
Reducing Execution Unit Leakage Power in
Embedded Processors

Houman Homayoun? and Amirali Baniasadi1

1Electrical and Computer Engineering Department
University of Victoria, Victoria, Canada

houman@houman-homayoun.com,amirali@ece.uvic.ca

Abstract. We introduce low-overhead power optimization techniques
to reduce leakage power in embedded processors. Our techniques im-
prove previous work by a) taking into account idle time distribution for
different execution units, and b) using instruction decode and control de-
pendencies to wakeup the gated (but needed) units as soon as possible.
We take into account idle time distribution per execution unit to detect
an idle time period as soon as possible. This in turn results in increas-
ing our leakage power savings. In addition, we use information already
available in the processor to predict when a gated execution unit will be
needed again. This results in early and less costly reactivation of gated
execution units. We evaluate our techniques for a representative subset
of MiBench benchmarks and for a processor using a configuration similar
to Intels Xscale processor. We show that our techniques reduce leakage
power considerably while maintaining performance.

1 Introduction

The goal of this work is to reduce leakage power in embedded processors. In
recent years, we have witnessed a rapid complexity increase in the embedded
space. As a result, embedded processors power dissipation has become one of
the major barriers in their deployment in mobile devices. Meantime, as the
semiconductor technology scales down, leakage (standby) power will account for
an increasing share of processor power dissipation [1,2].

In most processors, including embedded processors, computational units power
dissipation accounts for a considerable share of total power dissipation. However,
and as we show in this work, computational units may be idle for long periods of
time depending on the applications required resources. During such idle periods,
execution units consume energy without contributing to performance.

We investigate embedded processors and show that there is an opportunity to
reduce leakage power dissipated by idle execution units. In particular, we show
that execution units may be idle for long periods of time. Identifying such idle
periods accurately provides an opportunity to reduce power while maintaining
performance.
? The author was with the University of Victoria, Electrical and Computer Engineering

Department when this work was done.



To reduce power dissipation, we turn off the voltage supply for execution
units that are detected to be in their idle time.

One way to detect idle execution units is to monitor the units and to gate
them if they are idle for a consecutive number of cycles [3]. This is referred to
as time-based power gating. This approach has two inefficiencies. First, the time
overhead associated with this method could be costly. Particularly the energy
savings are very sensitive to the time needed to wakeup gated units. Second, as we
show in this work, different functional units have different idle time distributions.
While some execution units may be idle for long periods there are others that
stay idle for short periods. Therefore, a one-size-fits-all approach fails to provide
optimal results across all units.

In this work we introduce new heuristics to address both inefficiencies. We
improve previously suggested techniques by using different idle time detection
thresholds and by using control dependency and decode information to wakeup
gated execution units early in embedded processors.

In particular we make the following contributions:

1. We show that there is an opportunity in the embedded space to reduce
leakage power by identifying idle execution units.

2. We improve previously suggested leakage reduction techniques as we detect
idle periods more effectively. Consequently we increase energy savings.

3. We reactivate gated (but needed) units earlier than the time they are re-
activated using previously suggested methods. Consequently, we reduce the
performance cost.

Note that there is a timing overhead associated with power gating. We take
into account this overhead in this study.

The rest of the paper is organized as follows. In section 2 we discuss related
work. In section 3 we discuss power gating in more detail. In section 4 we discuss
our motivation and present our techniques. In section 5 we review methodology,
present our analysis framework and present performance and power savings re-
sults. Finally, in section 6 we offer concluding remarks.

2 RELATED WORK

Leakage power may become a more serious issue in embedded processors where
applications may require long periods of inactivity [4, 5]. Accordingly, previous
study has introduced many techniques to reduce leakage in different processor
units (e.g., [6–10]). Powell et al., explored an integrated architectural and circuit
level approach to reducing leakage energy dissipation in instruction caches [6].
Kaxiras et al. proposed an approach to reduce the L1 cache leakage energy
by turning off the cache line not likely to be reused [11]. Bai et al optimized
several components of on-chip caches to reduce gate leakage power [12]. Kao and
Chandrakasan suggested dual-threshold voltage techniques for reducing standby
power dissipation while still maintaining high performance in static and dynamic
combinational logic blocks [7]. Johnson et al., modified circuits considering state



dependence. They identified a low leakage state and inserted leakage control
transistors only where needed [8]. Durate et al., studied and compared three
leakage power reduction techniques: Input Vector Control, Body Bias Control
and Power Supply Gating. They investigated their limits and benefits, in terms
of the potential leakage reduction, performance penalty and area and power
overhead [9]. Rele et al.,introduced an approach to combine compiler, instruction
set, and microarchitecture support to turn off functional units that are idle for
long periods of time for reducing static power dissipation by idle functional
units using power gating [10]. Our work is different from previous work as it
targets embedded processors. We show that there is a motivating opportunity
in the embedded space to apply power gating. Moreover, we take advantage
of embedded processor characteristics such as in-order execution to improve
previously suggested gating techniques.

3 POWER GATING

Power dissipation in a CMOS circuit can be classified to dynamic and static.
Dynamic power dissipation is the result of switching activity while static power
dissipation is due to leakage current. Among all factors influencing the static
power the subthreshold leakage is considered to be an important contributor.
Subthreshold leakage current (Ileakage) flows from drain to source even when the
transistor is off (see figure 1(a)). Static power dissipation can be computed using
the following:

Pstatic = Vcc.Ileakage = Vcc.N.Kdesign.Ktech.10
−VT

St (1)

The parameters in equation 1 are divided to two categories: technology de-
pendent and design dependent. Vcc, N and Kdesign are technology independent
and may be varied independently targeting a specific design model. VT is a
technology dependent parameter. As the technology scales down, VT decreases
which results in an increase in static power.

We use power gating to block Vcc and reduce leakage power to zero. In figure
1(b) we present how power gating is achieved using a header transistor to block
voltage supply from reaching a circuit unit. The power gate detection circuit
decides when is the appropriate time to turn off the voltage supply. Once the
sleep signal is generated, and after a transition period, the Vcc signal will be
blocked from reaching the functional unit.

Applying power gating comes with timing overhead. To explain this in more
detail in figure 2 we present transition states associated with power gating.

As presented, the power gating process includes three separate intervals. We
refer to the first interval as the active to sleep transit period (ASP). ASP starts
the moment we decide to power gate a unit and ends when the voltage supply is
completely blocked. We refer to the second interval as the deep sleep period or
DSP. This is the period where the functional unit is gated and therefore does not
dissipate power. Power dissipation reduction depends on how often and for how



Fig. 1. a) Turned off transistor dissipating leakage power b) Schematic showing major
blocks exploited in power gating.

long units stay in DSP. We have to wakeup a unit as soon as its idle period ends.
For example, in the case of integer ALU, this is when an instruction requires the
unit to execute. Turning on the voltage supply to wakeup a unit takes time. The
third interval presented in figure 2 represents this timing overhead and is the
time needed to reactivate a unit. We refer to this period as the sleep to active
transition period (SAP).

While saving leakage power during ASP and SAP is possible, in this study
we assume that power reduction benefits are only achievable when a unit is in
DSP. As such we refer to ASP and SAP as timing overheads associated with
power gating. Hu et. al, provide a detailed explanation of the three intervals [3].

Fig. 2. Transition states in power gating.



4 MOTIVATION AND HEURISTICS

Through this study we report for a representative subset of MiBench benchmarks
[13] and for a processor similar to that of Intels XScale processor (more on this
later in section 5).

In figure 3 we present energy savings achievable by ideal (but not practical)
power gating. We assume that the percentage of execution units idle cycles in-
dicates maximum leakage power reduction possible by using power gating. We
also assume that the timing overhead with power gating is zero. As a result
the data presented in figure 3 serves as an upper bound for our leakage power
savings. Bars from left to right report average savings for integer ALU, integer
multiplier/divider, memory ports, floating point ALU and floating point multi-
plier/divider.

In figure 3, and as an indication of potential leakage power savings, we report
how often each of the five units used in the Intels XScale are idle. On average,
three of the units, i.e., integer multiplier/ divider, floating point ALU and floating
point multiplier/divider are idle more than 95% of cycles. Average idle period is
least for integer ALU (40%). We conclude from figure 3 that there is motivating
opportunity in embedded processors to exploit idle times and to power gate
execution units to reduce leakage power dissipation. However, identifying idle
times early enough is a challenging problem. Moreover, reactivating the gated
execution units soon enough is critical since stalling instruction execution could
come with a performance penalty.

Fig. 3. Leakage power reduction achieved by ideal power gating.

As explained earlier time-based power gating monitors the state of each ex-
ecution unit and turns it off after the number of consecutive idle cycles exceeds
a pre-decided threshold. We refer to this threshold as the idle detect threshold
(IDT). In the following sections we extend time-based power gating to reduce
leakage power further.



4.1 Multiple IDTs (MIDT)

In figure 4 we report how changing the idle detect threshold or IDT impacts
power gating. We assume that the active to sleep period is 3 cycles. We also
assume that returning an execution unit from sleep to active takes 5 cycles [3].

In 4(a) bars from left to right report average percentage of cycles each exe-
cution unit is gated for the benchmarks studied here for IDT values 5, 10, 20,
50, 100 and 150.

In 4(b) we report performance cost for the benchmarks studied here for dif-
ferent IDT values. Average performance slowdown is 10.9%, 4.1%, 1.9%, 0.9%,
0.3%, 0.3%, for IDT values 5, 10, 20, 50, 100 and 150 respectively.

A closer look at figure 4 reveals that none of the IDT values provide accept-
able results across all execution units and for all applications. Lower IDT values
(i.e., 5, 10 and 20) provide high power savings but come with high performance
cost. Higher IDT values (i.e., 50 and 100), on the other hand, maintain perfor-
mance but can reduce power savings dramatically. This is particularly true for
integer ALU and memory port.

Fig. 4. a) Average leakage power savings achieved by power gating for different IDT
values for ASP=5 and SAP=3. Higher is better. b) Performance cost associated with
power gating for different IDT values for ASP=5 and SAP=3. Lower is better.

To provide better insight in figure 5 we report idle time distribution for each
execution unit. As presented, idle time distribution is quite different from one
execution unit to another. As such using a single IDT for all execution units
is inefficient. To address this issue we use a different IDT for each execution
unit. We refer to this method as multiple IDT or MIDT. To pick the right IDT



for every execution unit we took into account many factors including how often
the execution unit becomes idle and how long it stays idle. After testing many
alternatives we picked IDT values 20, 80, 40, 100 and 140 for integer ALU,
integer multiplier/divide, memory ports, floating point ALU and floating point
multiplier/ divider respectively. Note that multiple IDT could be implemented
easily by using programable registers.

Fig. 5. Idle time distribution for different execution units.

4.2 Early Wakeup

In figure 6 we report how changes in SAP impact performance. Note that SAP
is the time required to reactivate an execution unit by turning on the power
supply. SAP depends on the circuit parameters and may change from one design
to another. We assume that IDT and ASP are 20 and 5 respectively. Bars from
left to right report for SAP values of 1, 2, 3 and 4 respectively. As expected the
longer it takes to reactivate a gated execution unit the higher the performance
penalty would be. Average performance cost is 0.5%, 1.2%, 1.9% and 2.7% for
different SAP values.

We conclude from figure 6 that long wakeup periods can harm performance
seriously. One way to reduce performance cost is to reactivate gated units as
early as possible. To reactivate gated execution units sooner we suggest two
methods:

First, we use control dependencies to wakeup execution units in advance. We
refer to this method as the branch-aided wakeup or BAW technique.

Second, we use information available at the decode stage to wakeup the
needed execution units at least one cycle earlier than when they become active
in conventional power gating. We refer to this technique as the decode-aided
wakeup or DAW.

Branch-Aided Wakeup (BAW) Note that embedded processors such as In-
tels XScale use inorder issue. As such once a branch instruction is issued, the



Fig. 6. Performance cost associated with power gating for different SAP values for
IDT=20 and ASP=5. Lower is better.

following basic block should issue sequentially. To take advantage of inorder
instruction issue we store information regarding whether integer ALU and mem-
ory ports are used inside a basic block. We limit the stored information to the
these two execution units since our study shows that long wakeup periods for
the two units impact performance more seriously compared to other execution
units. Moreover,limiting the technique to the two units will reduce the overhead
associated.

We use an 8-entry table to record the required information. The table is
indexed using the branch instruction address associated with the basic block.
Each entry stores two bits. The first bit records if any instruction within the
basic block uses the integer ALU and the second bit records if any instruction
uses the memory port.

At fetch, and in parallel with accessing the branch predictor, we probe the
8-entry table. We reactivate the execution units if the table indicates that they
will be needed by the following basic block. We take no action if the execution
units are already active. Note that possible misspeculations are not costly from
the performance point of view since all they do is to reactivate an execution unit
which will not be used.

We use a 3-bit register to store the index associated with the latest fetched
branch. For example, when an issued instruction is dispatched to the integer
ALU, we update the entry associated with the last branch fetched, i.e., we set
the first bit in the entry to 1 indicating that the integer ALU will be used by
the basic block. We use the 3-bit register to find and update the table entry
associated with the last fetched branch.

The area overhead associated with this techniques is very small. We use a
3-bit register and an 8- entry table which contains eight 2-bit fields. The total
area requirement is equivalent to 19 bits which is negligible.

Decode-Aided Wakeup (DAW) In this method we start the activation pro-
cess of the gated execution units at decode and immediately after recognizing



the opcode. Note that in conventional power gating execution units are acti-
vated when a ready to execute instruction is detected. DAW, on the other hand,
uses the already available information at decode and starts reactivation at least
one cycle before the instruction becomes ready. This in turn reduces the timing
overhead associated with power gating.

5 METHODOLOGY AND RESULTS

In this section we report our analysis framework and simulation results. To
evaluate our optimization techniques we report performance and leakage power
reduction. We use a subset of MiBench benchmark suite [13] compiled for MIPS
instruction set. In this work, similar to earlier studies [3], we assume that the
percentage of cycles a functional unit stays in DSP indicates net leakage savings
achieved by using power-gating.

Table 1. Configuration of the processor model

Issue Width In-Order:2 Inst/Data TLB 32-entry,full-associative

Functional 1 I-ALU, 1 F-ALU,1 I-MUL/ L1 - Instruction/ 32K, 32-way SA,
Units DIV 1 F-MUL/DIV Data Caches 32-byte blocks, 1 cycle

BTB 128 entries L2 Cache None

Branch Bimodal, 128 entries Register Update 8 entries
Predictor Unit

Main Memory Infinite, 32 cycles Load/Store queue 8 entries

For simulation purpose we used a modified version of simplescalar v3.0 toolset
[14]. We modeled a single issue in-order embedded processor with an architecture
similar to Intels XScale core. Table 1 shows the configuration we used.

In figure 7 we report how our optimizations impact performance and leakage
power savings. We also report results for a combined technique where multiple
IDT, BAW and DAW are applied simultaneously. We refer to the combined
technique as CMB. For the sake of comparison we also include results achieved
when all execution units use the same IDT. Bars from left to right report for IDT
values 5, 10, 20, 50, 100, 150, multiple IDT (MIDT), BAW, DAW and CMB.

We limit our discussion to comparing the CMB method to methods where
a single IDT is used across all execution units. Nonetheless, it is important to
note that similar comparisons could be made for each of the three optimizations.
Note that as explained earlier single IDT results in either high performance cost
(for low IDTs) or low energy savings (for high IDTs). CMB, however, maintains
performance for all benchmarks (see figure 7(a)). While average performance
costs are 10.9% and 4.2% for IDT values 5 and 10, average performance cost is
reduced to 0.3% for CMB.



Average leakage energy savings are 0.1% and 3% for integer ALU and memory
ports for IDT values 100 and 150 respectively. For CMB, average savings for
integer ALU and memory port are increased to 6.5% and 11% respectively (see
figure 7(b)). Note that CMB maintains high energy savings for other execution
units.

Fig. 7. a) Performance cost. b) Leakage power reduction for the methods discussed.

6 CONCLUSION

In this paper we analyzed how power gating could be exploited in embedded
processors to reduce leakage power. We extended previous work by introducing
three optimization techniques to reduce leakage power while maintaining perfor-
mance. Our techniques used control dependency, instruction decode information
and idle time distribution. We showed that it is possible to reduce leakage power
while maintaining performance for an embedded processor similar to Intels Xs-
cale and for a representative subset of MiBench benchmarks.

References

1. Borkar, S.: Design challenges of technology scaling. IEEE Micro 19 (1999) 23–29



2. Butts, J.A., Sohi, G.S.: A static power model for architects., In Proceedings of the
33rd Annual IEEE/ACM International Symposium on Microarchitecture (Decem-
ber 2000)

3. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zuyuban, V., Jacobson, H., Bose, P.:
Microarchitectural techniques for power gating of execution units., In proceedings
of ISLPED (2004)

4. Unsal, O.S., Koren, I.: System-level power-aware design techniques in real-time
systems. Volume 91, NO. 7., In proceedings of the IEEE (July 2003)

5. Jejurikar, R., R., G.: Dynamic voltage scaling for systemwide energy minimization
in real-time embedded systems., In proceedings of ISLPED (2004)

6. Powell, M., Yang, S., Falsafi, B., Roy, K., Vijaykumar, T.: Gated-vdd: A circuit
technique to reduce leakage in deepsubmicron cache memories., In proceedings of
ISLPED (2000)

7. Kao, J., Chandrakasan, A.: Dual-threshold voltage techniques for low-power digital
circuits. IEEE Journal of Solid State Circuits 35 (2000)

8. Johnson, M., Somasekhar, D., Cheiou, L., Roy, K.: Leakage control with efficient
use of transistor stacks in single threshold cmos. IEEE Transactions on VLSI
Systems 10 (2002)

9. Durate, D., Tsai, Y.F., Vijaykrishnan, N., Irwin, M.J.: Evaluating run-time tech-
niques for leakage power reduction., ASPDAC (2002)

10. Rele, S., Pande, S., Önder, S., Gupta, R.: Optimizing static power dissipation by
functional units in superscalar processors., In International Conference on Compiler
Construction (2002)

11. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior
to reduce cache leakage power., In proceedings of ISCA (2001)

12. Bai, R., Kim, N., Sylvester, D., Mudge, T.: Total leakage optimization strategies
for multi-level caches., ACM Great Lakes Symposium on VLSI (2005)

13. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.:
Mibench: A free, commercially representative embedded benchmark suite, IEEE
4th Annual Workshop on Workload Characterization (WWC-4) (December 2001)

14. Burger, D., Austin, T.M., Bennett, S.: Evaluating Future Microprocessors: The
SimpleScalar Tool Set.Technical Report CS-TR-96-1308, University of Wisconsin-
Madison. (July 1996)


