
1

Exploiting Energy-Accuracy Trade-off through Contextual

Awareness in Multi-Stage Convolutional Neural Networks

Katayoun Neshatpour, Farnaz Behnia, Houman Homayoun, Avesta Sasan
Department of Computer and Electrical Engineering, George Mason University

Abstract— One of the promising solutions for energy-efficient
CNNs is to break them down into multiple stages that are
executed sequentially (MS-CNN). In this paper, we illustrate
that unlike deep CNNs, MS-CNNs develop a form of contextual
awareness of input data in initial stages, which could be
used to dynamically change the structure and connectivity
of such networks to reduce their computational complexity,
making them a better fit for low-power and real-time systems.
We suggest three run-time optimization policies, which are
capable of exploring such contextual knowledge, and illustrate
how the proposed policies construct a dynamic architecture
suitable for a wide range of applications with varied accuracy
requirements, resources, and time-budget, without further need
for network re-training. Moreover, we propose variable and
dynamic bit-length fixed-point conversion to further reduce the
memory footprint of the MS-CNNs.

I. INTRODUCTION

Due to recent developments in the design of deep and mod-
ern Convolutional Neural Networks (CNN), and processing
power provided by Graphical Processing Units (GPU) for
their training, CNNs have become ubiquitous in applications
including vision, speech recognition, and natural language pro-
cessing. However, effective mapping of these models to low-
power devices is extremely challenging, as such applications
are computationally expensive and power hungry. In addi-
tion, many real-time applications require fast and deadline-
driven computation to operate safely and correctly; for current
learning models, this could be satisfied by adapting more
parallelism and boosting the hardware performance, which is
not possible in low power and resource constrained devices.

One of the promising solutions to reduce the computational
complexity of deep CNNs is to break down these deep and
complex networks into a series of smaller CNN networks
that are executed sequentially [1], [2], [3], [4]. This approach
provides a real-time tuning capability based on the accuracy
requirements, availability of resources, and their constraining
energy and time-budget. The existing Multi-Stage CNNs (MS-
CNNs) differ in the structure of each sub-network and the
relative connectivity of various sub-networks. However, all
of them practice early-termination if classification confidence
reaches a desired threshold in a given stage, skipping all future
stages. It should be noted that, all the existing MS-CNNs suffer
from substantial increase in parameter count.

In this paper, we explore various means of utilizing the
classification outcome of each stage of MS-CNNs to reduce
the computational complexity and number of required param-
eters in the subsequent stages. Some of the proposed policies
evaluated in this paper include: (1) Pruning the Classifier:
pruning the investigated classes by skipping computation of
improbable classes that score a low confidence in a previous
stage. (2) Pruning the Filters: skipping the computation of

channels/filters that do not significantly contribute to the prob-
able classes, and (3) Adjusting Parameter Bit-length: reducing
the bit-length of the parameters in early stages or the bit-
length of parameters corresponding with less probable classes.
While various work focus on finding an optimized CNN
implementation, we show that the proposed policies offer a
flexible solution that fits a wide range of application with
varied requirements through a single architecture with no need
for fine-tuning and re-training.

II. BACKGROUND AND RELATED WORK

Table I captures the detection accuracy of CNN archi-
tectures which have competed in the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) in recent years. The
ILSVRC [5] is an object detection competition for classifi-
cation of images into 1000 different classes by training on
1.2 million labeled images. Table I shows that the number of
layers and the complexity of the CNNs in terms of the number
of FLOPs has dramatically increased over time to enhance the
classification accuracy.

These state of the art CNN solutions are composed of a sin-
gle feed-forward computational network, where the classifica-
tion confidence is determined after the network is completely
executed. With solely focusing on classification accuracy,
these learning models have little or no regard for energy
or power saving. To reduce the computational complexity
and average energy consumed per classification, researchers
investigated the possibility of performing classification in
multiple phases using sequence of serially executed smaller
networks [1][2][3][4], resulting in a new class of architecture
that we refer to as Multi-Stage CNN.

In MS-CNNs, the overall CNN solution is decomposed
into a sequence of smaller networks capable of classification,
referred to as micro CNN (uCNN) [2]. MS-CNN makes it pos-
sible to practice early termination if classification confidence
threshold is met before executing the entire network, which
enables the MS-CNN classifier to speed up the the average
classification time (depending on input data) by bypassing the
remaining network and skipping its required computation.

In [1] a dynamic configuration allows the CNN to be
partially or fully deployed based on classification confidence
of partial network, but the memory footprint required to keep
the intermediate features from partial networks is significant.
Conditional Deep Learning Network (CDLN) is proposed in
[3], in which only fully connected (FC) layers are added to
the intermediate layers to produce early classification results.
BranchyNet [4] proposes using additional convolution layers
(CONV) at each exit point (branch) to enhance the perfor-
mance. However, [3] and [4] are tested for 10-class data sets
(MNIST [6], CIFAR-10) for up to 4 stages. On the other hand,
in [2], iterative CNN (ICNN) is proposed for the 1000-class
ImageNet for 7 stages, and input images is sampled into its



2

TABLE I: Specification of the existing CNN architectures.
AlexNet[11] ZFNet[12] VGG[13] GoogLeNet[14] Resnet[15]

Top5 Accuracy 80.2% 88.8% 89.6% 89.9% 96.3%
layers 8 8 19 22 152

FLOPS 729M 663M 19.6G 1.5G 11.3G

Fig. 1: The architecture of the i-th uCNN for the multi-stage AlexNet.
sub-bands using Discrete Wavelet Transform (DWT), thus the
computation load is reduced by processing sub-bands with
reduced dimensions in each sub-network.

A common drawback of all proposed MS-CNNs is the
increased number of FC layers required for each stage of such
networks. FC layers account for a large number of parameters
(i.e., 96% in AlexNet), as a result MS-CNN suffers from
significant increase in the parameter count. Moreover, none
of the proposed multi-stage approaches use the contextual
awareness from early stages, or exploit various termination
strategies to optimize and tune their network structure or
reduce their required parameter count dynamically.

In this paper, we use the contextual knowledge learned from
an input image in early stages to provide hints to subsequent
next stages to skip unnecessary computation and dynamic
pruning of unnecessary parameters. Moreover, we provide a
far more flexible and much richer set of features for trading
off the accuracy vs computational complexity vs energy con-
sumption vs classification time by proposing various pruning,
thresholding and bit-length adjustment techniques.

It should be noted that other optimization approaches have
been proposed to enhance the energy-efficiency of the CNN
architectures including Tensor decomposition and low-rank
optimization [7], [8], parameter compression and exploitation
of sparsity [9], and precision reduction of weights and/or
neurons by fixed-point tuning and quantization [10]. Not only
are these approaches orthogonal and applicable to MS-CNNs,
but also they can benefit from the contextual knowledge from
the MS-CNN to further refine their approach to best optimize
each stage. An example of this is studied in Sec. IV-C.

III. IMPLEMENTATION FRAMEWORK

As a representative of MS-CNNs, we deploy the ICNN [2]
as our experimental framework. A 7-stage MS-CNN was built
and trained as suggested in [2]. For training we used Berkeley
Caffe [16] and deployed Tesla K80 GPUs. The ImageNet
training and the validation archives were used to train and
network and validate the results.

Fig. 1 captures the structure of the i-th uCNN in MS-CNN.
The overall MS-CNN is constructed by connecting 7 of such
smaller networks. Each uCNN processes one sub-band of the
DWT of the input image. Concat layer fuses the output feature
maps (Ofmap) of the last CONV layer in the current stage with
the Ofmaps of the last CONV layers from previous stage(s).
Note that since the number of Ofmaps which are processed at
any given CONV layer in each uCNN is considerably smaller
than that of original AlexNet (see Table II), the FLOP count
of the resulting MS-CNN is considerably smaller than that of
AlexNet. However, due to the increased number of FC layers
(one set per stage), the total parameter count is higher.

TABLE II: The configuration, i.e., number of output channels,
parameters, FLOPs for each stage of multi-stage AlexNet.

stage s1 s2 s3 s4 s5 s6 s7 AlexNet
CONV1 24 24 24 24 24 24 24 96
CONV2 64 64 64 64 64 64 64 256
CONV3 96 96 96 96 96 96 96 384
CONV4 48 48 48 48 48 48 48 384
CONV5 32 32 32 32 32 32 32 256

FC6 1024 1024 1024 1024 2048 2048 4096 4096
FC7 1024 1024 1024 1024 2048 2048 4096 4096
FC8 1000 1000 1000 1000 1000 1000 1000 4096

Parameters[M] 3.36 4.54 5.72 6.90 18.15 20.5 54.01 60.97
FLOPS[M] 59.57 60.75 61.93 63.11 74.36 76.72 110.22 728.27

Total Parameter: 113M FLOP: 506M -

Fig. 2: Reduction in size of Probable classes in each stage

IV. CONTEXTUAL AWARENESS IN MS-CNN

Real-time application of deep learning algorithms is often
hindered by high computational complexity and frequent
memory accesses. Network pruning is a training-phase
technique to solve this problem [17]; however, MS-CNNs
enable us to apply the pruning at run-time. This capability
is the result of having an early classification, that provides
MS-CNN with a contextual knowledge that could be used
in the next stages to skip or reduce computation without
affecting the overall accuracy. As illustrated in Fig. 2, after
executing each uCNN (each stage), the class probabilities
are biased, dividing the classes into two set of probable and
improbable classes. Note that after each stage the size of
probable classes reduces as classification accuracy improves.
Hence, the probability of classes could be used as an effective
measure to reduce computation in the subsequent stages
by avoiding computation related to improbable classes, or
reducing the precision of computation for less probable
classes.

To further discuss benefits of contextual awareness in MS-
CNN, we introduce Prediction Rank (PR) as an indicator
of prediction accuracy of a model for each image. Consider
an image with class label C[i]. After executing a uCNN, all
the class probabilities are sorted in descending order. Lets
denote the location of a class C[i] in the sorted array of class
probabilities as its Prediction Rank. If statistical analysis of
the data set for class C[i] shows that PR of probable classes
is always smaller than L in all stages, where (1 ≤ L ≤ 1K),
limiting the number of computed class probabilities in each
uCNN to top-L of classes in previous stage instead of 1k,
would have no impact on the probability of detection of class
C[i]. On the other hand, if the number of computed classes
(i.e., L), is chosen smaller than range of PR variation for class
C[i], then by pruning the computation for class α we may end
up with misclassification. Expanding this to all classes, the
probability of misclassification (MC) conditioned on pruning
the classes to those with PR ≤ L is given by:

P (MC|Pth = L) =

1000∑
i=1

P (C[i])P (PR(C[i]) > L). (1)

In this equation the Pth is the Pruning threshold, C[i] is
the i-th class, PR(C[i]) is the prediction rank for C[i], and L
is the chosen limit for pruning. For obtaining the probability
P (PR(C[i]) > L), we define the Decision function D as:



3

Fig. 3: prediction Range (a) PRµ & PRµ + 2 × PRσ for various
classes at stage 1. (b) Maximum PRµ among all classes at each stage
(c) PRµ + 2× PRσ among all classes at each stage.

D(αC[i](j), L) =

{
1, ifPR(αC[i](j)) > L

0, else
(2)

In this equation αC[i](j) is the j-th image member of class
C[i]. If we define S[i] as the number/size of images in the data
set (or expected number of images in the batch) that belong
to class C[i], P (PR(C[i]) > L) is computed as follows:

P (PR(C(i)) > L) =

∑S[i]
j=1D(αC[i](j), L)

S[i]
. (3)

By using equation 1 the pruning threshold L could be
chosen to set the probability of misclassification due to pruning
to a desired value. With higher value of L fewer classes are
pruned, resulting in a higher classification accuracy. The value
L could reduce from stage to stage, making the pruning more
aggressive as the accuracy of classification increases.

Fig. 3-a shows the mean (PRµ) and variation (PRσ) of
PR for all 1k classes sorted in descending order of PRµ
at the first stage. Assuming a normal distribution, 95% of
images of each class will have a PR below PRµ + 2 × PRσ .
In Fig. 3 PRµ + 2 × PRσ of none of the classes exceeds
500, suggesting that by removing 50% of classes (Pth = 500)
the prediction accuracy does not drop beyond 5% for any
of the classes. Fig. 3-b and 3-c show the maximum of PRµ
and PRµ + 2 × PRσ among all classes for all the stages.
The maximum of PRµ + 2 × PRσ is reduced as MS-CNN
moves to the next stages, indicating that in subsequent stages,
the pruning policy could be more aggressive. Note that based
on the eliminated classes, the computational complexity
of the next stages is reduced by pruning the neurons in
the FC layers and/or the filters in the CONV layers which
are highly correlated to classes with close to zero probabilities.

A. Pruning Neurons in FC Layers
By setting the Pruning Threshold (Pth) to value L in a

given stage, top-L high probability classes are selected for
the next stage and the rest of the classes are eliminated. The
computation of FC layer for the eliminated classes could be
skipped. This results in significant reduction in required FC
computation and memory transfer of parameters.

B. Pruning Filters in CONV Layers
Visualization [12] and statistical analysis of data allows

identifying the CONV filters which are closely associated
with each class. By selecting top-L classes for the next stage,
only CONV filters associated with these classes are needed,
and the computation of other filters could be skipped.

C. Variable and Dynamic Bit-length Selection
There are two general approaches to convert a neural

network to fixed point. One is to train a network with fixed-

Fig. 4: Sensitivity of top-5 accuracy in multi-stage AlexNet.

TABLE III: Parameter size of variable bit-length conversion of multi-
stage AlexNet vs. Single precision AlexNet.

Stage s1 s2 s3 s4 s5 s6 s7 AlexNet
Param. Bit-length 11 11 12 13 14 15 16 32

Original Param. Size [MB] 13.4 18.2 22.9 27.6 72.6 82 216 244
Updated Param. Size [MB] 4.6 6.2 8.6 11.2 31.8 38.4 108 -

point constraints [18], [19]. While this approach yields high
accuracy, it requires tight integration between the network
design, training and implementation, which is not always
feasible. The other approach is to convert a trained network
into a fixed point model. This approach is more suited for
applications where a pre-trained network is utilized with no
access to the original training data [20].

In [21] an exploration of optimal fixed point bit-length allo-
cation across CNN layers shows that without further training,
a minimum of 16 bit-length is required for the parameters
of the CNN to yield results with an accuracy comparable to
single-precision floating point. Similar story applies to the MS-
CNN; however, in the early stages of MS-CNN the network
is less sensitive to quantization errors induced by fixed-point
transformation. In addition, in case of loss in accuracy, it could
recover in the future stages. This allows the quantization to be
applied more aggressively in early stages.

Fig. 4 shows the sensitivity of accuracy of MS-CNN to
the bit-length of the parameters at each stage. At each stage
the optimal bit-length is derived from a saturation point after
which increased bit-length does not enhance the accuracy. As
Fig. 4 shows, this saturation point is pushed to lower bit-
lengths for earlier stages. Hence, for MS-CNN rather than
selecting an optimal bit-length for the entire network, various
sub-networks deploy different bit-lengths allowing further re-
duction in the number of parameters. Table III shows the size
of parameters for various stages of multi-stage AlexNet and
a single-precision AlexNet. While the number of parameters
required for multi-stage AlexNet is 80% higher than original
AlexNet, variable bit-length selection for multi-stage AlexNet
reduces its parameter size by more than 15%.

In addition to per-stage bit-length adjustment, the contextual
knowledge from early stages allows the precision of param-
eters corresponding to less probable classes to be reduced
dynamically, allowing further flexibility in tuning MS-CNN
to meet the requirements of larger set of applications.

V. POLICIES FOR COMPLEXITY-ACCURACY TRADE-OFF

The context-aware nature of MS-CNN creates opportunities
for exploring the trade-off between computational complexity
(that impacts run-time and energy per classification) versus
classification accuracy. In this section we propose several
policies to exploit these opportunities.

A. Variable Thresholding Policy (TP)
A fixed thresholding policy for making early termination

decision is used in [2], [3], [4]. Using this policy MS-CNNs



4

terminate as soon as a uCNN reaches desired classification
confidence. The classification confidence is calculated by sum-
ming the probabilities of top-C (e.g. C = 5) suggested classes,
which is compared to a predefined Detection Confidence-
Threshold (Dct). In this section, we explore the impact of
choosing variable threshold values for each uCNN and in-
vestigate the resulting trade-off between CNN computational
complexity versus classification-accuracy.

Algorithm 1 implements the dynamic TP policy. The
uCNN(i, CL, img) function invokes the i-th uCNN with
img as input, requesting classification result for all class
labels in the C̄L vector and produces a vector of probabilities
P̄r, one for each of 1000 labels in C̄L. After each uCNN, the
sum of top-5 probabilities (

∑5
k=1 P̄r[k]) is compared with

Detection Confidence Threshold (D̄ct[i]), and if greater, the
image is classified. Note that some of the images never reach
a classification confidence above Dct. For these images, the
results of the classification in the last stage are used.

Algorithm 1 TP
1: for i = 1 to N − 1 do
2: P̄r ← uCNN(i, CL, img);
3: Sort descending(P̄r);
4: if ((

∑5
k=1 P̄r[k]) > ¯Dct[i]) then

5: exit;
6: P̄r ← uCNN(N,CL, img);

B. Context-aware Pruning Policy (CAP)
1) Context-aware Pruning Policy for FC layer (CAPFC):

Based on Sec. IV, Algorithm 2 proposes the implementation
of CAP policy for FC neurons. In the first uCNN, CL contains
all 1000 labels. The uCNN(i, CL, img) function invokes the
i-th uCNN. Subsequently, The less-probable classes are pruned
based on pruning threshold stored in pruning policy vector
P̄th. For instance, ¯Pth[i] = 100 results in only choosing the
100 labels and disables all other neurons in the FC layer of
uCNN(i+ 1) associated with the eliminated labels.

Algorithm 2 CAPFC
1: for i = 1 to N − 1 do
2: P̄r ← uCNN(i, C̄L, img);
3: Sort descending(P̄r);
4: C̄L ← C̄L[1 : P̄th[i]];
5: P̄r ← uCNN(N, C̄L, img);

Since the compute-intensive parts of the CNN architectures
are the CONV layers, CAPFC slightly reduces the computa-
tional complexity as it only affects the FC layers. However,
it considerably reduces the number of weights needed to be
moved to the memory, yielding a dynamic trade-off between
accuracy and the required memory footprint.
2) Context-aware Pruning for CONV layer (CAPCONV ):

Visualization of CNN [12] and statistical analysis of labeled
dataset makes it possible to identify and remove trained CONV
filters that are closely associated with classification of low-
probability classes. In order to enable the CAPCONV pruning,
as described in Algorithm 3, we analyzed the 1.2 million
images in the training set of ImageNet data set; for each (stage,
CONV layer, class) triple, we extracted a vector of accuracy-
loss due to the removal of each filter in the given CONV layer.
In Algorithm 3 the ¯Pre(i, cnv, c) shows the pre-processing
vector for the i-th stage, where cnv refers to the target CONV
layer and c refers to class label. Thus, the removal of the filter
associated with the first argument in ¯Pre(i, cnv, c) has the

least effect on overall accuracy of class c. CONVlst is the list
of CONV layers targeted for filter pruning and rm denotes
number of filters to be removed from each CONV layer.

Algorithm 3 CAPCONV
1: Pre-Process:Obtain ¯Pre(i, cnv, c)
2: for i = 1 to N − 1 do
3: P̄r ← uCNN(i, C̄L, img);
4: Sort descending(P̄r);
5: for cnv=1 in CONVlst do
6: Fltrem = {}
7: for c = 1 to ¯Pth[i] do
8: Fltrem+ = ¯Pre(i, cnv, c)[1 : rm]

9: Fltrem←Maj(Fltrrem, rm))
10: Update(uCNN , i , cnv, Fltrem)
11: P̄r ← uCNN(N, C̄L, img);

In the i-th stage, the filters least affecting the top-Pth
classes are gathered in Fltrem determining the candidate
filters for removal. Subsequently, the majority function
Maj(Fltrrem, rm) returns rm most repeated arguments in
Fltrem. This allows us to find the union of filters that least
affect the top-Pth[i] classes in the i-th stage. Subsequently,
Update(uCNN, i, cnv, F ltrem) updates the i-th uCNN by
removing rm filters in Fltrem from cnv-th CONV layer.

C. Pruning and Thresholding Hybrid Policy (PTHP)
The PTHP scheme takes advantage of both early termination

in the thresholding scheme and the pruning of the FC layers
in context-aware pruning policy. Algorithm 4 illustrates the
PTHP policy. In the first uCNN the probability for all classes
(all labels) is computed. In the while loop, if top-5 confidence
is above the detection threshold ¯Dct[i], the classification is
terminated. Otherwise, based on the value of a Selection
Threshold ¯Sth[i], a number of labels are selected for further
processing in the next layer. The selected classes are the
minimum number of labels with an accumulated probability
of no less than ¯Sth[i]. In this algorithm ¯CCL is the shrunk
version of C̄L that only contains the labels of interest.

Algorithm 4 PTHP
1: P̄r ← uCNN(1, C̄L, img);
2: for i = 1 to N − 1 do
3: Sort descending(P̄r);
4: if ((

∑5
k=1 P̄r[k]) > ¯Dct[i]) then

5: exit;
6: else
7: Sum = 0, ¯CCL = [], label=1;
8: while Sum < ¯Sth[i] do
9: Sum+ = P̄r[label];

10: ¯CCL[label] = C̄L[label];
11: label++;
12: P̄r ← uCNN(i+ 1, ¯CCL, img);

VI. IMPLEMENTATION RESULTS

For reporting the the accuracy values for the proposed
polices we evaluated the 50K images in the validation set of
ImageNet repository. The results are summarized next:

A. Variable Thresholding Policy
Fig. 5 shows the overall accuracy and average FLOP count

for variable thresholding policy. Note that since not all images
go through all the stages of ICNN, the FLOP count varies
for each image. Thus, in Fig. 5 the average parameter and
FLOP counts are reported over 50K images in the validation
set. Moreover, to better highlight how the thresholding policy
contributes to reducing computational complexity, the FLOP
and parameter counts are devised relative to the last stage of



5

MS-CNN. Fig. 5-b shows the D̄ct values for each stage of the
studied thresholding policies. T1 to T10 are sorted based on
FLOP counts, with T1 corresponding to the policy with the
lowest FLOP count and T10 the highest.

Fig. 5 shows that even with a mild thresholding policy as
in T10, the FLOP and parameter counts are reduced by up
to 25% and 80%, respectively, with negligible accuracy loss.
Note that in MS-CNN not all of the parameters are required
for all the images. Since early stages of MS-CNN deploy
smaller FC layers, the number of parameters for images
classified in the early stages is significantly lower than the
latter stages. Hence, early termination results in significant
drop in the parameter count by removing the need to execute
the larger FC layers of next stages.

B. Context-aware Pruning Policy
1) CAPFC : Fig. 6-a shows the overall accuracy and average
parameter count for various FC layer pruning policies, while
the table in Fig. 6-b captures the setting of the pruning policy
by listing the number of remaining classes after pruning the
classes with low probability at each stage of investigated MS-
CNN. The last bar shows the MS-CNN results when none
of the classes are pruned in any of the stages. P1 to P8 are
sorted based on their parameter count, with P1 having the
lowest parameter count and P8 the highest.

Fig. 6 shows that by increasing the number of pruned classes
(i.e., lower Pth) the accuracy drops; however, intelligent selec-
tion of the pruning policy yields reductions in the parameter
count, with negligible accuracy loss. For instance P8 yields a
17% reduction in the parameter count with negligible accuracy
loss. With CAPFC all the images go through all the stages in
this scheme. Thus, the only reduction in the FLOP count is due
to the pruning of the last FC layer in each stage. Newer and
deeper CNNs (e.g., VGGNet and GoogleNet) deploy fewer
FC layers as opposed to 3 FC layers in AlexNet. Hence,
applying pruning policy to deeper CNNs increases the rate of
FLOP count reduction as well as parameter count reduction
in their multi-stag version. Note that moving the large set of
parameters required for the FC from the memory accounts for
a significant energy and execution delay.
2) CAPCONV : Fig. 7 captures the result of filter pruning
for the last CONV layer (i.e., CONV5) in stages 2 to 7.
CONV5 of each stage consists of 32 filters, and in each

Fig. 5: Variable thresholding policies, (a) The accuracy and average
FLOP and parameter count (b) The table including the D̄ct values in
each stage for each thresholding policy. The optimized policies are
the circled ones, in which higher accuracy is maintained with reduced
FLOP count and parameter count.

Fig. 6: CAPFC policies, (a) The accuracy and average parameter
count (b) Number of labels not pruned in each stage of each policy.

Fig. 7: CAPFC policy for CONV5 in stages 2-7. The ignorant
trend-line shows the accuracy for pruning filters that least effect the
accuracy of all classes, while the smart trend-line shows the results
for when feedback from previous stages are used to prune the filters.

stage, 5, 10 and 15 filters least affecting the top-5 classes
from the previous stage are pruned (i.e., rm = 5, 10, 15 and
Pth = 5). Our proposed smart approach takes advantage
of the feedback from previous stages and depending on the
remaining classes removes the least contributing filters, while
the ignorant approach prunes filters based on how strongly
each filter contributes to the overall accuracy of the network
across all classes. As illustrated in Fig. 7, the contextual
knowledge generated after each classification, and selective
pruning of filters based on remaining classes significantly
reduces the loss in classification accuracy when pruning filters.

C. Pruning and Thresholding Hybrid Policy
Fig. 8.left shows the accuracy, and normalized FLOP and

parameter counts for the PTHP policy, while Fig. 8.right
captures the setting used for experimented thresholding and
pruning policies in PTHP . The figure is divided into 5
sections, one for each thresholding policy. Each segment assess
the impact of 5 different pruning policies on total parameter
and flop count when combined with thresholding in PTHP .

Fig. 8 shows that with aggressive thresholding (e.g., T1),
pruning results in significant drop in accuracy. However, with
moderate thresholding some (but not all) of the pruning
policies allow the parameter and FLOP counts to significantly
drop with little impact on the accuracy. This is due to the
fact that with PTHP only the high probability classes (with
accumulated probability of Sth) proceed to the next stages.

In the PTHP the classification is terminated if 1) a
top-5 confidence of Dct is reached, or 2) the number of
classes selected for the next stage is no bigger than 5. In the
second case, proceeding to the next stage does not increase
the top-5 accuracy and MS-CNN is terminated while the
confidence threshold is not reached. The effect of this early
termination is twofold: On one hand, it identifies images that
would never reach a high classification confidence, and for
which processing of more stages is a waste of resources,
hence reducing computation with no accuracy loss. On the
other hand, it could prematurely terminate the processing of
images that could have reached top-5 in the proceeding stage,
negatively affecting the accuracy and the top-5 confidence of



6

Fig. 8: The accuracy and average FLOP and parameter counts (normalized to MS-CNN with no pruning or threshold policy) for PTPH .
For each thresholding policy (i.e., Dct vector), multiple pruning policies (i.e., Sth vector) are investigated. The red and black bars show the
increase and reduction respectively, in the number of FLOP and/or parameter counts of a thresholding policy due to pruning.

38% improvement

in run-time

Thresholding
Pruning

Hybrid
AlexNet

XX

0 0.5 1.51 2 2.5 3 3.5 4

Classification time per images [ms]

0.65

0.6

0.55

0.7

0.75

0.8

A
cc

u
ra

cy ~1% accuracy 

loss

Fig. 9: The average per image run-time of multi-stage AlexNet for
50k validation images on K80 GPU. The figure marks how in a hybrid
policy pruning further reduces the run-time with no performance loss.

the subsequent stages. This forces MS-CNN to proceed to the
next stage, and increases the parameter and FLOP counts (see
red bars in Fig. 8). Fig. 8 shows that when the value of Sth
at each stage is selected slightly higher than Dct of the next
stage, reductions in FLOP and parameter count has the least
impact on the accuracy (See T4-P5 hybrid policy).
D. Run-time and overall accuracy

Adopting the pruning or thresholding policies creates a
trade-off between average delay and the accuracy of clas-
sification. The pruning and thresholding policies reduce the
parameter and FLOP counts, respectively. However, as shown
in Fig. 6 and 5, increased resources does not always translate
into higher accuracy. The hybrid policies which combine
both pruning and thresholding, exhibit the same behavior.
Consequently, finding the optimal strategy in which the target
accuracy is reached with minimal resources (in this case
execution time), is realized by exploration and tuning of
thresholding and pruning parameters as shown in Fig. 9.

Fig. 9 captures the design space of the MS-CNN when
trading the accuracy for reducing run-time through threshold-
ing and pruning policies. In this figure, each point denotes
a unique combination of thresholding and pruning policies.
As illustrated, the stand-alone thresholding policy yields bet-
ter run-time/accuracy trade-off compared to the stand-alone
pruning policy. However their combination in hybrid policy
could lead to optimal solutions. For instance Fig. 9 highlights
a stand-alone thresholding policy and a hybrid policy derived
by combining the same thresholding policy with pruning. Fig.
9 shows that the hybrid policy reduces the classification time
by 38% with less than 1% accuracy loss.

VII. CONCLUSIONS

In this paper we studied how the contextual knowledge
gained from execution of each stage in a multi-stage CNN
architecture could be used to reduce computational complexity
and parameter count in the subsequent stages. We proposed
various policies to improve the efficiency of MS-CNNs and

to construct a dynamic architecture suitable for a wide range
of applications with varied accuracy requirements, resources,
and time-budget, without further need for network re-training.
We combined confidence-based early-termination and context-
aware pruning to significantly reduce the computational com-
plexity, parameter count and run-time of a MS-CNN with
negligible accuracy loss. Moreover, we proposed variable and
dynamic bit-length selection to solve the problem of increased
parameter size associated with multi-stage CNN.

VIII. ACKNOWLEDGEMENT

This research leading to this publication is sponsored by
National Science Foundation (award number 1718538).

REFERENCES

[1] H. Tann, S. Hashemi, I. Bahar, and S. Reda, “Runtime configurable deep
neural networks for energy-accuracy tradeoff,” in (CODES+ ISSS), 2016.

[2] K. Neshatpour and et al., “ICNN: An iterative implementation of convo-
lutional neural networks to enable energy and computational complexity
aware dynamic approximation,” in DATE, March 2018, pp. 551–556.

[3] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in DATE, 2016.

[4] S. Teerapittayanon and et al., “Branchynet: Fast inference via early
exiting from deep neural networks,” in ICPR. IEEE, 2016.

[5] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[6] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Process. Mag, vol. 29, no. 6, 2012.

[7] M. Jaderberg et al., “Speeding up convolutional neural networks with
low rank expansions,” arXiv preprint arXiv:1405.3866, 2014.

[8] V. L. et al., “Speeding-up convolutional neural networks using fine-tuned
cp-decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[9] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse
convolutional neural networks,” in ICVPR, 2015, pp. 806–814.

[10] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in ICVPR, 2016, pp. 4820–4828.

[11] A. Krizhevsky and et al., “Imagenet classification with deep convolu-
tional neural networks,” in NIPS, 2012, pp. 1097–1105.

[12] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV. Springer, 2014, pp. 818–833.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] C. Szegedy et al., “Going deeper with convolutions,” in CVPR, 2015.
[15] K. He and et al., “Deep residual learning for image recognition,” in

CVPR, 2016, pp. 770–778.
[16] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-

ding,” in ACM int. conf. on Multimedia, 2014, pp. 675–678.
[17] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep

convolutional neural networks,” JETC, vol. 13, no. 3, Feb. 2017.
[18] M. Courbariaux, Y. Bengio, and J.-P. David, “Low precision arithmetic

for deep learning,” CoRR, abs/1412.7024, vol. 4, 2014.
[19] S. Gupta, A. Agrawal, , and P. Narayanan, “Deep learning with limited

numerical precision,” in ICML, 2015, pp. 1737–1746.
[20] M. Rastegari and et al., “Xnor-net: Imagenet classification using binary

convolutional neural networks,” in ECCV. Springer, 2016, pp. 525–542.
[21] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantiza-

tion of deep convolutional networks,” in ICML, 2016, pp. 2849–2858.


