data between the CPU and the FPGA.

Figure 8 shows the capital cost of studied applications normalized
to the cost of Atom server. We utilize conventional costs for various

components with Xeon, low-end FPGA and high-end FPGA having
4.1×, 2.5×, and 30% of the cost of Atom server. The figure shows
that while execution time of Xeon+High-end FPGA is the lowest,
they are not the most cost-efficient solutions. On the other hand
adding low-cost low-end FPGA would be a cost effective solution to
get enhanced performance without having to move to an expensive
server.

6 RELATEDWORK
The performance and bottlenecks of Hadoop MapReduce have
been extensively studied in recent work [32–36]. To enhance the
performance of MapReduce and based on the bottlenecks found
for various applications, hardware accelerators are finding their
ways in system architectures. While the GPU-based platforms have
achieved significant speedup across a wide range of benchmarks
[37, 38], their high power demands preclude them for energy-
efficient computing [39]. Alternatively, FPGAs have shown to be
more energy efficient [40]. Moreover, they allow the exploitation
of fine-grained parallelism in the algorithms.

Microsoft Catapult project [2] has built a composable, reconfig-
urable fabric consisting of 2-D torus of Stratix V FPGAs accessible
through PCIe. Alternatively, Heterogeneous architecture research
platform (HARP), integrates Intel CPU with Altera FPGAs.

Such exiting FPGA platforms have been deployed to accelerate
MapReduce applications [3, 4, 41–52]. While their reported perfor-
mance and/or power boost is significant, their scope is limited to
one particular architecture with either on-chip or off-chip FPGA,
and few particular applications. However, this work analyzes a
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Figure 6: Average normalized results for (a) delay (b) power (c) EDP and (d) ED2P.

Figure 7: Interplay effect of the parameters on power and
execution delay.

large number of machine learning kernels , and explores a large
architecture space which spans FPGA technology (high-end vs low-
end), core technology (big vs little core server), and interconnection

Figure 8: Cost comparison for various architectures.

technology (on-chip vs off-chip) to understand the benefits of hard-
ware acceleration and power and performance trade-offs offered in
each of these design points to gains architectural insights.

7 CONCLUSIONS
Given the rise of hardware accelerators for big data analytics in
recent years, this paper answers the important research question
of how to architect a heterogeneous hardware accelerator to meet
the performance, power, and energy-efficiency requirements of a
diverse range of ML-based analytics applications. This paper first
analyzed several important machine learning algorithms in Hadoop
MapReduce to understand the power and performance benefits of
HW acceleration in a HW+SW co-design framework. It then ex-
plored a large architecture space which spans FPGA technology
(high-end vs low-end), CPU technology (big high performance vs



little low power server), and interconnection technology (on-chip
vs off-chip) to understand the benefits of hardware acceleration
and power and performance trade-offs offered in each of these de-
sign points to gains architectural insights. Our sensitivity analysis
results revealed that among the three architectural parameters, the
type of CPU is the most dominant factor influencing the execution
time and power in a CPU+FPGA architecture. The integration tech-
nology and FPGA type come next, with the power and performance
least sensitive to FPGA type. We conclude that with the available
off-chip interconnection protocols such as PCI-e Gen3, which al-
low transmission bandwidths of upto 1GBps, off-chip integration
of FPGA and CPU is the most cost-effective solution for Hadoop
MapReduce applications, since, it allows a more flexible combina-
tion of CPU+FPGA in which many types of CPU can be integrated
with several types of FPGA.
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