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Abstract

Datacenter s provide flexibility and high performancefor
users and cost efficiency for operators. However, the high
computational demands of big data and analytics
technologies such asM apReduce, a dominant programming
model and framework for big data analytics, mean that even
small changesin theefficiency of execution in thedata center
can have a large effect on user cost and operational cost.
Finetuning configuration parameters of MapReduce
applications at the application, architecture, and system
levelsplaysa crucial rolein improving the ener gy-efficiency
of the server and reducing the oper ational cost. I n thiswork,
through methodical investigation of performance and power
measur ements, we demonstrate how the interplay among
various MapReduce configurations as well as application
and architecture level parameters create new opportunities
to co-locate M apReduce applications at the node level. We
also show how concurrently fine-tuning optimization
parameter sfor multiple scheduled M apReduce applications
improves energy-efficiency compared to finetuning
parameter sfor each application separately. In thispaper, we
present Co-Located Application Optimization (COLAO)
that co-schedules multiple MapReduce applications at the
node level to enhance energy efficiency. Our results show
that through co-locating M apReduce applications and fine-
tuning configuration parameters concurrently, COLAO
reducesthe number of nodes by half to execute M apReduce
applications while improving the EDP by 2.2X on average,
compared to fine-tuning applications individually and run
them serially for a broad range of studied wor kloads.
Keywords Co-locate, Tuning, MapReduce,
Efficiency, Power

1. Introduction

Datacenters are the computer platforms of choiggdoess
diverse applications in the emerging domain of daga. With
the significant increase in the volume of datartecpss big data
applications, hyperscale datacenters have gairtedest as a
promising computing architecture that is desigredrovide a
massively scalable computer architecture. Recqmowements
in the networking, storage, energy-efficiency amigaistructure

performance using a fewer number of nodes [47]. él@K

specialized accelerator reduces the preferable gensmus
computing environment in datacenters and increabes
compatibility issues for the target big data woskle that are
diverse in nature and are changing at a rapid reteaddition,

the cost of deploying an accelerator in serverthaaperational
cost of the datacenters can become highly exposthe tcost of
these very high-demand applications, whether tlost d¢s

absorbed by the owner of the datacenter or passéad @ user
running applications. As energy consumption armlicg cost

are a major part of operational cost, hardwaregtegiiority is

shifting from a performance-centric to an energficieincy

centric design methodology for server class archites.

Microservers represent an attractive microarchirecin data
centers, employing embedded-class low power process the
main processing unit. These platforms can enhamezgg

efficiency and reduce operational cost. Therefoteroserver-
based architectures have been proposed as anadéiterio

traditional high performance architectures to pssckig data
applications [1, 28, 29, 32, 33, 34].

In this paper, we evaluate co-locating of MapReduce
applications on microserver to reduce the numbenades
required in a cluster to process MapReduce apjaitatfor
maximum energy efficiency. This is achieved whil@mtaining
the cost-efficient homogeneous computing envirortnerthe
datacenters. Many big data applications rely orMBpReduce
programming model and framework to perform thealgsis on
large-scale datasets [2, 3, 17]. MapReduce corasfigur
parameters, as well as application and architdgparameters,
directly affect its performance and energy efficigthat creates

Energy- the opportunities for co-locating MapReduce aptibices at the

node level. A closest work to ours is Bubble-up][3hd
Bubble-Flux [41], where they introduce a charaetion and
profiing methodology and predicts the performance
degradation between pairwise application co-locatioCo-
locating traditional desktop and parallel applicas and tuning
the underlying processor (such as adapting theageltand
frequency [35, 38]) has been well studied in ttexditure [8, 12,
13, 14]. However, MapReduce applications, such adodp-
based, has fundamentally different microarchitedtbehavior
than traditional applications highlighted in receuairk [28, 29,

management [46, 47] has made hyperscaling a phidera 48], while having significantly more tuning optinaizon knobs.

approach to respond to the challenges associateigi data.
However, introducing more nodes to existing infnactural

creates challenges for datacenters providers tanbal
computational power and energy efficiency. In additthe cost
of hyperscale data centers is one of the majotifimifactors.

To address these challenges, many recent workesxidne
need for hardware specialized accelerators [4@)dmease the

For MapReduce applications, it is important to aatd
which resources (CPU utilization, memory footprih® read
and write, etc.) are bottlenecks and how systerati@Gwmber
of mappers running simultaneously in a compute nbii3FS
block size), application-level (application typedaimput data
size) and architectural-level (operating voltagd &equency)
tuning parameters affect the performance, powet,earergy-



efficiency. While several recent works [42, 43] sHmw tuning
individual or a subgroup of tuning parameterstaha improves
performance or energy-efficiency, they have ignortbe
interplay among all of these parameters at varievs! of
abstractions. In addition, while all of the prioosk mainly
focused on fine-tuning optimization parametersifalividual
applications and in isolation, they have not stddigportunities
for co-optimizing these tuning parameters for npleti
scheduled applications, simultaneously.

In the presence of these optimization opportunitiekey
research question is to determine the best turémgnpeters at
the system, application, and architecture leved$ theate the
possibility to co-locate MapReduce applicationstte node
level and still maintain the energy efficiency. fhis goal, we
examine the impact of application, system, and itactural

tuning parameters and the interplay among them ten t

performance and energy efficiency for various MaghrRe
applications. In addition, we compare two optinizat
strategies; Individually-Located Application optiration
(ILAO) which represents a conventional approachd &wo-
Located Application Optimization (COLAO) which rgsents
running and tuning applications concurrently atoaenlevel.
ILAO tunes optimization parameters for each apfiica
individually. COLAO tunes optimization
concurrently to determine the best tuning pararsefer
maximum energy-efficiency.

To the best of our knowledge, this is the first erkpental
work that addresses the challenges of concurmestining and
co-locating MapReduce applications for energy &fficy. In
this paper, our analysis helps to determine hoticatiit is to
jointly fine tune system, application and architeet level
parameters for maximum energy-efficiency for mudtip
scheduled MapReduce applications concurrently,hand fine
tuning these parameters creates new opportunibescd-
locating them at the node level.

The rest of this paper is organized as follows.tiS8ec2
presents the experimental setup details. SectipreSents the
characterization analysis of MapReduce applicatiBestion 4
discusses the performance and energy-efficiencyysinaof
MapReduce applications by fine-tuning the
architectural as well as application level paramset€o-located
applications at node level analysis is discussedeiction 5.
Section 6 presents the evaluation on scalabilityCQLAO
technique. Section 7 provides the related workaliinsection
8 presents the concluding remarks.

2. Experimental Setup

This section describes our hardware and softwaophs
used to run real experiments on reasonable seaseiware,
studied applications and the tuning parameters,
measurement methodology, and tools used to enhance
results analysis.

2.1 Hardware/softwareinfrastructure

systems

Ubuntu 13.10 with Linux kernel 3.11 and Hadoop i@r2.6.1.

For this study, we have focused on the parametes are

system configurable and are transparent at thdeisgr namely
HDFS block size, input data size per node, numbearappers,
and the operating frequency of the processor. Whiee are
more tuning parameters to be included, this patiemats to

provide an in-depth understanding of how concurtening of

the studied parameters at various levels can implaet
performance and energy efficiency. The buffer peaghes are
flushed at the start of each run to ensure that datead fresh
from HDFS.

2.2 Application Diversity

A Hadoop MapReduce cluster can host a variety gpfdbita
applications running concurrently. We have includédvidely
used Hadoop applications in this research. Ouhes«, four
applications are Hadoop micro-benchmarks that aes was
kernels in many Big Data applications, namely Wordd-WC,
Sort-ST, Grep-GP and TeraSort-TS in this paper h&le also
included seven real-world applications namely NaBayes
(NB), FP-Growth (FP), Collaborative Recommendation
Filtering (CF), support vector machine (SVM), PageR(PR),
Hidden Markov Model (HMM), and KMeans (KM) [18].

parameters 2 3 |nput Data Size

The size of data can have significant impact on
microarchitectural behavior [31]. For this reseawmeh therefore
use three input data sizes per node for each agiplc 1GB,
5GB, and 10GB representing small, medium and ldage sets.
For instance, 10GB input data size per node preS8@B input
data size processed by application in an 8-nodseasiu

2.4 Interdependent Tuning Parameters

We have studied the impact of the system, appticaind
architectural level tuning parameters including #igFS block
size (64MB, 128MB, 256MB, 512MB, 1024MB), the numbe
of mappers that run simultaneously on a single riael®), and
frequency settings (1.2GHz, 1.6GHz, 2.0GHz, 2.4Gitr)
evaluate how these parameters affect energy eftigie

2.5 Measurement
' We use Perf [4] to capture the performance chatatits of
the studied applications. Perfis a Linux profttesl that records
the hardware performance counters. Perf exploite th
Performance Monitoring Unit (PMU) to measure parfance
as well as other hardware events accurately. Rdtipiexes the
PMUs, therefore, to obtain accurate values for isgVerdware
events, we run each workload multiple times.

For measuring power consumption, Wattsup PRO power
meter is used [5]. It measures and records powesuroption at

oupne second granularity. The power reading is fer ¢hntire

system, including core, cache, main memory, haskischnd on-
chip communication buses. We have collected theagee
power consumption of the studied applications auratracted
the system idle power to estimate the dynamic palgsipation

We conduct our study on an 8-node cluster comprded of the entire system. The same methodology is irsptB], for

Intel Atom C2758 CPUs. Each Intel Atom has 8 preoesores
per node and a two-level cache hierarchy with 8G&Bystem

power and energy analyses. Dstat [26] is used &n memory,
disk and CPU utilization analysis. Dstat is a systaonitoring

memory using DDR3 @1600MHEhe operating system is o], which collects various statistics of the syst
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3. MapReduce Applications Characterization

In this section we characterize MapReduce applinatby
monitoring the real time system resources as welmécro-
architectural metrics to understand their runtineddvior and
resource utilization. This analysis helps us toegelize the
optimal configuration parameters with respect tdhplication

type.

3.1 Resource Utilization Analysis
To explore the
applications, we collect the following metrics:
utilization into different types such as CPUusepUtllle,
CPUiowait, etc. We collect the data for CPUusdizatiion

which represent CPU usage by a user (usr) procesaad
CPUiowait which represents the percentage of tifabl &
idle waiting for 1/0 operation to complete.

I/O read/write Bandwidth, which reports the disk I/O
bandwidth rate.

memory (in KB) required to

Additionally, the MemCache metric shows the amaafnt

file contents kept in the cache that are yet tavkittien to

the disk.

In addition, we have included several micro-ardftiteal
parameters including, IPC, Instruction Cache MigsesKilo
instructions (MPKI), LLC MPKI, and Branch Mispretimn
rate.

3.2 PCA and Clustering Analysis

Unfortunately, there is no single perfect hardweoenter
that accurately indicates performance behavior of
application. There is substantial debate about waatlware
counter event can accurately indicate performareresa a
variety of applications [17, 29, 31]. In this pageneral micro-
architectural metrics and runtime resource utilizaimetrics are
collected and are used in identifying MapReducelicgijon
characteristics. However, collecting all of the fpemance
counter data requires multiple runs because thentepu
resources are multiplexed in the microserver. theoto avoid
multiple runs, we would like to identify a minimaet of
counters that can be collected in a single run,imaing
correlation with performance, while minimizing rediant
counters (correlated to each other). These shouid
representative of application, software stack, anitro-
architecture interactions in the presence of vargystem calls.

A systematic approach for this purpose is to useckpal
Component Analysis (PCA). PCA analysis allows ustmitor
the most vital and distinct micro-architecture paeters to
capture application characteristics. PCA capturestrof the
data variation by rotating the original data toesvrvariable in a
new dimension, commonly known as the principal congmts
(PC). These new variables are uncorrelated to @hen and are
a linear combination of the original data. We empRCA to
project our 14 original gathered features intoa damensional
space to determine the most important featuregyadferent
PC dimensions. The number of PCs can be less thequal to

3

resource utilization of MapReduce

CPU utilization. The dstat profiling tool classifies CPU

Memory Footprint, which reports the minimum amount of
run the application.
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Figure 1: Scatter plot of feature metrics usingtfand second
principal components

the number of original data variables. We only préghe first
two PCs covering 85.22% of the total variance dusgace
limitation. PCA is sensitive to the relative scgliof the original
variables. Thus, we have normalized the data tatitenormal
distribution for segregating the impact of the abhe range of
each feature metric. Figure 1 shows the scatteargblthe first
and second principal components, PC1 and PC2. fesatat
appear closer in this Figure typically exhibit danibehavior.
Later, we apply a hierarchical clustering technitpugroup
similar features and finally analyze the resultslaswn in the
Figure 1. We have reduced the features to 7 mqxitriant and
distinct ones that are CPUuser, CPUiowait, /O Réarwrite,
IPC, Memory Footprint, LLC MPKI to characterize the
MapReduce applications. Based on these resouréiérrand
micro-architectural characteristics, the applicadio are
acharacterized into compute-bound (C), combinatioh
compute-bound and 1/O-bound referred to as hybHY, (
memory-bound (M) and 1/0O-bound (I) classé¥e observe
(details are presented in Section 4) that the @bthonfiguration
parameters for maximum efficiency are highly cated to
application type (/0 bound, compute-bound, memmoynd or
hybrid), which can be identified by underlying
microarchitectural behavior.

(o]

4. Fine-Tuning MapReduce Applications for

Eenergy-Efficiency

In this section, we discuss and analyze the exestiah

results of the MapReduce applications at a singteerlevel on
an Atom microserver, across a wide range of Hadoop
configuration parameters. Hadoop MapReduce perfocma
and energy efficiency is sensitive to many configion and
system parameters; however, we focus on the pagasitat
are system configurable and transparent to the sgace,
configurable at the user level. This analysis hédpdetermine
how critical it is to jointly fine tune system, digation and
architecture level parameters for maximum enerdjgiehcy
for multiple scheduled MapReduce applications comeily,
and how fine tuning these parameters creates nportymities
for co-locating them at the node level.
4.1 Execution Time Analysis

Figure 2 (represented as a bar graph) shows thoertxe



time of MapReduce applications with respect torthmber of
mapper slots, in brief mappers, HDFS block size @grefating
frequency with a fixed input data size of 10GB pede. We
have performed the experiments for the input datacf small,

medium, and large with all mappers (ranges frono 18},

however due to space limitation and graph readgbiigure 2

presents the results for selected applications wjtd and 8
mappers at the large input data size. Across alalbstudied

applications, the HDFS block size of 64MB -- théaddt HDFS

block size -- has the highest execution time. SHBIFS block

size generates a large number of map tasks [nuoflpesp task
= Input data size /HDFS block size], which increaske

interaction between master and slave nodes. Thé&s@adtions
are necessary to request the HDFS block locatifmmnmation.

On the other hand, large HDFS block size reduaeslétve node
interaction with the master node. Additionally, wia large
block size, less metadata is required to be storethe master
node, which can more likely be placed in the memathich is

faster to access. Conversely, storing large chofkiata on a
node can create a performance bottleneck if thdicapipn

accesses the same data repeatedly. This behayitairexthe
parabolic behavior in
applications such ad/ordcount, GrepandTeraSort.

The results show performance improves significanitl the
increase in the HDFS block size. This behaviordsststent
across all applications when the number of mapigdess than
4. With few mappers, the largest HDFS block sizeegates an
adequate number of map tasks to keep all cordseirsystem
busy. On the other hand, a medium HDFS block Hi256MB
and 512MB are preferable for large numbers of ¢oragper
slots as it generates more map tasks to run sinadtssly with
fast execution time per map task. The exceptiddoig, which
is an 1/O application. Other applications, inclugiiWordcount,

the compute-bound and hybridy|l

to determine the best HDFS block size and achitsedo the
upper bound performance.
4.2 Energy-efficiency Analysis
In order to characterize the energy efficiency, evaluate

Energy Delay Product (EDP) metric to investigatdé-off
between power and performance. Energy Delay Prqéiip)
is a fair metric to study the impact of changingdimjzation
knobs in an architecture. EDP (or Power x Execiime2)
represents a trade-off between power and perforenatiithout
EDP and just using energy metric for comparisongaresimply
reduce the voltage and frequency in an architectume reduce
its energy, however at a cost of lowering the pentmce
(increased execution time). Therefore, performaaioag with
energy is important to find out the impact of opsation
parametersThe results presented in Figure 2 show that setting
the number of mappers equal to the number of &laileores
minimizes the EDP. The worst EDP is reported witie o
mapper, while 8 mappers give the best EDP by eéffdgt
utilizing all available cores. The margin of EDPpiravement
becomes smaller with the increase in the numberagfpers.
Thus, the best energy efficiency is achieved whenitilize

available cores. In other words, the perforneanc
improvement achieved by adding more cores outwetbbs
power overhead associated with additional cores HDP trend
is consistent with the execution time trend showimat in 1/0
bound applications, the maximum energy efficierscgdhieved
with the largest HDFS block size, however compuwiara and
hybrid applications achieve optimal EDP at 256MBd an
512MB, respectively. Moreover, we have conducte@ th
analyses of frequency scaling on the EDP resulterdy
efficiency is maximized at the highest frequency2@fGHz in
all applications with the exception &ort. Sort provides the
maximum energy efficiency at 1.6GHz. As discussedies,

Grep,andTeraSortshow a parabolic behavior at large numberSortis an I/0 bound application that spends a sigaifi@mount

of mappers and achieve the minimum execution tin&5aMB
or 512MB block size. Sort's optimal HDFS block siie
1024MB whereas foWordcount this is 256MB with the
maximum number of mappers. Similar to [3], we haleerved

of execution time reading data from and writing#idFS. This
makes the performance d@ort almost insensitive to the
operating frequency.

When we look at the best combination of all these

that TeraSortshows hybrid characteristics. The Map phase oparameters, the results show that by simultanedinshytuning
TeraSort is CPU-bound and Reduce phase is 1/O-boundthe HDFS block size and operating frequency, weredunce the
therefore unlikeSort, TeraSort’soptimal HDFS block size is number of mappers and still be as energy efficestthe
512MB.Grepalso displays hybrid characteristics. Grep cossistmaximum number of mappers. For example, Grep withNaB

of two separate phases, search and sort, runnisggaoence.
The search phase is compute-bound and the sont h&©-
bound.

In addition, we have studied the impact of CPU dietties
on performance to understand how MapReduce applisaare
sensitive to this tuning parameter. The resultsvshat the Sort
application is less sensitive to frequency, compace other

block size running at 2.4 GHz frequency with 2 dnthappers
achieves higher or similar energy efficiency corepato the
maximum number of mappers, i.e. 8.

Observation: The results indicate that by fine-tuning frequency
and HDFS block size, we can maximize energy efiicyewith
fewer mappers. Besides, carefully fine-tuning tiistesm and
architecture parameter suggests the potentialefuaing the

benchmarks. For this benchmark when CPU frequescy ireliance on full core occupancy in the system amdtes the

reduced to half the performance only drops by 96t iS an I/0O
bound benchmark, which spends most of its execuiioe
requesting data and waiting for I/O operationsamplete.

possibility to co-locate multiple applications omtoe node.
4.3 EDP Sengtivity Analysis
To determine how important it is to jointly tunéet

Observation: Although the Optlmal HDFS block size CarEfU”y Optimization parameterS, we calculate the EDP farious

decided by the application type for the peak penforce, using
256MB block size for compute bound and 1024MB ft-1
bound applications can avoid the extensive experiahsearch

4

tuning parameters individually and concurrentlthé variation
found to be large, it highlights the importancecafefully fine-
tuning parameters for energy-efficiency, otherveimearbitrary
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selection would be sufficient. To understand theati@n in
energy efficiency with respect to the tuning partare we
present EDP sensitively analysis results in Figdfa-d) by
changing HDFS block size and frequency individuadiyd
concurrently. All EDP results are normalized to Bi2P result
of 64MB HDFS block size running at the minimum agigng
frequency of 1.2GHz.

The results show that EDP sensitivity to HDFS bleide
becomes smaller with the increase in the numbenaypers.
Similarly, EDP sensitivity to operating frequencgcbmes
smaller with the increase in the number of mappers.

We also observe that the concurrent tuning of HBIESk
size and frequency achieves the highest EDP impmexée

node, while each would get fewer mappers/coresatial, it is
critical to determine the fine-tuned these pararseteobserve
EDP improvement.

5. Co-Locating Applications at the Node L evel
The results presented in the previous section $hatxfor

MapReduce applications, careful fine tuning of paeters
made it more likely that maximum energy efficieegchieved
without utilizing all cores. Thus, we illustrateathco-locating
MapReduce applications on the same server are atipic
effective, particularly when the application tyjaes diverse and
have different bottlenecks, as long as they arefelly (and
cooperatively) tuned. The alternative is to instbas toward

compared to when tuning them individually. The EDpIiSolating jobs on servers.

improvement achieved by concurrently tuning HDF& klsize

To compare co-located tuned applications with the

and operating frequency ranges from 3.73% to 87.3994dividually tuned applications, we study two drdet

compared to the individual tuning parameters. Alsoresults
show that the margin of EDP improvement decreaseéstie
increase in the number of mappers. It is impor@ampte that it

optimization  strategies: individually-located applion
optimization (ILAO) and co-located application apization
(COLAOQ). This helps us understand whether tuningRieduce

is not ideal in a datacenters to assign all cofessingle node applications together or individually will providestter EDP.

to a single application, especially for an I/O irgive application ¢ ILAO runs the applications serially where each
that exhibits a low CPU utilization. application is tuned individually to achieve the
Observation: The results show that applications are more maximum energy-efficiency.

sensitive to frequency and HDFS block size at smathber of * COLAO runs multiple applications at a node where

mappers. Therefore, for co-locating applications osingle application  tuning parameters are optimized
concurrently for maximum energy-efficiency.

WordCount Sort
100 o hdfs ¢freq Bhdfs+freq A120 o hdfs #freq Whdfs+freq
S S
= =100
> 80 FFH—.—H\. z —0—3p -3 .
2 ¢ * = 80 —n
geo | o $-¢ g o & 9 2| S
(=
[} 7] L 2 23 *
= %0 a 40 4 * .
fa) fa)
w 20 “ o0
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Mappers Mappers

Figure 3(a): WordCount EDP sensitivity analysisw.r.t. HDFS Figure 3(b): Sort EDP sensitivity analysisw.r.t. HDFS
HDFS block size, Frequency (individually) and HDFS block size, Frequency (individually) and HDFS
block size +Frequency (concurrently) block size +Frequency (concurrently)

Grep TeraSort
120 ®hdfs ofreq Bhdfs+freq 100 @ hdfs #freq Whdfs+freq

] S
100 ~
£ 4 R s £ i
2 2
2 9 £ 60
c 60 <
A v 40
3 40 2
Yoo w20

0 0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Mappers

Figure 3(c): Grep EDP sensitivity analysisw.r.t. HDFS
HDFS block size, Frequency (individually) and HDFS
block size +Frequency (concurrently)

Mappers

Figure 3(d): TeraSort EDP sensitivity analysisw.r.t. HDFS
block size, Frequency (individually) and HDFS
block size +Frequency (concurrently)



77771 COLAO_edp = = ILAO_edp

o 12
'Sl 1l = e —————-
%0.8 .
Z o6 Ry -
S 0.4 A
Q0. WIS A H
3oz pialii
© STIITFYIIYE XX
Small Input Data Size
Figure 4: EDP improvement of traini
In  both studied optimization strategies,

combinations of tuning parameters are explorednth the one
that maximizes the energy efficiency. At the nogkeel given
the availability of 8 cores we can co-locate 8462, and 1
application simultaneously. However, our resuldidate that
while 2 co-located applications provide improvemesmer 1
application in terms of energy efficiency, co-langtbeyond 2
applications (i.e. 4, 6 and 8) at a node level aégs energy
efficiency significantly. Therefore, throughout shpaper we
focus mainly on co-locating 2 applications at tbeelevel.
Figure 4 presents the EDP ratio of ILAO and COLAO
techniques. We have performed experiments withemfft
combinations of input data sizes across all studpgglications,
however due to space limitation,
comparison of studied optimization policies whenlamated
MapReduce applications have same input data sibe T
presented COLAO results are normalized to theiresmonding
ILAO values. We observe that in almost all studieabes
COLAO outperforms ILAO in terms of EDP (by upto 2.
Pairing 1/0 bound applications together resultghe highest
EDP gap of 4.52x between COLAO and ILAO. With COLAO
optimization technique, co-located applicationsrarming with
fewer mappers. For instance, H will run on 5 mappand | will
be assigned to 3 mappers when H-I applications@tecated
on a single node. On the other hand, ILAO will bening each
application on the maximum mappers serially. On atiger
hand, ILAO will be running each application on theximum
mappers serially. On the other hantle EDP gap reduces

between the two techniques when the memory bountvel —

applications are co-located with other applicatiortss is due
to the fact that a memory bound application withhéxecution
time typically prefers the maximum number of comegbpers
and suffers when sharing. Overall, the results sijipe idea of
co-locating and concurrent fine-tuning of applicat rather
than scheduling/fine-tuning them individually.

6. Scalability

In this section, we evaluate the scalability oflecated
MapReduce applications on a local cluster with 8easatom
servers.
6.1 Application mapping policies

We have evaluated the workloads, shown in Tablédrev
each workload comprises of 16 applications. Various
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ng workloadshntihe same input data size

variousapplication mapping policies are studied with d#fau

configuration parameters as well as after tuningfigaration
parameters. With respect to the number of nodea iacal
cluster, the mapping policies studied in this paperas follows:

1. Serial Mapping [NT]: Each application has accessh®
entire cluster. [Not Tune-NT] indicates that we anening
applications without tuning their configuration aareters.
Serial Mapping is referred as SM.

2. Single Node Mapping [NT]: Each application is being

assigned to a single node (all 8 cores are activeodes).
Single Node Mapping is referred as SNM.

ILAO [T]: Each application is being assigned toiagte
node and is tuned individually to achieve the maxm
energy-efficiency.

Core Balance Mapping [NT]: Two applications are co-
located on a single node, and the same numbemre$ ¢4
cores) is assigned to each application to run. Gatance
Mapping is referred as CBM.

COLAO [T]: Co-locate applications at the node leafter
concurrently tuning the configuration parameters fo
maximum energy-efficiency.
Figure 5 presents the EDP results for randomlycsate
workload policies with 8 nodes at the local clus#f results
are normalized to the result of COLAO mapping poliSerial
mapping with no tuning (NT) performs poorly. Howevgingle
Node mapping and ILAO mapping policies that allowltiple
applications to run in parallel improve EDP. Furthere, we
have studied the impact of co-locating applicatiahthe node
Core Balance Mapping and COLAO mapping.eCor
Balance mapping is sensitive to the behavior ofiegons in
a workload. Compute-bound (C) and memory-bound (M)
workloads illustrate poor EDP for Core Balance niagpolicy
compared to Single Node mapping in the workload W35,
WS7 and WS8. This is due to the fact that Compotatd (C)
and memory-bound (M) workloads applications wittghhi
execution time typically prefers the maximum numbusr
cores/mappers and suffers significant performanss ivhen
sharing.

Additionally, we have observed significant EDP
improvement by fine-tuning the configuration partene of
applications as compared to the applications thatwithout
tuning the studied parameters. For instance, COL&® on
average 68.53% and 64.162% better energy efficiaacy

3.

4.

5.
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Figure 5: EDP improvement with respect to vario@pping scenarios at 8 Nodes
(A =SM, SNM, ILAO, CBM, COLAO)

compared to mapping policies with no tuning i.eagkt Node  Although, COLAO attains higher EDP at 2 nodes (C@QLA2)
and Core Balance, respectively. In addition, indbmparison compared to ILAO_n4, the important observationhat tthe
of tuned mapping policy- ILAO and COLAO, we obsettiat EDP results of COLAO_n3 are comparable to ILAO_p4 f
COLAO achieves on average 44.272% better energyeaf€y  most of studied workloads.

compared to ILAO. Similarly, in Figure 6(b) where we have consideBatbdes
Observation: The results indicate that COLAO mapping policy to execute 16 applications, COLAO outperforms ILB{D2.24
not only achieve maximum energy efficiency compdeeother  times on average by accommodating double applitsiibnode
studied mapping policies especially ILAO, it algmluces the level compared to the ILAO. Most importantly, thBIE results
number of processing cores/nodes required to maaiEBDP, for COLAO are also promising with 6 and 7 nodedhwyfactor
by fine-tuning configuration parameters and codiocp  of 1.04 and 1.35 times on average compared to [L@@npare

MapReduce application at a node level. to the C-bound and M-bound application, I-bound &glrid
applications can still be energy efficiency witlsdethan half
6.2 Case Study number of nodes required by ILAO.
To validate that COLAO requires less number ofesot We conclude that despite the increasing compleditthe

process the MapReduce applications and is stillenesrergy ~ parameters, through fine-tuning configuration partars and
efficient compared to ILAO, the workloads of 16 hpgtions ~ concurrently running and tuning multiple MapReduce
shown in Table 1 are scheduled using ILAO and COLAQapplications, COLAO reduces the number of nodestdo
mapping policy on a local cluster of 4 and 8 nodeBigure 6  execute the applications and even enhances the EDP.
(a, b). In case of 8 nodes, ILAO can only map 8iaations at
a time. On the other hand, COLAO can map all 16ieggons 7. Related Work
simultaneously on 8 nodes by fine-tuning the system  There has been a significant amount of work to @skithe
architectural and application configuration pararget challenge of co-locating applications on multicgme@cessor
Figure 6 (a) shows the EDP results for COLAO V{8  [19, 20]. Several techniques have been developadotirform
and 4 nodes normalized to the results of ILAO mbdes (lower  job scheduling to alleviate the shared resourcéection. The
is better). ILAO takes 4 iterations to complete therkload, work in [7] have introduced a synthetically genedatbase
however, COLAO can complete the execution of allvectors and have classified the application's usdtjerespect
applications in the workload in 2 iterations by looating to the shared resources by co-locating them albegbise
applications simultaneously on 4 nodes. Simildfigure 4 and  vectors for selecting the optimal pairing. Additadiy, authors
Figure 5, EDP results of COLAO_n4 outperforms ILA@. have calculated the application's sensitivity; i.Bow

Table 1: Studied workload scenarios

::::;I:iz: Application type Studied Applications
WS1 [C.C,C.C.C,C,C,C,C,C,C.C.C.C.C.C] [svm, svm, wc,wc, svm, wc, mar, wc,
mar, mar, wc,wc, mar, wc, svm, wc)
WS2 [H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,H] [ts, gp, ts, ts, ts, gp, ts, ts, ts, gp, ts, ts, ts, gp, ts, ts]
WS3 [ILLLLLLLLLLLLLLLI [st, st, st, st, st, st, st, st, st, st, st, st, st, st, st, st]
WS4 [C,C,H,I,C,CH,I,C,CH,IC,CH,I] [svm, wg, ts, st, wc, wg, ts, st, mar, svm, ts, st, wc, wc, ts, st]
WS5 [M,H,I,H,M,H,I,H,M,H,I,H,M,H,I|,H] cf, ts, st, ts, cf, ts, st, ts, fp, ts, st, ts, fp, ts, st, ts ]
WS6 [H,LH,LH,H,LLH,LH,LH,ILH,I] [ts, st, ts, st, ts, ts, st, st,ts, st, ts, st,ts, st, ts, st ]
WS7 [M,M,M,|,M,M,M,|,M,M,M,|,M,M,M,1] [cf, cf, cf, st, cf, cf, cf, st, cf, cf, cf, st, cf, cf, cf, st]
WS8 [M,M,H,I,M,M,H,I,C,C,H,I,C,C,H,I] [cf,fp, ts, st, cf, fp, ts, st, mar, svm, ts, st, wc, wg, ts, st]




performance impacts by lack of a specific processsource,
and application's intensity; i.e. how much applaastresses a
particular processor resource. Many co-locatingdisgion CMP
platforms [8, 9, 10, 11 and 23] investigate shaoedhe
contention-aware scheduling techniques to improbe t
performance and fairness. [12] proposed CRUISEstkamines
the LLC utilization information to schedule multiggrammed
applications on CMP. The cache aware scheduler isegpthe
classification scheme and scheduling policy. Cfasdion
scheme is used to identify which co-located appiboa are
effective to schedule and scheduling policy allesathe
assigned thread to the cores based on the clasigifid13]. In
[21], authors have used L2 cache miss rate predigtio assign
suitable threads together on a CMP platform. Ir,[2Rthors
model resource interference of server consolidatiorkloads
by estimating cache usage while co-locating twe jaba time.
Bubble-up [30] and Bubble-Flux [41], a charactetitza and
profiling methodology, predicts the performance raegtion
between pairwise application co-locations. Howetlegy have
not discussed how the interplay of tuning paransetepacts the
performance and energy efficiency of multiple sched
applications.

There are also several works that attempt to fifdchy
applications should co-locate simultaneously onMPC[14]
introduces a resource-aware co-locating technibae uses a
holistic approach to co-locate the applicationspgferformance
and energy improvement. The effectiveness of this@ach is
dependent on the studied multi-programmed workltzat
comprises of a mixture of high contention and lamtention

COLAO_n2
mmsm COLAO_n4

O = N W A~ U

COS_i/I0S_n4

applications. The work in [15] has studied the @cated HPC
applications by evaluating the affinity-aware caoien
information with the greedy allocation heuristiestinique. Our
work is orthogonal to these resource-awarenessitposs.

Big data frameworks and in particular Hadoop-based
applications [16, 26, 27] inherent different miaatectural
behavior than traditional application (SPEC and BER) [1,
28, 29, 32, 33, 34]. In addition, these framewdrige large set
of tuning knobs, which individually and concurrgnihfluence
the mapping decision. All of above techniques tlogesare not
directly applicable for co-locating outcome of MaguRice
applications. It is also important to note that mos prior
research that focus on scheduling has shown pnognisisults,
however using simulation-based methods [37], whiahnot
capture the real-system behavior of complex bigadat
framework.

While several recent work show [42, 43] how tuning
individual or a subgroup of tuning parameterstaha improves
performance, they have ignored the interplay anadinof these
parameters at various level of abstractions. [43], mainly
focused on fine-tuning optimization parametersifalividual
applications and in isolation, however, our workgéds the
opportunities for co-optimizing these tuning partare for
multiple scheduled applications, simultaneously, [45] use
online classification to estimate interference lestwco-located
workloads that are unlikely to cause interferehosyever, [44]
does not study the impact of tuning parameterssé& studies
focus on performance analysis as compared to ouk what
emphasizes on energy efficiency. Furthermore, arfiid] and

Emmm COLAO_n3
— =|LAO_n4

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WSS

Figure 6 (a): EDP analysis of COLAO and ILAO at dd¥és (i =

Nodes equal to 2, 3, 4)
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Figure 6 (b): EDP analysis of COLAO and ILAO at 8d¢s (i =
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[45], our results illustrates that HDFS block dize a significant
impact on the performance and energy efficienesyaddition,
[43] has performed a limited study and on only tamall
Hadoop kernels.

8.

Conclusions

(17]

(18]
(19]

[20]

MapReduce applications with their complex and deep?ll
software stacks, is influenced by many tuning patans such
as number of mappers, HDFS block size, and frequehthe
core. The large number of tuning parameters previtere
opportunity for optimization, but it is also chalgng problem.

This paper examines the impact of tuning parameteathe

interplay among them on performance and energgiefity.
We observe that although maximum energy efficiennoya

single node

is achieved while utilizing all

cores/mappers slots, the reliance on the maximumbeu of
cores reduces significantly after concurrently {finging
parameters such as frequency and HDFS block sibes T [27]
provides opportunities to co-locate multiple MapResl
applications at the node level. In addition, thelef sensitivity
of EDP to these parameters when running applicaitioith
fewer mapper slots/cores increases significantighlighting
the importance of fine-tuning when co-locating nmpé

applications onto one node. Comparing two schedulin

strategies where one fine-tune applications indiaily and run
them serially and the other where fine-tune apptica together
and co-locate them at the node level, show thatuwoent fine-
tuning of MapReduce applications (at applicatiach#ecture
and system levels), and co-locating them reduaeadimber of
nodes required to execute MapReduce applicatiohalbyhile

improving the EDP by 2.2X, on average, for a widage of
studied workloads.
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