
REMEDIATE: A Scalable Fault-tolerant Architecture for
Low-Power NUCA Cache in Tiled CMPs

Abbas BanaiyanMofrad\ Houam Homayoun2, Vasileios Kontorinis3, Dean Tullsen3, Nikil Duttl

I Department of Computer Science, University of California, Irvine
2Department of Electrical and Computer Engineering, George Mason University

3Department of Computer Science and Engineering, University of California, San Diego

{abanaiya, dutt}@ics.uci.edu, hhomayou@gmu.edu, {vkontori, tullsen}@cs.ucsd.edu

Abstract - Technology scaling and process variation severely

degrade the reliability of Chip Multiprocessors (CMPs),

especially their large cache blocks. To improve cache reliability,

we propose REMEDIATE, a scalable fault-tolerant architecture

for low-power design of shared Non-Uniform Cache Access

(NUCA) cache in Tiled CMPs. REMEDIATE achieves

fault-tolerance through redundancy from multiple banks to

maximize the amount of fault remapping, and minimize the

amount of capacity lost in the cache when the failure rate is high.

REMEDIATE leverages a scalable fault protection technique

using two different remapping heuristics in a distributed shared

cache architecture with non-uniform latencies. We deploy a

graph coloring algorithm to optimize REMEDIATE's

remapping configuration. We perform an extensive design space

exploration of operating voltage, performance, and power that

enables designers to select different operating points and

evaluate their design efficacy. Experimental results on a 4x4 tiled

CMP system voltage scaled to below 400m V show that

REMEDIATE saves up to 50% power while recovering more

than 80% of the faulty cache area with only modest performance

degradation.

Keywords- Fault-tolerant cache, Remapping, Aggressive
voltage scaling

I. INTRODUCTION

Tiled CMP architectures, which are designed as arrays of identical
or very similar basic blocks, are a design complexity scalable
alternative to current small-scale CMP designs. A Tiled CMP with
shared Last-level Cache (LLC) and Non-Uniform Cache Access
(NUCA) organization logically shares the physically distributed
cache banks among all its cores. Technology scaling and process
variation has an increasing impact on the resilience of CMOS
circuits including Tiled CMPs [I]. Due to large size of LLC in CMPs,
we are increasingly challenged by the often-conflicting constraints of
reliability, manageable power, and temperature in design of such
architectures. Operating in reduced-V dd (e.g., near-threshold)
voltage is a common solution to reduce LLC power consumption.
However, aggressive voltage scaling of SRAMs increases the effect
of process variation. So it results in a high incidence of failure, to the
point that it can overwhelm traditional error correction techniques
(e.g., SECDED) [5].

There is a large body of previous work on fault-tolerant design of
cache memories. Section II summarizes some of those fault-tolerant
techniques. Most of them have been primarily proposed for uniform
cache access (UCA) in a single core architecture. Additionally, most
of them are not efficient for high failure rates. More importantly,
they do not address the challenges of a shared NUCA cache design in

CMP architecture like multiple access points, concurrent banks
accesses, non-uniform latency, variation in fault-rate, and criticality
of different banks. For instance in a fault-tolerant NUCA design,
access latency, network traffic, network power, and effective
capacity are all sensitive to the location of the spare block or
redundancy used for protection of a faulty data, relative to the
requesting core and the accessed line.

In this work, we propose REMEDIATE, a scalable fault-tolerant
architecture for low-power design of shared LLC with non-uniform
latencies, distributed banks, and multiple access points in a multicore
architecture. REMEDIATE leverages a flexible fault protection
technique while considering the implications of two different
remapping heuristics in the presence of cache banking, non-uniform
latency, and interconnects. Furthermore, it uses the opportunity to
remap faulty lines across different distributed banks in a shared
NUCA cache. Thus, a faulty block can be remapped to anywhere in
the existing NUCA LLC. REMEDIATE's remapping policies aim to
achieve a balance between the conflicting goals of minimizing
latency, minimizing power, maximizing capacity, and minimizing
network traffic for NUCA caches.

The main contributions of this paper are that we: 1) Introduce
REMEDIATE, a scalable and highly reconfigurable architecture that
can be leveraged to protect large shared NUCA LLC in tiled CMPs
against permanent faults I; 2) Propose two scalable remapping
policies for efficient fault tolerance of distributed shared NUCA
cache banks in tiled CMPs; and 3) Perform design space exploration
of various cache design configurations at 65nm to demonstrate the
efficacy of REMEDIATE. To the best of our knowledge,

REMEDlATE is the first design to address the fault tolerance of

distributed NUCA caches for CMP architectures.

II. RELATED WORK

Several researches on improving SRAM reliability in face of
process variation-induced faults at low voltage operation have been
proposed in different levels of system hierarchy from circuit
level [13][14][26] to system level [27][28][29][30]. At the system
level, a variety of Error Detection Code (EDC) and Error Correcting
code (ECC) techniques have been used. ECC is proven as an
effective mechanism for handling soft errors [22]. However, in a
high-failure rate situation, most coding schemes are not practical
because of the strict bound on the number of tolerable faults in each
protected data chunk. In addition, using ECC incurs a high overhead
in terms of storage for the correction code, large encoding latency,
and slow and complex decoding [17][18].

I While REMEDIATE can also be modified to address soft failures, in this work our
focus is on permanent failLLres which for instance could be the result of process variation,
aggressive voltage scaling and aging effects.

Several architectural techniques have also been proposed to
improve reliability of on-chip cache and/or lower the minimum
achievable voltage scaling bound by using redundancy. Wilkerson et
al. [24] proposed two schemes called Word-disable and Bit-fix. The
first scheme combines two consecutive cache blocks into a single
cache block, thereby reducing the capacity by 50%. The second one
sacrifices a functional cache block to repair defects in three other
cache blocks, thereby reducing the capacity by 25%. Bit-Fix method
also adds three cycles of latency to the cache access time. Roberts et
al. [19] proposed a block grouping (pairing) scheme to form a new,
fully working logical block. RDC-Cache [5] replicates a faulty word
by another clean word in one way of the next cache bank in a chain
of cache banks. The salvage cache [4] uses a single non-functional
block to repair several other blocks in the same set. A similar idea
has been proposed independently in [20]. Ansari et al. [10] deployed
a fault-tolerant cache that groups faulty cache sets together and
sacrifices a different cache set to recover failures. The sets are
grouped together in such a way that the sacrificial set and the data
sets reside in different banks. They improved their technique in
another work, named Archipelago [11], that uses a modified version
of minimum clique covering algorithm to cluster the cache into
different groups. A similar but more flexible method was proposed in
FFT-Cache[12], where a flexible defect map is used to configure the
cache architecture using a portion of faulty cache blocks/sets as
redundancy to tolerate other faulty cache blocks/sets. All these
techniques rely on two banks and a single fault map that tracks the
fault-tolerance information of both banks. Wang et. al [6] proposed a
utility-driven address remapping technique at a coarser-grain (bank
level) to tackle the capacity loss in NUCA cache of NoC-based CMP
architectures. BanaiyanMofrad et al. 0 proposed a scalable design to
protect LLC banks in a NoC-based CMP which leverages the
interconnect network to implement a remapping-based fault-tolerant
technique.

Unfortunately all these previous efforts are neither scalable nor
flexible to be leveraged for protection of NUCA caches with
distributed banks in CMP architectures. Since CMP architectures
have more than one core that can access one or different distributed
banks simultaneously, fault mapping and protection needs to be
scalable and distributed. Furthermore, existing fault-tolerant
techniques typically use a single fault map and a centralized fault
protection scheme which cannot be scaled for large NUCA CMP
architectures: as a result each access needs to go through the fault
map first, and no parallel cache accesses are allowed. Another
difference for NUCA architectures is that the access latency, failure
rate, and criticality of distributed banks are different depending on
the location of each cache bank and type of NUCA (SNUCA or
DNUCA). Therefore, the fault-tolerant technique needs to be
scalable and configurable to address these issues. However, all
previous fault-tolerant methods have been designed for at most two
banks within a UCA architecture which are not configurable.
Moreover, they use a unified remapping technique to protect all
faulty blocks without considering differences among different banks.
In contrast to previous efforts, REMEDIATE leverages a scalable
architecture allows efficient remapping across multiple banks in a
NUCA cache. It uses a flexible fault mapping and fault protection
scheme which results in higher cache reliability. REMEDIATE uses
a configurable fine-grained remapping technique using graph
coloring to match the target (redundant) blocks to a group of original
accessed blocks/sets in a multi-bank cache architecture.
REMEDIATE's configuration algorithm attempts to minimize the
number of target blocks by considering the variation of probability of
failure and available space of different cache banks.

III. BASELINE ARCHITECTURE

We experiment on a tiled CMP architecture, where each tile
comprises a processor core, caches, and network router/switch. Tiles
are interconnected as a 2D mesh via a network-on-chip (NoC). Fig. 1
shows our Baseline 16-tile configuration, where each tile includes
private L 1 data and instruction caches and a shared L2 bank. The L2
bank is a portion of the larger distributed shared LLC. Each L2 bank
includes mUltiple cache sets, with a set of lines (blocks with the same
index) all mapped to the same bank. The baseline design assumes a
NUCA [2] LLC. With multiple banks within the LLC, we have the
choice of either always putting a block into a designated bank (static
mapping) or allowing a block to reside in one of multiple banks
(dynamic mapping). We consider static mapping in our baseline
design and model static NUCA policy for CMP architectures
(CMP-SNUCA) [3]. CMP-SNUCA statically partitions the address
space across cache banks connected via a 2D mesh interconnection
network.

Fig. 1 . Baseline Tiled CMP architecture.

IV. REMEDIATE MECHANISM

REMEDIATE attempts to sacrifice the minimal number of cache
lines to minimize cache capacity loss and tolerate the maximum
amount of defects. This is done by using line-level replication in the
same set or among multiple sets between different banks. In
REMEDIATE, the information of faulty locations in each LLC bank
is kept in a small Permanent Fault Map (PFM) inside that bank,
which is then used to configure the address remapping. Instead of
maintaining explicit additional cache space to replace faulty lines, it
exploits the lines already marked as faulty to provide redundant
storage to mask faults in other lines. This has a critical advantage:
while a static redundancy technique is based on worst-case estimates
of faults, our approach sacrifices no more space than is absolutely

needed for redundancy. This is particularly useful for a cache that
might be used at multiple voltage levels, as we automatically adjust
the level of redundancy according to the errors manifested at a
particular voltage.

REMEDIATE divides each line (block) of LLC into mUltiple
sub-blocks, that defines the granularity at which failures are
identified and remapped. A sub-block is labeled faulty if it has at
least one faulty bit, as determined by Built-In Self Test (BIST)
analysis during boot-up of the system. Thus, a smaller sub-block
minimizes the number of bits lost due to a single fault, but increases
the hardware overhead of reconstructing lines. If two lines have
faults in the same sub-block, we say they conflict and one cannot be
used to mask the faults in the other one. When a line is detected as
faulty, the system attempts to remap faulty portions of the line
(Original line) to another line (called the Target line) that has already
been marked as faulty and does not conflict with the original line. It
then sacrifices and disables the target line to replicate all faulty
sub-blocks of the original line. Thus, the correct line can be
reconstructed from a combination of the two lines; i.e., the original

line together with the target line.
In REMEDIATE cache architecture, each cache access in low

power mode which expected to be error-prone, first accesses the
PFM. Based on the fault information of the accessed line, we either
read one or two lines fTom one bank (the same set), or one line from
the original bank and one line from the target bank (different sets), as
specified by the target line information in the PFM of the original
bank. In many cases, a good choice of the target is another line in the
same set, referred to as a local target line, since both original and
target lines can be read in a single access. Barring this case, we
should always select target lines from a different bank, so that both
lines can be read without two serialized accesses to the same bank.
We refer to this target line as a remote target line. In this case, the
latency of the access is the maximum of the two bank access
latencies that determined by the farther bank from the core. Because
the two original and target line are known not to have sub-block
conflicts, and we know which sub-blocks contain errors, the cache
controller can always reconstruct the original line using single bank
multiplexing techniques.

A. Reconstructing Cache Lines

Fig. 22 shows both the conventional and modified architecture of
a tile with a core and a 2-way set associative LLC bank where the
ways (blocks) are further divided into 2 sub-blocks. Figure 2(b)
illustrates the architecture of the REMEDIATE multiplexing layer
responsible for reconstructing correct lines. The new modules
(MUXs and PFM) added to the conventional cache are highlighted in
the figure.

LLC Bank
Way 0 Way 1

:----------------,
I I
I I
I Core I
I I
I I
I :

I
_______________ 1

(a) A Conventional Tile

c

I '"

LLC Bank
Way 0 Way 1

c

I I I '" '" '"

(b) A Modified Tile

Fig. 2. Architecture details of (a) a conventional tile and (b) the modified tile
in REMEDlATE Cache with PFM and 2 sub-blocks per line.

REMEDIATE requires two additional levels of multiplexing to
compose the final fault-free line, based on either multiple lines
within a set or between two or more sets in different banks. The first
multiplexing layer, In-Cache MUXing is added on the cache bank
side to perform the remapping within a set. Note that this layer
replaces the original block-level multiplexer, available in
set-associative caches (Fig. 2.a). The second mUltiplexing layer,
in-Core MUXing is added on the core side to perform remapping
between sets in original (local) and target (remote) banks.

The total number of n-to-I ss-bit multiplexers required in cache
side to compose the final fault-free line is k x b, where n is the
number of ways (associativity), ss is sub-block size, k is the number

of sub-blocks in a line, and b is the number of banks. Also, a 2-to-J
block-level multiplexer is required for each core. For instance, for a
16-core tiled processor with 16 banks of 4-way set associative LLC,
with 64-byte blocks which composed of 32 16-bit sub-blocks, its 16
4-to-l 64-byte original multiplexers would be replaced by a total of
512 4-to-1 16-bit multiplexers in cache banks. Also, it needs extra 16
2-to-l 64-byte multiplexers in core side. For the described cache, the
PFM size will be less than 9% of total cache area. For a quantitative
comparison, we synthesized the multiplexing layer and output logic
of the REMEDIATE, as well as the multiplexer and output driver of
a conventional cache (CC) using the Synopsys Design Compiler for
TSMC 65nm standard cell library. The area and delay of various
multiplexers are used to estimate the overall area/delay overhead of
the multiplexing network in REMEDIATE and the CC under
nominal V dd. We found out that the delay of REMEDIATE output
logic increased by only 5% compared to the conventional cache
output MUX network while area and power consumption are
increased by less than I % compared to a CC MUX network. These
overheads are modeled in our experiments.

B. PFM Configuration

We use a heuristic graph-coloring algorithm which is a
modification of the Saturation Degree Ordering (SDO)
algorithm [16] to optimize selection of a remote target line for a
group of faulty lines that have no conflict with each other. We call a
graph coloring problem solvable, if for a graph G we can find an
integer K ::: 0 such that the nodes of G can be colored with K colors
while no edge exists between the same colored nodes. We construct a
graph based on the conflicts between lines of different entries in the
PFM. Each node in this graph represents either a target line or a
faulty entry (representing an entire one set) in the PFM. The edges
represent a conflict between a pair of lines or between a line and a
set. For example, the two nodes connected by an edge represent two
lines, two sets, or one line and a set that have a conflict.

We modify the above graph coloring algorithm based on the
following constraints: 1) We force the algorithm to color nodes from
at least two different banks; 2) We force the algorithm to first pick up
line nodes and try to color them with set nodes of other banks; 3) We
force the algorithm to consider the PFM configuration settings
during its coloring process.

We apply the modified graph coloring algorithm to our graph to
find a solution such that neighboring nodes are not assigned the same
color. Therefore, after completion of coloring algorithm, nodes with
the same color are guaranteed to have no edges between them;
implying that the corresponding cache sets/lines have no conflicts
between them. We set all nodes with the same color in a group and
set one of them as Remote Target for other nodes in the group.

Now, we describe the configuration process for REMEDIATE
cache. Initially, a raw fault map is generated at boot time; using the
memory BIST unit to test the LLC cache under low voltage
conditions. The output of the BIST is used to initialize the PFM of
each bank. If there are multiple operating points for different
combinations of voltage, temperature and frequency, the BIST
operation is repeated for each of these settings. The obtained fault
map is then modified and configured based on architecture settings
like type of NUCA, location of banks, and criticality of some
specific banks. After initialization of PFM in low power mode, the
processor switches back to high power mode and constructs the
conflict graph and solves the graph coloring problem. This solution
contains the remapping information that is required to be stored in
the PFM. This configuration information can be stored on the system
memory storage and is written to the PFM during the next system
boot-up. In addition, in order to protect the defect map and the tag
arrays, we use the stable 8T SRAM cells [13] that can operate at

Bank1 Bank2
Way1 Way2 Way3 Way4 way1 Way2 Way3 Way4

11 I I II I I I II I I I II I I - I I
N N N N F LT

21 I I II I I I II I I I I I I I II I I II I I I 17
� N N RT , , G N N N -

I - I- I I I t'b - LIT - II - II
LT F F I F F F F

II I I
I

n - I I.JIlI - 19 - I II - � l. _ G N N N RT N N N I

- 1 - I I- I I II - -- I I 110
RT RT RT RT F F F F

Line Status: N=Non-faulty, F=Faulty, G=Global, L T=Local Target, RT=Remote Target

Fig. 3 . An example of PFM configuration and remapping for a given distribution of faults in a 4-way set associative cache.

ultra-low voltages (below 400mv) without failing. Since the defect
map and tag arrays are relatively small, we are able to tolerate the
�30% area overhead for these larger cells.

In contrast with some of the previous approaches[10][11], PFM
size is fixed and it does not depend on the failure rate. It has one
entry for each cache set. Each PFM entry includes multiple
configuration bits, the defect bitmap of each line in the set, status of
each line and the address of the target line, if any. Each bit in the
defect map section represents the fault state of a sub-block. Line
status bits represent the status of each line in a cache set. The status
of each cache line can be one of the followings: 1) Non-Faulty, 2)
Faulty, 3) Global, 4) Local Target, and 5) Remote Target. Initially,
the status of all lines in the cache is Non-Faulty, representing the
absence of any faulty sub-blocks. If a line contains at least one faulty
sub-block, its status will be set as Faulty. A line used as a target line
for other lines in the same set gets the status of Local Target. A line
that has a conflict with other lines in a set and cannot be used as a
local target line, gets the status of Global. A Global line can be used
as a target line of another set, and becomes a remote target line and
gets the status of Remote Target. We define the Max Global Line

(MGL) parameter as the maximum number of lines in a set that can
be set as Global lines; the remaining lines can then be composed as a
group of lines without conflict, which allows them to find a Global
line and set it as their Remote Target line.

We categorize the cache sets based on the number of conflicts
among the lines inside each set to four groups:

- min-faulty: if the number of faulty lines in a set is
lower than the predefined MGL
- no-conflict: if there is no conflict between faulty lines
in the set
- low-conflict: if the number of conflicts between the
lines within a set is lower than the predefined MGL
- high-conflict: if the number of conflicts between
lines within a set is higher that the predefine MGL
Figure 3 shows an example of the PFM configuration for a given

distribution of faults in 10 sets of a 2-banked 4-way set associative
cache with 4 sub-blocks in each line and MGL=I. As shown in the
figure, set 1 is clean, without any faulty lines. Set 2 is a member of
the min-faulty group while its faulty line is configured as a Remote
Target line for set 9. Set 7 is another member of this group and its
single faulty line is set as a Global line. Set 3 is an example of a
no-conflict group in which the first line (way 1) is set as a Local
Target line to be sacrificed for fault-tolerance of the other faulty lines
in the set. Set 6 is another member of this group with one of its lines
(way 4) set as a Local Target Line. Set 4 is a member of the
low-conflict group which one of its lines (way I) is set as a Global
line, since it has a conflict with other lines. The first line of set 9 is
set as Remote Target line for this set (set 4). Set 5 is a member of the
high-conflict group with two conflicts between its lines where way 1

has conflict with way 3 and way 2 with way 4. All lines of this set
are configured as Remote Target line for both low-conflict sets 8 and
10.

V. REMAPPING FOR NUCA CACHES

There are several challenges to applying REMEDIATE in a
distributed shared NUCA LLC with multiple access points. The
mapping of lines to cache banks in a NUCA cache has a significant
impact on performance and power. Adding REMEDIATE remapping
on top of that gives another dimension to the problem. Thus the
REMEDIATE remapping policy must balance several conflicting
goals, including:

I. Minimizing the maximum distance from core to either original

or target bank. Cache latency will be determined by the maximum
distance to the original and target banks. We cannot always predict
what core will access the data, but if the target bank is near the host
bank, then it is more likely the maximum distance will not be
inflated significantly.

2. Minimizing the distance from original bank to target bank.

Power and traffic congestion and, as a result, latency are minimized
by minimizing the distance of between original and target banks.

3. Maximizing total cache capacity. The more freedom we have to
select target lines from different banks, and the host lines that map to
those target lines, the fewer total lines will be sacrificed.

Since the cache bank access pattern depends on the application
that each core is running and dynamically changes with program
behavior at run-time, a one-solution-fits-all approach may not deliver
optimal results. Instead, we propose two heuristics for REMEDIATE
remapping policies which are simple but scalable and aimed at
achieving a different balance of these goals. The first policy attempts
to minimize access latency by exploiting adjacency while the second
one places highest priority on preserving cache capacity.

A. Adjacent Mapping Policy

In this remapping policy, the highest priority for placing the target
line is given to LLC banks in adjacent tiles. This attempts to
minimize cache access latency and network traffic, particularly in the
case where we cannot predict the requester core. Based on the
number of allowed hops (tiles in the NoC) to reach the target bank
from original bank, we can define different modes where a faulty
line is being remapped into any configuration of a single up to
multiple adjacent banks. For instance, we can have a mode that
allows remapping to only one target bank that can be reached at one
hop (mode MI). Alternatively we can have a different mode that
allows remapping to at most two banks that each can be reached with
at most one hop (mode M2). Fig. 4(a) shows an example of M2
mode for all banks in CMP. Other modes are also possible based on
the number of target banks and maximum hops to reach them.

(a) (b)
Fig. 4. Example showing the (a) Adjacent mapping scheme (b) Global

mapping scheme.

B. Global Mapping Policy

The adjacent remapping policy potentially sacrifices cache
capacity (i.e., prevents the technique from finding the optimal
mapping by limiting it to just adjacent banks) for latency or traffic
considerations. However, when the cache lost capacity induces a
miss, it can have far greater impact on both performance and power
than a suboptimal line target mapping. This remapping policy thus
imposes no location restrictions for the mapper, and the target lines
can be selected from LLC banks in any tiles in CMP. However, this
policy gives priority to the banks of adjacent tiles, and if the target
line is not found in adjacent banks, it examines other banks. Fig. 4
(b) represents an example in which LLC bank of TileO can has five
target banks in different distances and LLC bank of Tile15 can be
target of five different banks. Note that in both policies the
remapping information is stored in the PFM inside of each bank.

C. Remapping Comparison with Recent Techniques

In this section we compare efficiency of remapping for fault
recovery in REMEDIATE against state-of-the-art remapping-based
techniques including RDC-Cache [5], Salvage Cache [4], Ansari [10],
Archipelago [11], and FFT-Cache [12]. In Fig. 5 we report the
relative effective cache size for each of these techniques and across
various voltage levels. These results obtained using failure rates
reported in [13] for a 65nm technology. The results reported in Fig.
5(a) are based on a 1000-run Monte Carlo simulation for a 8MB
8-way set associative LLC cache with two banks and 64 bytes block
size. To have a fair comparison, for all these techniques including
REMEDIATE, we assume the fault map area overhead is at most 9%
of the cache size which equals to the overhead of REMEDIATE with
sub-block size of 16-bit. Based on this assumption and to meet the
overhead constraint, the Archipelago and FFT-Cache use 16-bit
sub-block size. RDC-cache and Salvage-cache use sub-block size for
128-bit and 64-bit, respectively. The results show in Fig. 5(a) show
that in ultra-low voltage region (below 400mv) as the failure rate
increases, the more flexible remapping methods like FFT-Cache and
REMEDIATE result in smaller cache capacity loss.

In Fig. 5(b) we report the results for the same cache configuration
but double the number of banks to evaluate the effect of increasing
the number of banks on the effective cache size. Some techniques,
such as REMEDIATE, benefit from increasing the number of banks
while others such as RDC-Cache do not. In fact for the RDC-Cache
and Salvage cache the effective cache size for the two bank and four
bank cases are fairly similar. For the Salvage cache this is mainly
due to its intra-bank remapping style, where additional banks do not
provide any more opportunity for remapping. For the Ansari,
Archipelago and FFT-Cache techniques that are more scalable than
other methods, the improvement is small: comparing two and four
banks cases, only up to 5% effective cache size improvement is
achieved across different voltage points. For REMEDIATE, we

achieve up to 13% improvement in effective cache size compared to
the two bank case. In addition, in the Ansari and Archipelago
techniques, the fault map area increases noticeably as we reduce the
voltage below 375mv. To achieve same effective cache size as
REMEDIATE's at such voltage points, Ansari, Archipelago, and
FFT-Cache techniques need to rely on a sub-block size of 4-bit or
lower, which incurs an overhead of more than 20% for their fault
map. Note that Archipelago and Ansari's fault map size is
proportional to the number of faulty sets while for REMEDIATE, the
amount of fault map area overhead is fixed at 9% across all voltage
points. Overall, these previous techniques have noticeably lower
flexibility compared to REMEDIATE, where all banks can
participate in remapping.

�
i!l .;;;
..
-5 '"
u
..
� ..
ffi

�
i!l .;;;
..
�
u
..
."

�

100

80

60

40

20

0
100

80

60

40

20

• ROC-Cache
• Archipelago

• Salvage Cache • Ansaril101
• FFT-Cache REMEOIATE

� � � � � � � � � �
Vdd(mV)

(b)
Fig. 5. Effective cache size for different remapping techniques with (a) two

banks and (b) four banks of LLC.

VI. EXPERIMENTAL SETUP

We use SMTSIM simulator [7] for our performance simulations.
To simulate accurate behavior of a NUCA cache architecture and
memory network we integrate it with HORNET [8] NoC simulator
that simulates NoC architectures with high accuracy and detailed
latency, network traffic, and power analysis. To enable power
analysis, HORNET combines a dynamic power model based on
ORION [23] with a leakage power model. Table I summarizes the
configuration parameters used in our study. We use CACTI 6.5 [9] to
obtain cache bank access latencies and energy. The dynamic energy
consumed by the NUCA cache network within the chip was modeled
with the HORNET tool-set. The extra network traffic introduced by
our proposal is also taken into account and accurately modeled in the
simulator. For estimating cache failure probabilities for different
voltage levels, we use the data for failure probability of each SRAM
cell for 65nm from [13]. We use same fault model as previous works
in remapping-based fault-tolerant cache design [10][11][12].

TABLE T Baseline Configuration

Processor Cores 16 dual issue cores (out-of-order), 2 GHz

LI Instruction/Data Cache 8KB, 4-way (LRU), 64 B Blocks, 2 cycle

L2 Cache 64KB, 4-way (LRU), 64 B Block, I 0 cycle

8 MB NUCA, 16 banks, 8-way (LRU), 64
L3 cache--LLC (shared) bytes Blocks, 16-bit subblocks, 20 cycle

latency (per bank)

Memory Latency 250 cycles

NoC of 2D mesh (4x4 for 16 banks and
1 6 cores) 32-byte links (2 flits per

Interconnect
memory access), I -cycle link latency,
2-cycle router, XY routing

A. Workload characterization

We compose mUlti-program workloads consisting of 16 threads.
The applications are selected from the SPEC2000 and SPEC2006
benchmark suites, by using a mix of memory-intensive and
compute-intensive benchmarks. The sixteen-thread groupings are
selected randomly to avoid bias. Table II summarizes our workload
mixes. For each application in the mix we fast-forward to skip the
initialization phase and then simulate until all threads execute 200
million instructions.

TABLE II. Workload Mix

Workloads Benchmarks

WLl sphinx3 _ 06, facerec, applu, sixtrack,astar _ 06 _rivers, applu,
fma3d, gromacs_06, vortex_3 , milc_06, equake, gobmk_06,
bzip2 source,vpr route, cactusADM 06, sop lex 06 ref

WL2 art _470, sjeng_ 06, perl bench _06_ checkspam, mesa,
povray_06, omnetpp_06, eon_rushmeier, swim, soplex_06,
fma3d, art_ 470, eon_rushmeier, h264reC06_sss_encoder,
facerec,vpr route, lucas

WL3 bwaves_06, leslie3d_06,omnetpp_06, mesa, libquantum_06,
vortex_3 ,crafty, perlbench_06, namd_06, povray_06
hmmer 06 nph3,sixtrack, sjeng 06,swim, apsi,applu,

WL4 galgel, apsi, lucas,omnetpp _06, eon _rushmeier, parser,
swim,bzip2 _source,mgrid, perl bench _ 06, namd _ 06,milc _06,
equake, bzip2 source,vpr route, cactus adm 06

WL5 h264reC 06 _sss _encoder_main, hmmer _06_ nph3 ,
gap,lbm _ 06,art_ 470, sjeng_ 06, perl bench _ 06,
swim,bzip2 _source, art_ 470, sjeng_ 06, sjeng_ 06, mesa,
perl bench 06 checkspam, hmmer 06 nph3,sixtrack

WL6 applu, fina3d, gromacs_06, swim,soplex_06_ref,
Ieslie3d_06,omnetpp_06, facerec, galgel, gcc_06,
gzip log,parser,gzip log,bwaves 06, vortex 3 ,crafty

WL7 gobmk_06_nngs, galgel,equake, gap, Ibm_06, apsi,
astar_06_rivers,milc_06, mesa, povray_06, gcc_06,
gzip log,equake, bzip2 source, leslie3d 06, omnetpp 06

B. Design Space Exploration

We study various design parameters to show how REMEDIATE
can be effective in improving the fault tolerance for various cache
designs. The main design parameters considered in our study
include: remapping policy and remapping mode (as discussed in
Sections VA and V.B), bit failure rate of memory SRAM cell for
various operating voltage levels, and memory network
configurations. The major network configuration parameters we
consider include: the number of virtual channel (VC), number of
crossbar ports (CP), and bandwidth (BW) of NoC routers. We
assume XY routing and study three network configurations based on
the router parameters: I) low-performance (VC=2, BW=I, CP=I), 2)
mid-performance (VC=4, BW=2, CP=2), and 3) high-performance
(VC=8, BW=4, CP=4). We run our simulation process for eight

different failure rates, two proposed remapping policies, and three
different network configurations. Note that for all of these
simulations we use the baseline configuration as in Table I with
16-bit sub-block size.

VII. RESULTS

In this section we evaluate the impact of REMEDIATE remapping
on performance and power in the presence of aggressive voltage
scaling. For each workload we report performance in terms of
normalized IPC, weighted speedup [25], and LLC network traffic
statistics. For normalized IPC and weighted speedup measurements,
we use the CMP architecture in which the LLC is operating at
nominal Vdd with no fault-tolerant mechanism as the baseline. We
also report total power consumption of LLC banks and NoC
components (links and routers) for various REMEDIATE remapping
policies. In all figures presented in this section we use the following
abbreviation for different REMEDIATE mapping techniques, po:
Adjacent Remapping, PI: Global Remapping, Mode MI: one target
bank at one hop adjacency, M2: two target banks at one hop
adjacency, M3: three target banks at up to two hops adjacency, and
M4: four target banks at up to two hops adjacency.

Table III shows the relative disabled cache area after applying our
fault-tolerant method. As shown for high probability of failure (low
operating voltage), Global policy is far more effective than all
adjacent policy modes in preserving cache capacity. For instance, at
450mv, Global Policy reclaims more than 85% of lost cache capacity
(i.e., from 99% loss down to 10.5% loss). This is expected since
global mapping imposes no location restrictions that would limit the
REMEDIATE mapper. Therefore more cache capacity can be saved
as more candidates for remapping are available to the REMEDIATE
mapper. The same reasoning explains why M4 achieves the highest
capacity savings among all adjacent policy modes.

TABLE III. Percentage of disabled cache area using REMEDIATE
Bit failure rate (Voltage)

Policy Mode 7e-8 2e-6 3e-5 3e-4 7e-4 1.5e-3 3e-3 6e-3
(0.6) (0.55) (0.5) (0.45) (0.425) (0.4) (0.375)(0.35)

MJ 0.8 6.4 10.9 13.8 22.5 49.2 55.1 78.4
Adjacent M2 0.8 6.3 9.8 11.4 17.5 47.5 56.4 70.4

(PO) M3 0.8 6.3 9.6 11.7 17.0 38.4 45.3 65.3
M4 0.8 6.3 9.6 11.6 16.1 35.0 41.7 62.0

Global (Pl) - 0.7 5.4 7.3 10.5 14.5 20.5 24.2 45.2
No Remap - 11.8 71 94 99 100 100 100 100

A. Overheads

Figure 6 summarizes the overheads of our scheme over baseline,
no matter which remapping policy has been selected. The power
overhead in this figure is for the nominal Vdd (0.7V). We account for
the overheads of using 8T SRAM cells [13] for protecting the tag
and defect map arrays in low-power mode. To reduce the effect of
leakage and dynamic power consumption of PFM in high-power
mode, we assume clock gating and power gating is applied in the
PFM array. Therefore, the main source of dynamic power in nominal
Vdd relates to bypass MUXs. As shown in this figure it is trivial and
less than I %. As evident in Fig. 6, the fault map area is the major
component of area overhead. The total area overhead is less than
12%. In REMEDIATE, the PFM and MULTIPLEXING layer are on
the critical path of LLC cache access. Based on our timing analysis,
we consider 2 additional cycles as LLC access latency overhead.

• Fault Map(ST) • Mise Logic • Tag Array(ST)
.., 12 '"
� 10 Qj >
o S

6

4

2

o

Area Leakage
Power

Dynamic
Power

Fig. 6. Area, leakage, and dynamic power overheads of REMEDlATE.

B. Performance Analysis

In Fig. 7 we report performance metrics in terms of the weighted
speed up and normal arithmetic mean IPC for various workloads and
policies in Vdd=O.4V. We observe that PI demonstrates the worst
performance among all polices. We know that this policy saves more
cache capacity than other policies (Table III) and also increases the
network traffic and access latency as depicted in Fig.8(b). In fact, at
this voltage network latency and traffic have more impact on
performance than cache capacity. Also, we observe that in adjacent
remapping policy (PO), by increasing the number of target blocks
from one to three (Ml to M3) which comes with saving more cache
capacity (Table III), both IPC and speedup are increased. However,

-+-P1 ___ POM1 POM2 -+-POM3 �POM4

(a)
�

45

� � 40

� ,J:. �
� 35 � " .c
§ 30 z

"-� 25 � ..:
u 20

0.35 0.4 0.45 0.5 055 0.6

VddlV)

-+-P1 ___ POM1 POM2 "";'-POM3 �POM4

(e) c.
� 1

�,j � 0.95

./ � 0.9

� � 0.85
.�" ;: 0.8
"C V .� 0.75

� 0.7

<; 0.35 0.4 0.45 0.5 0.55 0.6 z

VddlV)

-+-P1 ___ POM1 POM2 "";'-POM3 �POM4

(e)
18

16

14
! 12 --

10

3 � 8
a

6 ""
4

2

0

0.35 0.4 0.45 0.5 055 0.6

VddlV)

there is a falloff in performance for POM4 that similar to PI policy,
at this point the impact of network traffic and latency is more
affecting the performance than cache capacity (Fig. 7).

0.95
• Weighted Speedup • Normalized IPC

0.'

0.85

0.'

�
" "NM� " "NMl l � l i l � I � l i l � li l � l i l i l� I J I � l i l i " "NM� " "NM� " "1 1 i i i ��

Wll WLZ WL3 WL4 WL5 WL6 WL7 AVG

0.75

0.7

Fig. 7. Normalized performance results of four selected policies for different
workloads in V dd=400m V.

Figure 8(a) shows the number of LLC accesses for different
policies. Obviously, the policies that have more target options for
remapping have higher accesses. Also, decreasing the voltage causes
more remapping which leads to higher cache accesses. However,
going below 0.4 V causes a large section of the cache to be disabled
which leads to decrease in the number of accesses.

In Fig. 8(b) we report the average packet latency (excluding LLC
bank hit latency) across different voltage levels. A clear trend seen in

-+-P1 ___ POM1 POM2 __ POM3 �POM4

14
(b)

� 13
u
� 12

� 11 // J?'""�
'Y. \.'\ § 10 �
"f'" 'ir""-o..

� 9 � 8
&.
'" 7
>

6 "
0.35 0.4 0.45 0.5 055 0.6

VddlV)

-+-P1 ___ POM1 POM2 -+-POM3 �POM4

(d)
2.2

�
� 2

0: \ 1.8

� �\ "C 1.6

.� �'\. rn 1.4
E ""-� � <; 1.2
z

1

0.35 0.4 0.45 0.5 0.55 0.6

VddlV)

-+-P1 ___ POM1 POM2 -+-POM3 �POM4

(f) - 0.045

E
0.04

./
-
� 0.035 V e ./ "" 0.03

i:" � t=a.. .-I V � 0.025
".

i;';,
� 0.02

.E 0.35 0.4 0.45 0.5 0.55 0.6

VddlV)

Fig. 8. (a) LLC average number of accesses, (b) Average flit latency (excluding LLC bank latency), (c) Normalized miss rate, (d) Weighted
speedup, (e) Total power (network + LLC banks), (f) EDP for various REMEDIATE policies and across different voltage levels.

this figure is the increase in flit latency as the voltage scales down
below 0.50 V. Above that point there is not a noticeable difference in
flit latency as the probability of failure and the lost cache capacity
due to voltage scaling is pretty small (results in Table III). Fig. S(c)
shows the normalized speedup results as performance evaluation of
different policies. As we can see, performance across various
workloads and policies drops significantly for voltage lower than
0.45V because of large cache capacity loss and higher access latency.
Another interesting observation is how the various policies impact
performance at different voltage levels. In mid-range voltages

(0.4-0.45V), POM4 impacts performance more than other adjacent
policies. In fact, although POM4 saves more cache capacity
compared to POMI-POM3, it degrades performance as it increases
network traffic and the total number of LLC accesses, as reported in
Fig. Sea). So, different modes of PO policy represent a tradeoff
between effective cache capacity and network traffic and latency.

At the lowest voltage level we observe a different behavior; PI
policy can save larger cache capacity compared to other policies and
has the lowest impact on the miss rate. However, the network
overhead in terms of number of LLC bank access and average flit
latency, in this policy is higher than other policies. For the mid-range

voltages we observe a large variation in network traffic (Fig.S(a) and
(b» for various policies. For high voltages (above 0.450V) and low

voltages (below O.4V) we observe a small variation in network
traffic. This can be explained as follows: for high voltages there is
not much opportunity for REMEDIATE remapping as the probability
of failure is small. For low voltages, due to very high probability of
failure, a large portion of LLC cache is being disabled, which gives a
small remapping opportunity for REMEDIATE. Overall, global
mapping policy (PI) results in highest capacity savings and lowest
LLC cache miss rate (reported in Fig. S(d». However, it comes with
highest number of LLC accesses and network latency. For adjacent
policies (POMI-POM4), as we allow more banks available for
remapping, a higher cache capacity is saved (Table III) which results
in lowering the LLC miss rate and increasing the network overhead.

C. Power and Energy-Delay Analysis

In Fig.S(e), we report total power include both memory and
network power for various voltage levels and policies. Reducing the
voltage comes with exponential increase in failure rate. Therefore,

";' 'tI
�
�
c
$
!I
Q;
'll ..
a.
.; > ..:

21
19
17

� 15
� 13
� 11

a.
9

_LP P1 � MP P1 -a-HP P1
19
17

r "-15
13 /
11 ./

9

0.35

0.35

'\.
�\.

�

0.4 0.45 0.5

_ LP P1 � MP P1 -a-HP P1

0.4 0.45 0.5 Vdd (V)

(a)

0.55 0.6

(c)

0.55 0.6

go
il ..

reducing voltage causes more remapping of faulty areas by
REMEDIATE and leads to higher network traffic and a larger
number of LLC cache accesses (Fig.S(a) and (b» . In spite of that, the
overall power reduces, as dynamic power is reduced quadratically
and leakage power reduces linearly with voltage scaling. Unlike
memory banks, the network power does not change noticeably. Since
the cache banks are major source of power consumption in LLC, the
voltage scaling is only applied to the banks and not the interconnect
subsystem. Moreover, applying the voltage scaling to the
interconnect network is more complex and comes with non-trivial
performance degradation. As we lower the voltage below 0.450 V,
the policies with higher network traffic and higher number of LLC
cache accesses dissipate slightly higher power than others.

The energy-delay product (EDP) results are shown in Fig.S(t). For
high voltages, EDP reduces significantly as voltage scales down. For
low voltages, EDP increases as the performance degrades
significantly. For mid-range voltages, we observe a good trade-off
between power saving and performance loss (Fig.S(d) and (e»,
achieving the lowest energy delay product.

D. Network Analysis

In this section we analyze the impact of network configuration on
power and performance of our proposed policies. We report the
results for three separate router configurations, including
High-Performance (HP), Moderate-Performance (MP) network (our
baseline), and Low-Performance (LP) as explained in Section VI.B.
Figure 9 shows the effect of router configuration on performance and
power results for PI policy. As we lower the voltage, we observe
smaller performance impact in MP and HP network. In fact, these
routers have higher capacity to tolerate higher network traffic. For
voltage points in 0.375-0.425V, the performance gap in terms of
weighted speedup and average packet latency between low
performance and high performance network is widening. This is
expected since in this voltage range applying REMEDIATE
remapping policies results in highest network traffic as shown in Fig.
9(a). Hence, a low performance network can severely degrade
performance. The power results reported in Fig. 9(c), indicate the
network with high performance routers has higher power dissipation
as compared to other network configurations.

__ LP P1 ___ MP P 1 _ HP P1 (b)

� O.95
� 0.9 .= .. � 0.85
'C
.� 0.8
� :s 0.75
z

0.35 0.4 0.45 0.5 0.55 0.6

__ LP P1 MP P1 -a-HP P1 (d)

� 0.05

tl 0.04
"

'C
i:! 0.Q3 a.
> ..

Q; 0.02 0
>
� 0.Q1 ..
.z 0.35 0.4 0.45 0.5 0.55 0.6

Vdd(V)

Fig. 9 . (a) Average flit latency (excluding LLC bank latency); (b) Weighted speedup; (c) Total power (network + LLC banks); (d) EDP for
various network configurations and across different voltage levels.

E. Quantitative Comparison to Alternative Techniques

In order to illustrate the benefits of our design, we quantitatively
compare REMEDIATE with the baseline 6T SRAM cell, two recent
multi-bit ECC-based techniques (2D ECC [18] and MS-ECC [17]),
three recent remapping-based techniques (Ansari [I 0],
FFT-Cache[12], and Archipelago[II]), and two other state of the art
works (Bit-fix[24] and lOT SRAM cell[14]). Table IV summarizes
this comparison based on the minimum achievable Vdd, area
overhead for the caches, power overhead, normalized IPC, and
normalized power. In order to have a fair comparison, the remapping
configuration and coding granularities are set so that the coding
overheads of the ECC-based techniques are equal/comparable to
disabled capacity of other methods (i.e 25%). In this table, different
techniques are sorted based on their minimum achievable Vdd, when
targeting 99.9% yield for on-chip caches.

TABLE IV. Comparison of different cache protection Schemes

Scheme
Vdd-min Area Power Norm. Power norm. tu

(mV) over. (%) over. (%) [PC REMEDIATE

6T cell 660 0 0 1 .0 4 .5 1

)D ECC [1 8] 470 6 .5 15 0 .96 1 . 82

MS-ECC [1 7] 440 6 1 0 0 .90 1 .6 1

Bit-fix [24] 420 8 20 0 .89 1 .4 1

Ansari [1 0] 4 1 0 1 5 8 0 .96 1 .33

l OT cell [14] 380 66 24 1 .0 1 .24

FFT-Cache [12] 375 10 8 0 .95 1 .2 1

Archipelago [I I] 370 12 7 0 .95 1 . 1 8

REMEDIATE 360 1 1 8 0 .95 1 .0

Overall, REMEDIATE achieves the lowest operating voltage
(360mv) and the highest power reduction compared to all other
techniques. Since ECC-based techniques cannot tolerate high failure
rates in very low voltages, their minimum Vdd is higher than
remapping based methods. The closest techniques to ours are
Archipelago, FFT-Cache, and lOT cell. However, lOT cell incurs a
66% area overhead and 24% power which are much more than our
method overheads. Comparing to FFT-Cache and Archipelago,
overheads are almost equal, but our scheme can achieve a lower V dd
and higher power saving. Overall, the scalability of REMEDIATE
for large shared NUCA caches along with efficient remapping, high
configurability, and inherent flexibility allows it to tolerate higher
failure rates compared to other similar techniques.

VIII. CONCLUSION

The design of NUCA LLC in CMP architectures is challenging
due to the often conflicting tradeoffs of reliability, manageable power,
and performance. In this work, we proposed REMEDIATE, a
fault-tolerant scalable cache architecture for shared NUCA LLC in
tiled CMPs. REMEDIATE leverages address remapping to replicate
faulty blocks of shared LLC banks with blocks from other banks. It
utilizes two remapping policies for efficient selection of redundancy
from different cache banks considering design challenges in a NUCA
memory organization. Our experimental analysis shows that as cache
operating voltage scales down, REMEDIATE increases available
cache capacity and hence maintains performance even in the
presence of high failure rates. We show that REMEDIATE is most
effective in lowering power and EDP in the mid-range voltages
(0.375 � 0.450 V). Our results indicate that REMEDIATE saves up
to 50% power consumption of LLC cache in a 4x4 CMP architecture
operating below O.4V while recovering up to 80% of the faulty cache

capacity with only modest performance degradation.

ACKNOWLEDGMENT

This work was partially supported by NSF Variability Expedition
Grant Number CCF-I 029783.

REFERENCES

[I] S. R. Nassif, et al . A Resilience Roadmap. In Proc. DA TE, 20 10 .

[2] C . Kim, D. Burger, and S . W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches . In ASFLOS, 2002.

[3] Beckmann, B.M. and Wood, D.A. Managing Wire Delay in Large
Chip-Multiprocessor Caches . In Proc. MICRO, 2004.

[4] C . -K. Koh, et al . The Salvage Cache : A fault-tolerant cache architecture
for next-generation memory technologies. In Froc. ICCD, 2009.

[5] A. Sasan, et al . A fault tolerant cache architecture for sub 500mv
operation: resizable data composer cache (RDC-Cache). In Proc. CASES,
2009.

[6] Y. Wang, et al . Address remapping for static NUCA in NoC-based
degradable chip-multiprocessors . In Proc. PRDC, 20 10 .

[7] D .M. Tullsen. Simulation and Modeling of a Simultaneous Multithreading
Processor. In Proc. A CMGC, 1996.

[8] Mieszko Lis, et al . Scalable, Accurate Multicore Simulation in the
1 000-core era. In Proc. ISF ASS, 20 I I .

[9] N . Muralimanohar, R . Balasubramonian, and N.P. Jouppi. CACTI 6 . 5 . HF

Laboratories, Technical Report, 2009.

[1 0] A. Ansari, et al . Enabling ultra low voltage system operation by tolerating
on-chip cache failures. In Proc. ISLPED, 2009.

[1 1] A. Ansari, et al . Archipelago: A polymorphic cache design for enabling
robust near-threshold operation. In Proc. HPCA , pages 539-550, 20 1 1 .

[12] A. BanaiyanMofrad, et al . FFT-Cache : A Flexible Fault-Tolerant Cache
Architecture for Ultra Low Voltage Operation. In Proc. CASES, 201 1 .

[13] G. Chen, D . Sylvester, D . Blaauw, and T . Mudge. Yield-driven
near-threshold sram design. IEEE TV LSi, 1 8(1 1) : 1 590-1 598, 20 10 .

[14] B . Calhoun and A . Chandrakasan. A 256 kb sub-threshold SRAM in 65nm
cmos. In Proc. ISSCC, pages 240.25 1 , 2006.

[1 5] W. Klotz. Graph coloring algorithms, 2002. Mathematik-Bericht 5,
Clausthal University of Technology, Clausthal, Germany.

[I 6] H. AI-Omari and K. Sabri. New graph coloring algorithms. Am. J. Math.

& Stat. , 2(4) :739-74 1 , 2006.

[1 7] Z. Chishti, et al . Improving cache lifetime reliability at ultra-low voltages.
In Froc. MICRO, 2009.

[1 8] 1. Kim, et al . Multi-bit Error Tolerant Caches Using Two-Dimensional
Error Coding. In Proc. MiCRO, 2007 .

[1 9] D. Roberts, et al . On-chip cache device scaling limits and effective fault
repair techniques in future nanoscale technology. In Froc. DSD, 2007.

[20] C . K. Koh, et al . Tolerating process variations in large, set associative
caches : The buddy cache. A CM TACO, 6(2) : 1-34, June 2009.

[2 1] D. Gizopoulos, et al . Architectures for online error detection and recovery
in multicore processors . In Proc. DA TE, 201 1 .

[22] C . Chen and M . Hsiao. Error-correcting codes for semiconductor memory
applications: A state of the art review. iBM J. of R&D, 1 984.

[23] H. Wang, X. Zhu, L. Peh, and S . Malik. Orion: a power-performance
simulator for interconnection networks. In Proc. MICRO, 2002.

[24] C . Wilkerson, et al . Trading Off Cache Capacity for Reliability to Enable
Low Voltage Operation. In Proc. iSCA , June 2008.

[25] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a
simultaneous multithreading architecture. In Proc. ASFLOS, 2000.

[26] A. Sasan, et al . Process variation aware sram/cache for aggressive
voltage-frequency scaling. In Proc. DA TE, 2009.

[27] A. Chakraborty, et al . E< MC' : less energy through multi-copy cache. In
Proc. CASES, 2010 .

[28] A. Sasan, et al . Inquisitive defect cache: a means of combating
manufacturing induced process variation. IEEE TVLSI, 19(9) : 1 597- 1 609,
201 1 .

[29] A. Sasan, et al . Variation Trained Drowsy Cache (VTD-Cache): A History
Trained Variation Aware Drowsy Cache for Fine Grain Voltage Scaling.
IEEE TV LSI, 20(4) : 630-642, 2012 .

[30] A. Sasan, et al . History & Variation Trained Cache (HVT-Cache): A
process variation aware and fine grain voltage scalable cache with active
access history monitoring. In Froc. ISQED, 2012 .

A. BanaiyanMofrad, Gustavo Girao, and Nikil Dutt. A Novel NoC-based
Design for fault-tolerance of Last-level Caches in CMPs. In Froc.
CODES+JSSS, 2012 .

