J. Parallel Distrib. Comput. I (R1NEN) INI-0EE

Contents lists available at ScienceDirect

PAR/ D
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Big vs little core for energy-efficient Hadoop computing

Maria Malik #*, Katayoun Neshatpour?, Setareh Rafatirad b Rajiv V. Joshi €,
Tinoosh Mohsenin ¢, Hassan Ghasemzadeh ¢, Houman Homayoun?

2 Department of Electrical and Computer Engineering, George Mason University, United States

b Department of Information Sciences and Technology, George Mason University, United States

¢ Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, United States
4 Department of Computer Science, Washington State University, United States

€ IBM T,J. Watson Research Center, Yorktown Heights, NY, United States

HIGHLIGHTS

Xeon has a clear performance advantage for the I/O intensive Hadoop applications.

For map phase, energy efficient core is closely decided by the application type.

For the reduce phase, Atom is the favorite choice across all studied applications.

The reliance on a large number of Atom cores can be reduced significantly by fine-tuning the configuration parameters.
Minimum operational and capital cost can be achieved by scheduling a large number of Atom cores.

ARTICLE INFO ABSTRACT

Article history: Emerging big data applications require a significant amount of server computational power. However,
Received 9 May 2017 the rapid growth in the data yields challenges to process them efficiently using current high-performance
Received in revised form 11 February 2018 server architectures. Furthermore, physical design constraints, such as power and density, have become
Accepted 20 February 2018 the dominant limiting factor for scaling out servers. Heterogeneous architectures that combine big Xeon
Available online xxxx . R

cores with little Atom cores have emerged as a promising solution to enhance energy-efficiency by

Keywords: allowing each application to run on an architecture that matches resource needs more closely than a one-
Heterogeneous architectures size-fits-all architecture. Therefore, the question of whether to map the application to big Xeon or little
Hadoop Atom in heterogeneous server architecture becomes important. In this paper, through a comprehensive
MapReduce system level analysis, we first characterize Hadoop-based MapReduce applications on big Xeon and
Energy and cost efficiency little Atom-based server architectures to understand how the choice of big vs little cores is affected
SBii :gslil;tge cores by various parameters at application, system and architecture levels and the interplay among these

parameters. Second, we study how the choice between big and little core changes across various phases
of MapReduce tasks. Furthermore, we show how the choice of most efficient core for a particular
MapReduce phase changes in the presence of accelerators. The characterization analysis helps guiding
scheduling decisions in future cloud-computing environment equipped with heterogeneous multicore
architectures and accelerators. We have also evaluated the operational and the capital cost to understand
how performance, power and area constraints for big data analytics affect the choice of big vs little core
server as a more cost and energy efficient architecture.

© 2018 Elsevier Inc. All rights reserved.

0. Introduction

The steep increase in the volume of data imposes signifi-
T cant limitations on data centers to process big data applica-
* Correspondence to: George Mason University, 4400 University Dr., Fairfax, VA . . c . hard 1 .p Bi dg l.pp.
22030, United States. thHS. using ex1§t1ng ardware solutions. Big data applications
Eomail add . (ML Malik), kneshatne ; require computing resources and storage subsystems that can
-mail addresses: mmalik9@gmu.edu (M. Malik), kneshatp@gmu.edu . scale to manage massive amounts of diverse data. Additionally,
(K. Neshatpour), srafatir@gmu.edu (S. Rafatirad), rvjoshi@us.ibm.com (R.V. Joshi), X NP . R R
tinoosh@umbc.edu (T. Mohsenin), hassan@eecs.wsu.edu (H. Ghasemzadeh), big data apPllcatlons hav.e.fundamer.ltall.y dlffe.ren.t mlcrofircmtec‘
hhomayou@gmu.edu (H. Homayoun). tural behavior than traditional applications highlighted in recent

https://doi.org/10.1016/j.jpdc.2018.02.017
0743-7315/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.02.017.

https://doi.org/10.1016/j.jpdc.2018.02.017
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:mmalik9@gmu.edu
mailto:kneshatp@gmu.edu
mailto:srafatir@gmu.edu
mailto:rvjoshi@us.ibm.com
mailto:tinoosh@umbc.edu
mailto:hassan@eecs.wsu.edu
mailto:hhomayou@gmu.edu
https://doi.org/10.1016/j.jpdc.2018.02.017

2 M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

work [13,29,30,37]. This new set of characteristics necessitates a
change in the direction of server-class microarchitecture to im-
prove their computational efficiency [13,37]. Moreover, physical
design constraints (power and area density) have become the
dominant limiting factor for scaling out data centers [2,13,33,35].
Consequently, current server designs, based on commodity homo-
geneous processors, are not the most efficient in terms of per-
formance/watt and area to process big data applications [27,33].
All these factors are shifting the hardware design paradigm, in
particular for big data and server class architectures, from the
performance centric to energy-efficient centric design method-
ology. A key challenge here is to achieve a favorable trade-off
between power, performance and area cost. Therefore, we believe
this is the right time to identify the right computing platform for
big data analytics processing that can provide a balance between
processing capacity, cost efficiency, and energy efficiency.

To address the energy-efficiency challenges, heterogeneous ar-
chitectures have emerged as a promising solution to enhance
energy efficiency by allowing each application to run on a core
that matches resource needs more closely than a one-size-fits-all
core [7,10,34]. A heterogeneous chip architecture integrates cores
with various micro-architectures (in-order, out-of-order, varying
cache and window sizes, etc.) to provide more opportunities for
efficient workload mapping in order to explore a better match
for the application among various components to improve power
efficiency [32].

To explore the choice of server architecture for Hadoop ap-
plications, in a recent paper [28], we present a comprehensive
analysis of the performance and energy-efficiency measurements
for Hadoop MapReduce-based applications on two very distinct
micro-architectures; Intel Xeon — conventional approach to design
a high-performance server and Intel Atom — advocates the use
of a low-power core to address the dark silicon challenge facing
servers [14]. Moreover, given that Hadoop MapReduce has distinct
phases of execution, it is important to understand the characteris-
tics of various phases on big and little core architectures to find out
which phase is best suited for which architecture. Thus, we further
study how the choice between big and little core changes across
various phases of MapReduce tasks. Given that the choice of big vs
little core can be impacted by various tuning knobs, in this paper
we also study the impact of application (application type and data
size), system (HDFS block size) and architecture (operating voltage
and frequency of core) parameters and the interplay among them
on performance and energy-efficiency and the choice of big vs little
cores.

As chips are hitting power limits, computing systems are
moving away from general-purpose designs and toward greater
specialization. Hardware acceleration through specialization has
received renewed interest in recent years, mainly due to the dark
silicon challenge. To find out the right architecture for Hadoop
applications processing, it is important to understand how de-
ploying an accelerator, such as FPGA, would necessitate adapting
the choice of big vs. little cores, referred as the post acceleration
code characteristics. For this purpose, we analyze the choice of big
vs little core-based servers for the code that remains on the CPU
after assuming the hotspot phases, e.g. map phase, are offloaded
to an accelerator. Overall, our characterization and analysis across
Hadoop-based applications demonstrate how the choice of big
vs little core-based servers for energy-efficiency is significantly
influenced by the type of application, size of data, performance
constraints, and presence of accelerator and the breakdown of the
execution time across phases of MapReduce.

The characterization analysis presented in this paper helps
guiding scheduling decision in future cloud-computing environ-
ment equipped with heterogeneous server architectures. In such
a heterogeneous environment with diverse cores, the scheduling

decision needs to be driven not only by user expected performance
(delay) but also by energy as well as chip cost. For this reason, we
have also performed the Energy-Delay® Product (ED*P) analysis
— to evaluate the trade-off between power and performance- and
EDXAP — a recently introduced figure of merit for heterogeneous
architectures to include the chip area as an indication of cost [21 |
— to understand how performance, power, and area constraints for
big data analytics affects the choice of big vs. little core server as a
more efficient architecture. ED*AP metric includes both an opera-
tional cost component (energy) as well as a capital cost component
(area). We experiment this through a case study demonstrating
how scheduling decisions for a heterogeneous architecture com-
bining X and Y number of Xeon and Atom cores can be improved
significantly in terms of energy efficiency as well as cost.
This paper makes the following key contributions:

e Analyze the performance, energy efficiency and cost effi-
ciency of various phases of MapReduce on big and little cores
across a large range of tuning parameters at application (ap-
plication type), system (HDFS block size) and architecture
(operating voltage and frequency of core) levels to find out
how the choice between big and little cores is affected by
these parameters.

e Evaluate how offloading the hotspot map tasks to an accel-
erator such as FPGA affects the choice of big vs little core-
based servers to process the code that remains on the CPU
for energy-efficient processing.

e Analyze the impact of input data size for performance and
energy-efficiency of MapReduce application on big and little
cores.

e Demonstrate how the characterization results help schedul-
ing decision to improve operational and capital cost in het-
erogeneous big+little core architectures.

1. Experimental setup
1.1. Measurement tools and methodology

We conduct our study on two state-of-the-art servers; In-
tel Xeon and Intel Atom. Intel Xeon E5 enclosed with two Intel
E5-2420 processors that include six aggressive processor cores
with three-level of the cache hierarchy. Intel Atom C2758 has 8
processor cores and a two-level cache hierarchy. Table 1 sum-
maries the architectural parameters of Atom and Xeon servers for
the applications under test. To have a fair comparison between
the two architectures, we used same DRAM system of 8 GB for
the applications under test in both architectures. All experiments
are performed on a 3-nodes Xeon and a 3-nodes Atom server. We
have used Watts up PRO power meter [3] to measure the power
consumption of the servers. Wattsup power meter produces the
power consumption profile every one second. The power reading
is for the entire system, including core, cache, main memory,
hard disks and on-chip communication buses. We have collected
the average power consumption of the studied applications and
subtracted the system idle power to estimate the dynamic power
dissipation of the entire system. The same methodology is used
in [17], for power analyses.

1.2. Operational cost and capital cost metric

We have performed the Energy-Delay® Product (EDXP) analysis
— to evaluate the trade-off between power and performance- and
EDXAP — a recently introduced figure of merit for heterogeneous
architectures to include the chip area as an indication of cost [21 |
— to understand how performance, power, and area constraints for
big data analytics affects the choice of big vs. little core server as a
more efficient architecture. We have consulted Intel data sheets to
get the on-chip area reading for the studied big and little core i.e
Atom 160 mm? and Xeon 216 mm?.

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR 3

Table 1
Architectural parameters.

Processor Intel Atom C2758 Intel Xeon E5-2420
Operating frequency 1.8 GHz 1.8 GHz
Micro-architecture Silvermont Sandy Bridge

L1i Cache 32 KB 32 KB

L1d Cache 24 KB 32 KB

L2 Cache 4*1024 KB 256 KB

L3 Cache - 15 MB

System memory 8 GB 8 GB

Memory type DDR3 1600 MHz DDR3 1600 MHz

1.3. Application diversity

A Hadoop MapReduce cluster can host a variety of big data
applications running concurrently. We have studied four micro-
benchmarks that are used as kernels in many big data applications,
namely Wordcount-WC, Sort-ST, Grep-GP and TeraSort-TS and
real world applications (Naive Bayes — NB and FP-Growth — FP).
Table 2 shows the selected Traditional applications, Hadoop micro-
benchmarks and real world applications along their particular
domain and data type [11,38].

1.3.1. Hadoop workload

e WordCount reads text files and determines how often the
words appear in a set of files. Wordcount is a CPU intensive
application [29,38].

e Sort uses the map/reduce framework to sort the input di-
rectory in the output directory. The actual sorting occurs in
the internal shuffle and sort phase of MapReduce. The data
is transferred to reducer that is an identity function. Sort is
an I/0 intensive application [38].

e Grep extracts matching strings provided by user from text
files and sorts matching strings by their frequency. Grep is a
CPU intensive application [38].

e TeraSort performs a scalable MapReduce-based sort of in-
put data. It first samples the input and computes the input
distribution by calculating the quantiles equal to the num-
ber of reduces that uses a sorted list of N-1 sampled keys
to define the key range for each reduce. TeraGen command
generates the large random data for TeraSort [38].

e Association Rule Mining is a well-known approach for ex-
ploring association between various parameters in large
databases. We have analyzed FP (Frequent Pattern)-
Growth; a resource intensive program that aims to de-
termine item sets in a group and identifies which items
typically appear together.

e C(lassification technique learns from the existing categoriza-
tions and groups the unclassified items to the best corre-
sponding category. We have analyzed Naive Bayes (NB); a
popular classification algorithm for data mining [38].

Table 2
Studied Hadoop-based big data applications.

Atom £ Xeon

1.8
1.6
14
1.2

Q 1
=038
0.6
0.4
0.2

0

FN

Avg_Spec Avg_Parsec Avg_Hadoop

Fig. 1. IPC of SPEC, PARSEC and Hadoop applications on little and big core.

1.3.2. Traditional CPU benchmarks
e SPEC CPU2006 workloads are industry standard reallife ap-
plications designed to stress the CPU, memory subsystem
and compiler.
e PARSEC 2.1 is an open-source parallel benchmark suite for
evaluating multi-core and multiprocessor systems.

2. Traditional applications vs Hadoop applications on big and
little cores

While Xeon server has been optimized for traditional CPU and
parallel applications it is not clear whether it has also been opti-
mized for big data applications and in particular Hadoop MapRe-
duce based applications. Similarly, while Atom based server has
not been designed for traditional compute intensive traditional
CPU applications, it is shown to be an energy-efficient processing
platform for big data applications [6]. It is therefore important to
find out whether the choice of Xeon vs Atom changes for Hadoop
applications compared to traditional applications. In this section,
we analyze the performance and energy-efficiency measurements
of Hadoop applications and compare it with the traditional CPU and
PARSEC applications on big and little core-based servers.

2.1. Performance analysis

In this section, we analyze the performance measurements of
Hadoop applications in terms of IPC and compare it with the tradi-
tional benchmarks. Fig. 1 presents that the average IPC of Hadoop
applications is 2.16 times lower than traditional CPU benchmarks
on big core and 1.55 times lower on little core. Therefore, no-
ticeably more performance drop (39.3%, on average) is observed
for Hadoop applications compared to traditional CPU applications
when running on big core server compared to little core server. In
general, we observe lower IPC in Hadoop applications compared
with the traditional benchmarks. Furthermore, little core-based
server is experiencing 1.43 times lower IPC in comparison to big
core server as Xeon can process up to 4 instructions simultaneously
while Atom is limited to 2 instructions per cycle.

Type of benchmark Application domain Workloads Data source Software stacks
WordCount (WC) Text
. . . Sort (ST) Table
Hadoop Micro-benchmarks [/O — CPU testing micro program Grep (GP) Text Hadoop 2.6.1
TeraSort (TS) Table
Real world applications Association Rule Mining FP-Growth (FP) Text Hadoop 2.6.1, Mahout 0.9

Classification

Naive Bayes (NB)

CPU applications

Traditional applications Parallel applications

Spec2006
Parsec

Reference Input
Native Input

Spec 2006
Parsec 2.1

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing,]. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

4 M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

EEDP EED2P [EED3P

25

15

0.5

Energy Delay Product Atom vs Xeon

Avg_Spec Avg_Parsec Avg_Hadoop

Fig. 2. EDP, ED?P and ED*P Analysis of SPEC, PARSEC and Hadoop applications.

2.2. Energy-efficiency analysis

In order to characterize the energy efficiency, we evaluate En-
ergy Delay Product (EDP) metric to investigate trade-off between
power and performance. EDP (Power x Execution time x Execution
time) is a fair metric to compare various architectures, or even
the impact of changing optimization knobs in an architecture.
Without EDP and just using energy metric for comparison, we can
simply reduce the voltage and frequency in an architecture, and
reduce its energy, however at a cost of lowering the performance
(increased execution time). Therefore, performance along with
energy is important to find out the impact of optimization param-
eters. In addition to EDP, we have explored the ED?P and ED?P to
understand the impact of near real-time performance constraints
on Hadoop applications and how more performance constraints
affects the choice of most efficient server architecture. Fig. 2 shows
the EDP, ED?P and ED?P ratio for little vs big core for traditional
CPU, parallel benchmarks as well as Hadoop applications. Although
the execution time of Spec, PARSEC and Hadoop applications is
lower on Xeon compared to Atom, the high power consumption
of Xeon results in a higher EDP on Xeon as compared to Atom. The
ED*P (X = 1, 2, 3) results show that compared to little core server,
big core server is noticeably more efficient for traditional CPU
applications in comparison with Hadoop applications. While for
traditional applications there is a noticeable EDXP gap between the
two architectures, the EDXP gap for Hadoop applications reduces
significantly. With increased in real-time performance constraints
big core becomes more energy-efficient compared to little core
mainly due to its complex and deeper memory subsystem along
with higher processing capacity (2X more than little core).

Considering Hadoop MapReduce has distinct phases of execu-
tion, it is important to understand the characteristics of various
phases on big and little core architectures to find out which phase
is best suited for which architecture. In addition, given that the
choice of big vs little core can be impacted by various tuning knobs
that exist in MapReduce computing, in this paper we also study the
impact of application, system and architecture parameters and the
interplay among them on performance and energy-efficiency and
the choice of big vs little cores.

3. Experimental results and analysis

In this section, we discuss the application (application type),
system (HDFS block size) and architecture (operating voltage and
frequency of core) tuning parameters and evaluate how these pa-
rameters affect the performance, energy-efficiency and the choice
of the big vs little cores. We have conducted the HDFS block size
sensitivity analysis (32 MB, 64 MB, 128 MB, 256 MB, and 512 MB)
at different operating frequencies (1.2 GHz, 1.4 GHz, 1.6 GHz and
1.8 GHz) for Hadoop micro-benchmarks and real world applica-
tions at 1 GB and 10 GB of data per node, respectively.

3.1. Performance analysis

In this section, we discuss and analyze the execution time and
sensitivity analysis of each benchmark based on the HDFS block
size and the core operating frequency.

3.1.1. Application execution time

Fig. 3 shows the execution time results. For graph visibility,
Sort performance results are presented on the secondary axis as
compared to the other applications that are on the primary axis.
Note that Sort benchmark has no reduce phase. The first observa-
tion is that as expected, the execution time of all the workloads is
expectedly lower on big cores, compared to little cores. We have
observed on average 1.74X, 15.4X, 1.39X and 1.57X reduction in
execution time from Xeon to Atom for WordCount, Sort, Grep and
Terasort, respectively in Fig. 3. Moreover, increasing the frequency
and HDFS block size enhances the performance on both architec-
tures. Fig. 3 illustrates 34.4%-66.60% and 47.18-74.87% reduction
in execution time by tuning the frequency and HDFS block size on
Xeon and Atom, respectively. The results for the Sort benchmark
show that the sensitivity of the execution time, to the HDFS block
size and frequency, on Atom is significantly more than Xeon. On
Xeon, the execution time is slightly enhanced with increasing size
of HDFS block size up to 256 MB. Further increase in the HDFS
block size has a negligible effect on the execution time. The reason
for this behavior is that the large HDFS block size increases the
amount of data processed by each task and can result in more I/O
operations per task. For example, if map task has to handle more
than one spill (spilling occurs when there is not enough memory
to fit all the mapper output), more read/write operations will be
required to merge the mapper output and dispatch it for the reduce
phase. Additionally, large HDFS block size means fewer blocks with
long tasks and therefore less parallelism. Moreover, the variation
in the execution time with respect to HDFS block size is more
significant on Atom. By increasing the HDFS blocks size from 32 MB
to 512 MB, we have observed up to 18.9% variation on Xeon and up
to 26.18% variation on Atom. On both Atom and Xeon, increasing
the frequency reduces the execution time, as expected. However,
the rate of decrease in the execution time is more significant on
Atom. For instance, by changing the frequency from 1.2 GHz to
1.8 GHz, the improvement in execution time is up to 31.52% on
Xeon and 44.60% on Atom, observed in Fig. 3. In fact, the execution
time is proportional to the inverse of IPC and inverse of frequency.
Considering the fact that Xeon has a high processing capacity and
can hide the memory subsystem misses more effectively than
Atom, Xeon is less sensitive to memory latency resulting in Atom
being more frequency-sensitive than Xeon. Atom has a perfor-
mance bottleneck that exists in its compute capacity and memory
subsystem. Xeon has a high processing capacity as it can process 4
instructions per cycle (issue width of 4) compared to Atom that
has issue width of 2. Additionally, Xeon has large in size three-
level cache hierarchy (mentioned in Table 2) compared to the Atom
that has a two-level cache hierarchy. Therefore, Xeon can hide
the memory subsystem misses more effectively than Atom. This
behavior illustrates that Xeon can operate at the lower frequency
without significant performance loss.

An interesting observation is that with the large HDFS block
size, the sensitivity of the execution time to the frequency is
reduced as the large HDFS block size increases the I/O read/write
operations. Thus, instead of operating the core at a higher fre-
quency, we can operate it at a lower frequency while selecting an
HDFS block size that is sufficiently large, which reduces the perfor-
mance sensitivity to frequency and therefore reduces the power as
well.

Terasort, unlike sort, is a hybrid workload. It incorporates the
reduce phase and significantly enhances the execution time of the

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR 5

«»WC «»GP «-TS «<=ST

,3.400 1200,3.
@ 350 i £ 1000 &
2,300 Q °\ - = 2
¥ @250 Y Q 800 o
- £200 \ ; A | 600 £
o= p o . J X =
i R A NSRS
SE 50 v .) 3 > 3 200 S
2 0 OO ; — 0o 3
% DONOOD ONONON ONOOMNE0 OOO0NN0 OOO00 OO@0N00 ONO0O@00 OOO@00 2
u 2232322 222322 22222 22222 22222 22222 =22222 =2=s2:2:=2:2 b
N S 000N N 000N N S 00 O N N S 000N N 000N N S 000N N ST 00OAN NS00 0N ‘o'
MmOANLNn- M OANL- MmO AN MmONWN- MmO NL - MmOANL- MmO ANLW- MmO NL - @
- N 0 - N 0 - N 0 - N 0 - N 0 - N 0 - N 0 - N 0
Feq 1.2 Feq 1.4 Feq 1.6 Feq 1.8 Feq1.2 Feq1.4 Feq 1.6 Feq 1.8
Xeon Atom
Fig. 3. Execution time of Hadoop micro-benchmarks with respect to various HDFS block size and frequency scaling.
<=\ B «<=fFP
— 1400 35000 .,
41200 30000 &
Q Q
ElOOO 25000 £
£ 800) 20000
c
S 600 o 15000 8
] N
g 400 _c N o oo 10000 3
S 200 om0 \ 5000 &
) -9
4 0 0 w
DNNN OONNE ODONON OO0 D000 OO0 ODO0E VOO0
2222 2222 =222 2222 2222 2222 =222z ==2:=2=2
T 0 WO N T 0 WOWN T 00 WOAN T 0 WON T 0 WOWAN T 00O N T 00 WON T 0 W N
O NI O NWm - oNwn - O N LW ONW- O N O N W~ O N Wm-
- N - N - NN - N - N 0 - NN - N - N
Feq 1.2 Feq 1.4 Feq 1.6 Feq 1.8 Feq 1.2 Feq 1.4 Feq 1.6 Feq 1.8
Xeon Atom

Fig. 4. Execution time [sec] of real world applications with respect to various HDFS block size and frequency scaling.

benchmark that results in the reduction of the performance gap
between Xeon and Atom. While for Sort, big core shows better
capability in hiding large cache misses and I/O accesses compared
to Atom, in Terasort, only a moderate I/O accesses and cache misses
occurs. Therefore, Terasort does not require the large bandwidth of
big core superscalar pipeline to hide these latencies. This explains
the smaller performance gap between the two cores for Terasort.
Moreover, the sensitivity of the execution time on Atom to HDFS
block size and frequency is reduced. However, the variations of
the execution time with respect to frequency and HDFS block size
follow a similar trend as Sort on both machines.

For compute-bound application — Wordcount, the trend is
slightly different from I/O intensive application-Sort. The Word-
count execution time decreases with the increasing frequency on
both machines, as is the case with Sort. However, while increasing
the HDFS block size to 256 MB decreases the execution time,
further increase in HDFS block size (e.g. 512 MB) increases the ex-
ecution time significantly. Results show that the performance gap
of 2X between Atom and Xeon architecture can be reduced to 1X
through fine-tuning of the system (HDFS block size) and architec-
tural parameters (Frequency), allowing higher energy efficiency.
Moreover, the performance gap between Xeon and Atom shows
to be lower for WordCount (compute-intensive) compared to Sort
(I/O-intensive). This can be explained similarly as was discussed
for Terasort. The Grep also shows hybrid characteristics and follow
the same trend as Terasort. Grep consists of two separate phases;
search and sort running in sequence. Compute bound applications
do not show performance improvement beyond 256 MB, however,
considering I/O applications are benefiting from higher CPU pro-
cessing capacity, we have observed a better performance at the

higher block size (512 MB) for these applications and in particular
on Xeon.

Fig. 4 presents the execution time analysis of the real world
applications. HDFS block size is one of the key parameters to im-
prove the workload performance. In Hadoop micro-benchmarks,
HDFS block size of 32 MB has the highest execution time as a small
HDFS block size generates large number of map tasks [number
of map tasks = Input data size /HDFS block size] that increases
the interaction between master and slave node. Based on this
observation, we have considered 64 MB the smallest HDFS block
size for the real world applications throughout the paper. Results
are consistent with the micro-benchmarks, illustrating that default
HDFS block size (64 MB) is not optimal to achieve the maximum
performance improvement. The HDFS block sizes of up to 256 MB
reduce the execution time. However, further increase in HDFS has
anegligible effect on the execution time. Considering NB and FP are
both compute-intensive applications, 256 MB is the optimal choice
to achieve the maximum performance.

Although, the optimal HDFS block size for the peak performance
is closely decided by the application type, extensive experimental
search to determine the best HDFS block size can be avoided by
considering 256 MB block size for the compute bound and 512 MB
for other applications as an optimal choice for performance.

3.1.2. Sensitivity analysis

Overall, the results show that while for I/O intensive MapRe-
duce applications Xeon has a clear performance advantage, the
gap between Xeon and Atom reduces significantly for compute-
intensive applications. Moreover, the results suggest that Atom
is significantly more sensitive to frequency and HDFS block size.

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing,]. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

6 M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

1.6
1.4
1.2

= NB [Entire App.]

S 0.8
w

0.6
0.4 I
0.2 I
0 l
1.2 14 16 1.8

1.2 14 16 138

GHz GHz GHz GHz GHz GHz GHz GH:z
Atom Xeon

(a) NB.

1.4 .
1.2 M FP [Entire App.]
1
a 038
=)
w 0.6
0.4
02 l l
0
1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8
GHz GHz GHz GHz GHz GHz GHz GHz
Atom Xeon
(b) FP.

Fig. 5. EDP analysis of entire real world application on big and little core with frequency scaling.

25
m WC [Entire App.]
2
a 1.5
a
1
] 111
(V]
1.2 14 16 18 1.2 14 16 1.8
GHz GHz GHz GHz GHz GHz GHz GHz
Atom Xeon
(a) WordCount.
2.5

H GP [Entire App.]
2

1.5
1
SR
0
1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8

GHz GHz GHz GHz GHz GHz GHz GH:z

EDP

Atom Xeon

(c) Grep.

1.2
W ST [Entire App.]

1
0.8
S 0.6
w
0.4
0.2
0 " _ _ _
12 14 16 18 12 1.4

1.6 1.8
GHz GHz GHz GHz GHz GHz GHz GHz

Atom Xeon

(b) Sort.

M TS [Entire App.]

25
2
S15
wl
1
0
12 14 16 1.8 12 14 16 1.8

GHz GHz GHz GHz GHz GHz GHz GHz
Atom Xeon

(d) TeraSort.

Fig. 6. EDP analysis of entire Hadoop micro-benchmark on big and little core with frequency scaling.

Therefore, the performance gap between Atom and Xeon archi-
tecture can be reduced significantly through fine-tuning of the
system and architectural parameters on Atom, allowing maximum
energy efficiency, as will be discussed later. Also, the results sug-
gest that the optimal HDFS block size for the maximum perfor-
mance is closely decided by the application type and fine tuning
this parameter reduces the dependence on the highest operating
frequency.

3.2. Energy-efficiency analysis
In this section, we analyze the energy-delay-product (EDP) of

the studied applications while changing the frequency. Figs. 5 and
6 show the EDP results on Atom and Xeon for the entire application.

Figs. 7 and 8 present the map and reduce phases of all the studied
applications. In order to make fair comparisons, for each workload,
the EDP values are normalized to the EDP on Atom at the lowest
frequency of 1.2 GHz and with 512 MB HDEFS block size.

3.2.1. EDP of the entire application

The major observation for the EDP is that for most applications,
the low power characteristics of the Atom results in a lower EDP on
Atom compared to Xeon, with the exception of the Sort benchmark.
By scaling the frequency from 1.2 GHz to 1.8 GHz in Fig. 6, we have
observed 2.27X, 2.48X and 2.64X lower EDP on Atom compared to
Xeon for WordCount, Grep and Sort, respectively. This is due to the
fact that, the performance gap (in terms of execution time) for the
I/O intensive benchmark is very large between Atom and Xeon.

Please cite this article in press as: M. Malik, et al., Big vs little core for energy-efficient Hadoop computing,]. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR

6
5 B WC [Map Phase] ® WC [Reduce Phase]
4
33
w
2
1
, WL m L
1.2 1.4 1.6 1.8 1.2 1.4 1.6 1.8
GHz GHz GHz GHz GHz GHz GHz GH:z
Atom Xeon
(a) WordCount.
B GP [Map phase] ® GP [Reduce phase]
3
o
g 2
1
, LIl
12 14 16 18 12 14 16 18
GHz GHz GHz GHz GHz GHz GHz GHz
Atom Xeon
(c) Grep.

1.6
W ST [Map phase
. [Map phase]

1.2

1
0.8
0.6
0.4
0.2

0 I

12 14 16 18 12 14 16 18

GHz GHz GHz GHz GHz GHz GHz GHz

EDP

Atom Xeon
(b) Sort.
4: M TS [Map phase] m TS [Reduce phase]
4
3.5
a 3
a 2.5
w
2
1.5
1
0.5 II I
: n
1.2 14 16 18 1.2 14 16 138
GHz GHz GHz GHz GHz GHz GHz GH:z
Atom Xeon
(d) TeraSort.

Fig. 7. EDP analysis of Map and Reduce phase on big and little core with frequency scaling.

B NB [Map Phase] = NB [Reduce Phase]

EDP
O Rr N WHMUON®

12 14 16 18 12 14 16 138
GHz GHz GHz GHz GHz GHz GHz GHz

Atom Xeon
(a) NB.

1.6
14
1.2

B FP [Map Phase] H FP [Reduce Phase]

& o8
w
0.6
0.4
0.2

1.2

II I- I-
14 16 18

1.2 14 16 18
GHz GHz GHz GHz GHz GHz GHz GH:z

Atom Xeon
(b) FP.

Fig. 8. EDP analysis of Map and Reduce phase of real world applications on big and little core with frequency scaling.

Since the EDP is a function of the execution time and the power,
the total EDP on Xeon is lower for the sort benchmark. Moreover,
Figs. 5 and 6 also show that across all studied applications, the
increase in the frequency reduces the total EDP. While increasing
the frequency increases the power consumption, it reduces the
execution time of the application and consequently the total EDP.

3.2.2. Map reduce phase analysis

The results in Figs. 7 and 8 show that map phase follows similar
trend as the entire application in terms of EDP; as frequency
increases, the EDP for map phase reduces. Also, the most energy-
efficient core is Atom for the map phase. However, for the reduce
phase, a different trend is observed. Increasing the frequency does

not always reduce the EDP. For instance, for NB and GP an opposite
trend is observed. This is mainly due to the fact that reduce phase,
unlike map phase is memory intensive as it requires significant
communication with memory subsystem. Also comparing Atom
and Xeon running at the same frequency, while map phase prefers
Atom almost all applications, reduce phase prefers Xeon in several
cases; examples are NB and GP.

3.2.3. Sensitivity analysis

We carry out a sensitivity analysis of the EDP ratio of the
applications on Xeon to Atom. The motivation is to compare the
EDP gap between Xeon and Atom for various tuning parameters.
Fig. 9 presents the EDP change with respect to the HDFS block

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

8 M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

Wordcount Sort Grep Terasort —=—NB FP
e 4
]
: /\
-9
a =
w
-~ 2
c
] //
¢
o
2o

32 64 128

HDFS block size [MB]

256 512

Fig. 9. EDP of Hadoop benchmarks at various HDFS block size.

size for a frequency of 1.8 GHz. The results show that increasing
HDEFS block size increases the EDP gap between Atom and Xeon. As
we have observed in Fig. 9, with HDFS block size of 512 MB, the
EDP gap between Atom and Xeon increases more than 2X. Since
in Atom, the performance bottleneck exists in the memory sub-
system, improving memory subsystem performance by increasing
HDEFS block size enhances its performance more compared to Xeon,
and reduces the performance gap between the two architectures.

3.3. Input data size sensitivity analysis

In this section, we study the impact of input data size on perfor-
mance and energy-efficiency of Atom vs Xeon. We have conducted
the data size sensitivity analysis of Hadoop micro-benchmarks and
real world applications with the datasets of 1 GB, 10 GB, and 20 GB
per node. The HDFS block size considered for this experiment is
512 MB with 1.8 GHz operating frequency.

Figs. 10 and 11 present the normalized execution time break-
down of Hadoop applications (Map phase, Reduce phase and Oth-
ers) along with the total execution time of the entire workload
on big and little cores (presented as a line graph in the figure).
As shown, the execution time is proportional to the input data
size. Comparing the two architectures, we can observe that the
execution time increases significantly more on Atom as a function
of data size (10.15X, 7.75X, 27.15X, 8.59X, and 7.97X) compared to
Xeon (3.45X, 7.75X, 26.07X, 7.22X, and 5.96X) for GP, WC, TS, NB
and FP, respectively, as shown in Figs. 10 and 11. This is mainly
due to the performance bottleneck of Atom core that exist in its
compute capacity as well as memory subsystem, which is exposed
more as the size of data increases.

To evaluate the trade-off of power and performance between
Xeon and Atom, we have investigated the EDP metric (Figs. 12 and
13). We have observed a clear trend of rise in EDP with the increase
in input data size across both architectures. Across almost all the
studied benchmarks little Atom core is clearly a favorite choice for

energy-efficiency, with the exception of the sort application. The
increase in the data size progressively makes the big core more effi-
cient compared to the little core across all the applications with the
exception of Sort that illustrate the opposite trend. For the smaller
data size, the higher processing capability of big core hides the
I/O communication cost effectively. However, the rise in data size
aggravates the I/O cost to an extent that it diminishes the benefit
of the high processing capability of the big core for I/O intensive
benchmarks. Note that big core has no advantage of big DRAM
size as we have set the studied applications to utilize the same
DRAM size in both architectures. Additionally, we have studied
the EDP results of Atom vs. Xeon for the map and reduce phases.
This experiment will help guiding scheduling decision such as the
choice of the core to run map or reduce phase to improve energy
efficiency. The results are presented in Fig. 13. For the map phase,
we observed very similar trend to the entire application, showing
clear benefit for little core, except for I/O bound applications and
also when the size of data per node increases.

3.4. Performance hotspot and post-acceleration CPU code characteri-
zation

In recent years, the interest in hardware acceleration has re-
vived mainly due to the dark silicon challenge. In addition to
big, medium, and small cores, the integration of domain-specific
accelerators, such as and FPGAs in cloud computing platforms
has become extensive. To find out the right CPU core for Hadoop
MapReduce processing, it is important to understand how de-
ploying an accelerator, such as FPGA or GPUs, would necessitate
adapting the choice of CPU. While the GPU-based platforms have
achieved significant speedup across a wide range of benchmarks,
their high power demands preclude them for energy-efficient com-
puting [12,26]. FPGAs have shown to be more energy efficient [24]
and they allow the exploitation of fine-grained parallelism in
the algorithms. Moreover, advances in the FPGA technology ad-
vances, suggest that new generation of FPGAs will outperform
GPUs. In [31] the authors compare two generations of Intel FPGAs
(Arria 10, Stratix10) against the latest highest performance Titan
X Pascal GPU. For a ResNet case study, their results show that for
Ternary ResNet [20], the Stratix 10 FPGA can deliver 60% better
performance over Titan X Pascal GPU, while being 2.3 x better in
performance/watt showing that FPGAs may become the platform
of choice for accelerating the applications. Therefore, we have
considered FPGA as a domain-specific accelerator.

The post acceleration code characteristics are important to find
the right architecture for efficient processing of Hadoop appli-
cations. In this section, we analyze the choice of big vs. little
core-based server for the code that remains for the CPU after
acceleration, compared with the choice of big vs. little before accel-
eration. A key research challenge for heterogeneous architecture

Map FReduce EOthers <Total

100%
80%
60%
a0%
20%

0%

3500,0.
3000 g
2500
2000 £
1500';
1000 ©
500 3
o g
o -] o o o [+] -] 1] o -] -] w
O O VB VWV OV VW VWV O v v
o - o - o o - o o
- ~N - o~ - ~N - N
Atom Xeon Atom Xeon
wc TS

Fig. 10. Execution time and breakdown of Hadoop micro-benchmarks at various input data size.

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel

https://doi.org/10.1016/j.jpdc.2018.02.017.

Distrib. Comput. (2018),

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR

#Map [Reduce EOthers -~Total

100% i = = mE o= o= = = = 100000 g
it . . E = B OB a
80% ﬁ A n 5 s Y 10000
o oo oo E / £ %
60% t _. £ 28 1000 = O
w
40% 100 § %
s 2
20% 10 3
<
1GB 10GB20GB 1GB 10GB20GB 1GB 10GB20GB 1GB 10GB20GB
Atom Xeon Atom Xeon
NB FP
Fig. 11. Execution time and breakdown of Hadoop real applications at various input data size.
Entire Application
10
c 9
g 8
g— 7
w 6
~
£ 5
s 4
& 3
i I‘F
1
0 m m m - - - o = 0 N - 0 N
0o 0 o 00 o0 o 0o o0 o 00O o0 o 00 oo o 0o 0 o
[CENGENT] [CERCENT] [CERGERT] [CERCENT) [CERCENT] [CERGENT]
- O O - O O - O O - O O - O O -« O O
- N - ~ - N - ~ - ~ - N
wcC ST GP TS NB FP
Hadoop Micro-benchmarks Real World Applications
Fig. 12. EDP analysis of entire application with various input data size.
12.653
= 4'2 B Map Phase ® Reduce Phase
o
X 35
Q 3
E 2.5
] 2
5 15 .
L [.l
Lk ol
o Lk kb Liun whh
0 oo m 0 oo 0o oo o o o o 0o o @ o 0o @
[CANTENT] [CANTENT] [CENTENT] [CANT U] [CANTENT] [CENG T
- O O -« O O -« O O -- O O -« O O - O O
- N - N - N - N - N - N
wcC ST GP TS NB FP

Hadoop Micro-benchmarks

Real World Applications

Fig. 13. EDP analysis of Map Phase and Reduce phase with respect to the input data size.

that integrates CPU and accelerator such as FPGA is workload
partitioning and mapping of a given application (which is alter-
natively referred to as scheduling) to CPU and FPGA for power,
performance, and QoS. This is commonly referred as hardware and
software partitioning. A common method for HW/SW partitioning
is to profile the application to find the performance hotspot region.
These regions are candidates for FPGA acceleration, as long as
the overhead of communication with CPU is not significant [1].
There are several tasks involved in an end-to-end big data Hadoop
MapReduce environment.

To perform hotspot analysis of the applications, we identify and
analyze these phases based on their execution time. Here we have
considered the 512 MB HDFS block size and 1.8 GHz operating
frequency. Note that sort benchmark has no reduce task. For grep
benchmark, which includes two separate phases (i.e., searching
and then sorting the results), the setup and cleanup contribute

to a significant portion of execution time. Since the computa-
tion intensive part of the applications lie on the map and reduce
phase, it is critical to understand how sensitive they are for the
post-accelerated code analysis. In most of the studied applications,
the map function accounts for more than half of the execution
time. Additionally, given that sort has no reduce phase and in
most studied applications, map execution phase is the hotspot,
we assume map tasks are offloaded to an accelerator such as
FPGA. The execution time of the map phase after acceleration
consists of three major parts, i.e. time_cpu — the software part
of the map phase that remains on the CPU-, time_fpga — the
hardware part of the map function that is offloaded to the FPGA-
and time_trans — the data transfer time between the FPGA and
the CPU core. Time_trans is calculated based on the speed of
the connections link and the amount of data that is transferred
between the accelerator and the CPU. While related work [1,9,16]

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

10

——Wordcount Sort Grep Terasort —NB —FP

1.2

T
0.8

0.6

0.4

after acceleration

0.2

40 60 80
Mapper Acceleration

100 120

Speedup after acceleraton before vs

Fig. 14. Speed up of Atom vs Xeon before and after acceleration of Hadoop micro-
benchmarks and real world applications.

have focused on modeling how adding various accelerators, with
various interconnects improves the designs, our main goal is to
characterize how adding FPGAs change tuning of various system
and architecture-level parameters in the design. To this end, with-
out diving into how each application can be accelerated, we have
studied a wide range of acceleration rates of the map-phase, which
ranges from no speedup (1X) to 100X (speedup is achieved as
time_allCPU/[time_cpu+time_fpga+time_trans]), asin Fig. 14. After
calculating the new execution time, we can study the remaining
modules that are left for the big or little core-based server to
run.

Fig. 14 shows the impact of post-accelerated code by investi-
gating the speed up — migrating from Atom to Xeon before and
after acceleration. We report the little vs big core speed up in terms
of

(ExectlmeAmm/ Exectimexeon)remaining code after acceleration

Speed up = M

(ExectimeAmm/ ExectimeXeon)entire application
(Exectimepgom /Exectimeyeon)remaining code after acceleration
represents the speed up obtained by migrating the post-
accelerated code from Atom to Xeon.

M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

(Exectimeaom/EXectimexeon Jentire applications F€presents the speed
up obtained by migrating the application from Atom to Xeon before
acceleration.

Using Eq. (1), we can evaluate the impact of Atom over Xeon
speedup gain after acceleration compared to speed up before ac-
celeration. All the benchmarks in Fig. 14 have speed up less than 1
which indicates that speedup of migrating from Atom to Xeon after
acceleration reduces compared to speed up before acceleration.
We have observed a negligible impact on Terasort and Grep. The
contribution of Map phase execution time to the entire application
execution time for these applications is lower compared to the
other applications that explains why there is no significant differ-
ence between before and after acceleration for the choice of Atom
vs Xeon. Overall, Xeon provides a lower execution time, however,
if speedup after acceleration is very small then considering the
power consumption of Xeon, Atom-based server will be a more
efficient choice to execute the post-accelerated code.

3.4.1. Frequency and HDFS block size sensitivity analysis before and
after acceleration

Additionally, we have performed the post-accelerated code
analysis with respect to the frequency scaling (Fig. 15). With the
exception of grep and FP at the lower frequencies, all other bench-
marks have shown that the speed up of migrating from Atom to
Xeon after acceleration reduces compared to the before accelera-
tion.

Fig. 16 illustrates the post-accelerated code analysis with var-
ious HDFS block size. We have observed that for the grep and
TeraSort, with the increase in the data size the speedup after ac-
celeration increases compared to the speedup before acceleration.
This behavior is consistent with the fact that reduce phase of these
applications has a significant contribution to the total execution
time as compared to the other applications.

However, sort shows the opposite trend as it has only the map
phase that is being offloaded to the accelerator. On the other hand,
FP, a compute-bound application, shows that the speedup of mi-
grating from Atom to Xeon achieves after deploying an accelerator
outperforms the speedup before acceleration as we have observe
a significant performance gap between Atom and Xeon for this
application.

s
= C
‘601'4
g5 1.2
2 s 1
U =
g2 08 B N
Sg 06 . |
[0.4 i 3

(1] . o o 3
£ o 02 . B \ : N R 3
:‘a N
T o I IIIIIIIIIIIIIIIIIIIIIICI
8"’ OO0 OV0OLVLUOVLOVLLVLLLLULLLLUOULOLLLLULOLLOLLLOLOO
o > NS O ANT©RANTOQNST O 0N O OANIT O K
wv L B B B O B O IO R B B IO B I B O T I IO I R B I B |

WordCount Sort Grep TeraSort NB FP
Fig. 15. Speedup of Atom vs Xeon before and after acceleration with various frequencies.

c
.2
w8 5§15
© .9
2% 1
o 3
S o5 I E E
5 8
g9 0
5 0O MCMO®M™ ME@MHMEM?OGEOOE@MDMEMEONONMEMNHKEMNOEMEMMOENDO®DMA
2 22222322222 2222222222222222:22
2 2 NS OO NNTOONNTOONNTOONTOONT OO N
2w N OANWN=EMOANNSESMNMOANNEHMONINHOANINCHSUOANILWC
o > - N 10 - N 10 - N 1N - N 1N - N N - N 1N
Q
i WordCount Sort Grep TeraSort NB FP

Fig. 16. Speedup of Atom vs Xeon before and after acceleration with various HDFS block size.

https://doi.org/10.1016/j.jpdc.2018.02.017.

Please cite this article in press as: M. Malik, et al., Big vs little core for energy-efficient Hadoop computing, J.

Parallel Distrib. Comput. (2018),

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR 11

Table 3
Operational and capital cost analysis of Hadoop applications.
Atom Xeon
M2 M4 M6 M8 M2 M4 M6 M8
EDP (] s) wC 4.20E+05 3.37E405 3.06E+4-05 3.05E405 1.52E4+-06 6.66E+4-05 6.70E4-05 6.50E4-05
ST 1.05E+06 6.64E+4-05 5.66E+4-05 3.40E4-05 1.38E4+04 8.94E4-03 8.78E4-03 1.31E+04
GP 2.55E+04 1.71E4+04 1.53E+04 1.85E+04 4.06E+04 3.96E+04 3.80E+04 3.94E+04
TS 1.83E4-05 1.05E4-05 7.35E+4+04 7.71E4+-04 2.43E+05 2.07E4-05 1.94E4-05 2.04E+05
NB 2.64E4-06 9.23E4-05 5.74E4-05 5.51E4-05 3.77E4-06 9.97E4-05 5.80E4-05 5.26E4-05
FP 9.53E+09 3.28E+09 2.45E+409 1.77E4+09 2.07E4+10 5.44E4-09 3.21E4+09 2.74E+409
ED2P (J s?) WwC 1.41E4-08 9.60E+-07 8.59E+4-07 8.52E+07 4.56E4-08 1.04E4-08 1.03E4-08 9.56E+07
ST 5.00E4-08 2.40E+4-08 1.79E4-08 8.83E4-07 3.58E4-05 1.97E4+05 1.76E+05 3.40E4-05
GP 2.12E4+-06 1.13E4-06 9.77E+-05 1.11E4-06 2.27E406 2.14E4-06 2.05E4-06 2.05E+-06
TS 3.93E+07 1.63E+4-07 8.96E+06 9.25E+06 2.47E4-07 1.90E+07 1.73E4+07 1.77E4-07
NB 2.23E4-09 3.81E408 1.49E4-08 1.41E4-08 1.32E4+-09 1.76E+408 7.60E4-07 6.54E4-07
FP 4.49E+14 8.20E+13 4.57E+13 2.60E+13 5.33E+14 7.03E+13 3.13E+13 2.47E+13
EDAP (J mm? s) WC 1.34E+08 2.16E+08 2.94E+08 3.91E+4-08 6.56E408 5.75E+08 8.68E+08 1.12E4+09
ST 3.38E4+08 4.25E+08 5.44E4-08 4.35E+4-08 5.95E+06 7.73E4-06 1.14E4-07 2.26E+07
GP 8.16E4-06 1.09E4-07 1.47E4-07 2.37E4-07 1.75E4+-07 3.42E4-07 4.92E+07 6.80E4-07
TS 5.84E+4-07 6.75E+07 7.05E+-07 9.87E+07 1.05E+08 1.79E4-08 2.51E408 3.52E+08
NB 8.46E+08 5.90E+08 5.51E408 7.05E4-08 1.63E4-09 8.62E4-08 7.52E4-08 9.09E+08
FP 3.05E+12 2.10E+12 2.36E+12 2.27E4+12 8.96E+412 4.70E+12 4.16E+12 4.74E+12
ED2AP (J mm? s?) WC 4.53E+10 6.14E+10 8.25E+10 1.09E+11 1.97E+11 8.98E+10 1.34E+11 1.65E+11
ST 1.60E+11 1.53E+11 1.72E+11 1.13E+11 1.55E+08 1.70E4-08 2.27E+08 5.88E+08
GP 6.77E4-08 7.20E4-08 9.38E4-08 1.42E4-09 9.82E4-08 1.85E4+09 2.66E4-09 3.54E4-09
TS 1.26E+10 1.05E+10 8.60E+4-09 1.18E4+10 1.07E+10 1.65E+10 2.24E4+10 3.06E+10
NB 7.14E+11 2.44E+11 1.43E+11 1.80E+11 5.72E+11 1.52E+11 9.85E+10 1.13E+11
FP 1.44E4-17 5.24E+16 4.39E+16 3.33E+16 2.30E+17 6.07E+-16 4.06E+16 4.27E+16

3.5. Scheduling

In the previous sections, we analyzed the execution time and
the energy-efficiency of MapReduce benchmarks across a wide
range of application, system and architecture levels parameters
on Xeon and Atom cores. These analyses will help guide the
scheduling optimization decisions in a heterogeneous architecture,
as we will show, through several case studies. Assume that we
have X number of Xeon cores and Y available number of Atom
cores available for scheduling. While from the user perspective,
improving performance and getting the MapReduce jobs done
faster is the goal which is mainly accomplished by allocating the
maximum number of available big Xeon cores to the task, from
the cloud computing provider perspective, the choice of X and Y is
influenced by not only the performance but also the cost including
the operational cost as well as the capital cost. Operational cost
is proportional to the energy and the capital cost is proportional
to the chip area of the core. In that perspective, Atom cores are
clearly a preferred choice. Assuming Atom and Xeon architectures
with 2, 4, 6 and 8 cores, we analyze the energy-delay product
(ED*P) and energy-delay-area product (ED*AP), which indicates
the cost [21] to understand the interaction between energy, cost
and performance characteristics of the studied applications. The
objective of this analysis is to select a right number of Xeon or Atom
cores that minimizes various costs, including cost driven by the
area as well as the energy. Based on the analysis results presented
in the previous sections we set HDFS block size at 512 MB and
operating frequency at the 1.8 GHz.

Table 3 shows the results for the operational and capital cost of
the Hadoop micro-benchmarks and real world applications with
various number of Xeon and Atom cores/mappers. The number of
the mappers is set to be equal to the number of cores (M). It should
be noted that EDP is a function of both the execution time and
power. Adding more cores to the architecture lowers the execution
time, but increases the power consumption. From Table 3 results
we observe that in most cases, increasing the number of cores,
enhances the energy efficiency. However, in Grep and Terasort
benchmarks, the lowest EDP on Atom is achieved with 6 cores.
Moreover, the variations in the EDP with respect to the number
of cores is more significant on Atom. Results show that EDP can be

reduced by up to 5X (in sort benchmark) by utilizing a maximum
number of Atom cores compared to using minimum two, yielding
both higher performance and energy-efficiency.

As mentioned earlier, the capital cost of the architecture is
another major cost function that affects the scheduling decisions.
In order to take the capital cost into account, we study ED*AP
values, presented in Table 3. Hadoop micro-benchmarks show that
while increasing the number of cores reduces the EDP, it increases
the EDAP. Thus, based on the optimization goals, capital cost con-
straints may prompt the scheduler to use fewer number of cores.
However, for the real world applications, we have observed a dif-
ferent trend where increasing the number of cores is reducing the
EDAP. One reason is that real world applications have significantly
higher execution time and power consumption compared to the
Hadoop micro-benchmarks. Therefore, the performance improve-
ment achieved by introducing more cores for the compute-bound
real world applications are more significant that even results in
lowering EDAP as well.

While the scheduling decision to maximize performance and
satisfy user expectation attempts to maximize the number of avail-
able cores, the scheduling decision attempts to reduce the number
of cores for cost efficiency as well as energy-efficiency as it is pre-
ferred by the cloud provider. To find the middle ground between
the user and cloud provider expectations, we have performed op-
erational and cost analysis of studied benchmark normalized to the
maximum number of Xeon cores (i.e. 8 cores), presented in Fig. 17
(Spider graphs). Each corner of the spider graphs illustrates the
operational and capital cost metrics including energy-efficiency
(EDP), near real-time energy efficiency (ED?P), cost energy effi-
ciency (EDAP) and near real-time cost energy efficiency (ED?AP).
The spider graph is divided into two regions (labeled by 8X equal
to 1), an inner region and outer region. Inner region illustrates that
little core is preferable to execute the MapReduce job, however,
the outer region favors the big core. The results close to the origin
represent the maximum energy and cost efficiency.

For the energy efficiency (EDP) results, the comparison between
Atom and Xeon shows that the Atom cores are more energy-
efficient than the Xeon cores for all the studied applications with
the exception of Sort as it has the higher performance gap between
Atom and Xeon that results in lower EDP on Xeon. Additionally, we

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing,]. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

12 M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

ED2AP
EDAP 8X
(a) Wordcount.
EDP GP
1.2
ED2AP ED2P
—2A
—aA
6A
8A
—2X
—ax
—6X
EDAP 8X
(c) Grep.
EDP NB

20.23 34.11

8
7
5
a
3
ﬁz/
ED2AP \/ > ED2P
&% "

oA 8X

(e)NB.

o

12 g ST
]
10 ﬁ
8 <
0
|

//2/ 157.99 211.62 441.52
L / ED2P
—2A

AN
-
\// o

—4aX
—6X

ED2AP
87.77 81.76 78.37

TS

ED2AP ED2P

EDAP 8X

(d) TeraSort.

EDP FP
10

ED2AP ED2P

—2A
—A4A

6A

8A
—2X
—4X
—6X
EDAP e 8X

(F) FP.

Fig. 17. Results presented are for energy-efficiency (EDP in] s), real time energy efficiency (ED2P in] s?), cost energy efficiency (EDAP-in] mm? s) and real time cost energy

efficiency (ED2AP in] mm? s?) of Hadoop applications normalized to the 8 Xeon core.

have observed that due to the high power consumption of Xeon
core, even utilizing the maximum number of Atom cores (i.e. 8
cores) achieves lower EDP compared to the Xeon architecture with

the 2 cores.

For the near real-time energy efficiency (ED?P), a large number
of Xeon cores (4 and more) outperform small number of Atoms
cores. This is due to the fact that real-time energy efficiency gap
gradually decreases with a large number of Xeon cores. While for

https://doi.org/10.1016/j.jpdc.2018.02.017.

Please cite this article in press as: M. Malik, et al., Big vs little core

for energy-efficient Hadoop computing,]J. Parallel Distrib. Comput. (2018),

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR 13

ED?P a large number of Xeon cores (4 and more) outperform the
small number of Xeon cores, similar to the EDP, the minimum
ED?P is achieved with a large number of Atom cores (6 and 8
cores). A comparison of the cost energy efficiency (EDAP) value
between Atom and Xeon shows that EDAP is lower on Atom for
most applications including Hadoop micro-benchmarks and real
world applications, for a certain number of cores. Additionally,
we have observed that Atom with a smaller number of cores
provides maximum cost energy efficiency as compared to the
Xeon cores. For sort application, the EDAP on Xeon cores is lower
than Atom, due to the high performance gap between Atom and
Xeon.

The real-time cost energy efficiency (ED?AP) analysis illustrates
that for the Terasort and architecture with 8 cores. This is an inter-
esting observation, which allows us to use Xeon Grep applications,
the Xeon architecture with 2 cores yields lower ED?AP than the
Atom architecture with 8 cores. This is an interesting observation,
which allows us to use Xeon architecture with a small number of
cores, rather than running the job on many Atom cores. In this
case, we are able to benefit from the high performance Xeon core,
yielding low ED*AP costs. However, for the real world applications,
higher computation power is required to process the applications
that can be achieved with large number of Atom or Xeon cores.
Considering the power consumption of Xeon, Atom cores will
be a more efficient choice to execute the Hadoop applications.
Additionally, through the comprehensive system level analysis in
Section 3.2, we illustrate that the reliance of the maximum number
of cores for Atom architecture can be reduced by fine-tuning the
system, application and architectural parameters.

The pseudo code to schedule the workloads in heterogeneous
server architecture to minimize the operational and capital cost is
provided as follows

Schedule Big Data Application on Big or Little cores in heterogeneous architecture
Goal is to minimize operational cost and capital cost = {EDXP, ED*AP}
Applications are classified as compute bound (C), IO bound (I) and Hybrid (H) = {C, I, H}
Number of Big/Xeon cores X = {2, 4, 6, 8}
Number of Little/Atom cores A = {2, 4, 6, 8}
Applications are referred as App

Procedure schedule_workloads (goal, App)
If App=C
For the min operational cost and capital cost
Assign large number of Atom cores to run the application (A=8)
Fine-tune configuration parameter to reduce the number of cores
IfApp=1
For the min operational cost and capital cost
Assign small number of Xeon cores to run the application (X=4)
If App=H
For the min ED?AP
Assign small number of Xeon cores to run the application (X=2)
Otherwise
Assign large number of Atom cores to run the application (A=8)
Fine-tune configuration parameter to reduce the number of cores
Return (X, A)

In general, our results in cloud computing infrastructure
equipped with heterogeneous server architectures illustrate that
by fine-tuning the system and heterogeneous architectures, the
minimum operational and capital cost can be achieved for compute
intensive Hadoop applications by scheduling them to large number
of little cores while still satisfying user expected performance
comparable to what can be achieved on big cores. The reliance on
large number of little cores can be reduced significantly by fine-
tuning the application, system and architecture level parameters.
For I/O bound applications, Xeon core still shows to be the favorite
choice for energy as well as cost efficiency.

4. Related work

Recently, there have been a number of efforts to understand the
behavior of big data and cloud-scale applications [8,10], by bench-
marking and characterizing them, to find out whether state-of-the-
art high-performance server platform is suited to process them

efficiently. The most prominent big data benchmarks, including
CloudSuite, HiBench, BigDataBench, LinkBench, and CloudRank-D
focus on the applications’ characterization [9,13,16,37,38]. These
works analyze the application characterization of big data ap-
plications on the Hadoop platform, but they do not discuss the
implication of this new set of applications on the choice of big vs
little core architectures.

Many recent works have investigated the energy efficiency
in the Hadoop system including energy-efficient storage for
Hadoop [15,23], energy-aware scheduling of MapReduce jobs [25]
and GreenHadoop [4]. Additionally, the impact of Hadoop configu-
ration parameters has been discussed in [4]. But these works have
not studied the impact of frequency scaling and its interplay on
Hadoop specific parameters for optimizing the energy efficiency
and the impact on the choice of big vs little core. ARIA [19] is an
analytical model that utilizes the knowledge of the map and reduce
task completion time as a function of the allocated resources.
However, this study lacks the power and energy analysis on the
low-power embedded server with various system and architecture
parameters. The work in [2] is the closest to our work as they con-
duct a study of microserver performance for Hadoop applications.
However, their main focus is on the assessment of five different
hardware configuration clusters for performance and energy con-
sumption. In contrast, our work explores Hadoop configuration pa-
rameters and system parameters for the performance and energy
efficiency, as well as cost efficiency of Hadoop applications in a
heterogeneous architecture and the choice between big and little
cores.

There have been also a number of research into application
specific [32,39] and domain-specific accelerators [7,18,36]. Using
tightly integrated FPGA [40] with CPU, and GPU with CPU [5],
to accelerate big data processing have been proposed in recent
work. While deploying programmable accelerator is a new and
hot research topic, little attention has been paid on how CPU
designs should be adapted to this change. To the best of our
knowledge, the only work on this topic is by Arora [22], which
studied the role of the CPU for a CPU+GPU architecture. They
concluded that, in a CPU+GPU architecture, the CPU is running a
code that is significantly different from a CPU-only code. In this
paper, we demonstrated how deploying accelerator such as FPGA
for big data affects the choice of big vs. little core for efficient
processing.

5. Conclusion

This paper answers the important question of whether big
core or little core is more energy and cost efficient to process
Hadoop applications. To answer this question it is important to
take into consideration tuning parameters at application, system
and architecture levels as they influence performance, energy
efficiency and cost efficiency of Hadoop applications. Based on
real system experimental results, we have observed that for I/O
intensive Hadoop applications, Xeon has a clear performance ad-
vantage, however, the gap between Xeon and Atom reduces sig-
nificantly for compute intensive Hadoop applications. Also, Atom
has shown to be significantly more sensitive to tuning parameters
such as frequency and HDFS block size. Therefore, the performance
gap between the two architectures can be reduced significantly
through fine-tuning of the system and architectural parameters
on Atom, allowing maximum energy efficiency. Furthermore, for
the map phase, compute intensive benchmarks clearly favor the
Atom for energy-efficiency, while I/O intensive favors Xeon. For
the reduce phase, Atom is the favorite choice across all studied
applications.

Comparing the two architectures with respect to the input data
size, we can observe that the execution time increases significantly

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing,]. Parallel Distrib. Comput. (2018),

https://doi.org/10.1016/j.jpdc.2018.02.017.

14 M. Malik et al. /]. Parallel Distrib. Comput. 1 (111) INE-1N1

more on Atom as a function of data size compared to Xeon for
big data applications. In addition, we have observed a clear trend
of rise in EDP with the increase in input data size across both
architectures. The increase in the data size progressively makes the
big core more efficient compared to the little core across all the
applications with the exception of Sort that illustrate the opposite
trend.

As future cloud-scale architecture will be equipped with on-
chip accelerator it is important to understand the choice of Atom
vs Xeon cores after acceleration compared to before accelera-
tion. We observed that the speedup gain of migrating from Atom
to Xeon reduces significantly after acceleration compared to be-
fore acceleration. The presence of hardware accelerator changes
the most efficient architecture. Overall, Xeon provides a lower
execution time, however, if speedup after acceleration is very
small then considering the power consumption of Xeon, Atom
is a more energy-efficient choice to execute the post-accelerated
code.

In addition, we also analyzed the operational and capital cost
estimation, which helps guiding scheduling decisions in cloud en-
vironment equipped with heterogeneous architectures to find out
which of big or little core is the more cost-efficient. For compute
intensive applications, we found that the minimum operational
and capital cost can be achieved by scheduling to a large number
of Atom cores while still satisfying user expected performance
comparable to the performance that can be achieved on few
Xeon cores. The reliance on a large number of Atom cores can be
reduced significantly by fine-tuning the application, system and
architecture level parameters. For I/O intensive applications, Xeon
still shows to be the favorite choice for energy as well as cost
efficiency.

Acknowledgment

This work was supported in parts by the National Science Foun-
dation under CSR-1526913 grant.

References

[1] Accelerating Hadoop* applications using Intel® QuickAssist Tech, [Online].
Available: http://[www.intel.com/content/dam/www/public/us/en/document
s/solution-briefs/accelerating-hadoop-applications-brief.pdf.

A. Anwar, KR. Krish, ARR. Butt, On the use of microservers in supporting
hadoop applications, in: IEEE International Conference on Cluster Computing,
CLUSTER 2014, pp. 66-74.

Apache Mahout: scalable machine-learning and data-mining library, [Online].
Available: http://mahout.apache.org/.

[4] T.G. Armstrong, V. Ponnekanti, D. Borthakur, M. Callaghan, LinkBench: A
database benchmark based on the Facebook social graph, in: ACM SIGMOD
International Conference on Management of Data, ACM, 2013, pp. 1185-
1196.

M. Arnold, H. Corporaal, Designing domain-specific processors, in: Proceed-
ings of the Ninth International Symposium on Hardware/Software Codesign,
ACM, pp. 61-66.

M. Arora, S. Nath, S. Mazumdar, S.B. Baden, D.M. Tullsen, Redefining the role
of the CPU in the era of CPU-GPU integration, IEEE Micro 32 (6) (2012) 4-16.
N. Arora, K. Chandramohan, N. Pothineni, A. Kumar, Instruction selection in
asip synthesis using functional matching, in: VLSI Design, 2010 VLSID’10 23rd
International Conference on, IEEE, 2010, pp. 146-151.

C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, T. Rabl, Setting the direction
for big data benchmark standards, in: Technology Conference on Performance
Evaluation and Benchmarking, Springer, Berlin Heidelberg, 2012, pp. 197-
208.

[9] Y.M. Choi, HK.H. So, Map-reduce processing of k-means algorithm with
FPGA-accelerated computer cluster, in: [EEE 25th International Conference on
Application-specific Systems, Architectures and Processors, ASAP, 2014.

[10] EricS. Chung, John D. Davis, Jaewon Lee, Lingits: big data on little clients, ACM
SIGARCH Comput. Archit. News 41 (3) (2013).

2

3

5

6

[7

[8

[11] Blem Emily, Jaikrishnan Menon, Karthikeyan Sankaralingam, Power struggles:
Revisiting the RISC vs. CISC debate on contemporary ARM and x86 architec-
tures, in: IEEE 19th International Symposium High Performance Computer
Architecture, HPCA2013, 2013.

[12] J.Fowers, G.Brown, P. Cooke, G. Stitt, A performance and energy comparison of
FPGAs, GPUs, and multicores for sliding-window applications, in: Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA '12, New York, NY, USA, 2012, pp. 47-56.

[13] M.Ferdman, A.Adileh, O.Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A.D. Popescu, A. Ailamaki, B. Falsafi, Clearing the clouds: A study of emerging
scale-out workloads on modern hardware, ACM SIGPLAN Not. 47 (4) (2012)
37-48 ACM.

[14] N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki, Toward dark silicon in
servers, I[EEE Micro 31 (4) (2011) 6-15.

[15] H. Homayoun, V. Kontorinis, A. Shayan, T.W. Lin, D.M. Tullsen, Dynamically
heterogeneous cores through 3D resource pooling, in: IEEE 18th International
Symposium on High Performance Computer Architecture, HPCA, 2012.

[16] T.Honjo, K. Oikawa, Hardware acceleration of hadoop mapreduce, in: Big Data,
2013 IEEE International Conference on, IEEE, 2013, pp. 118-124.

[17] S. Huang, J. Huang,]. Dai, T. Xie, B. Huang, The hibench benchmark suite:
Characterization of the mapreduce-based data analysis, in: Data Engineer-
ing Workshops (ICDEW), 2010 IEEE 26th International Conference on, IEEE,
2010.

[18] I Goiri, K. Le, T.D. Nguyen, J. Guitart, J. Torres, R.. Bianchini, GreenHadoop:
Leveraging green energy in data-processing frameworks, in: 7th ACM Euro-
pean Conference on Computer Systems 2012 Apr 10, ACM, 2012, pp. 57-70.

[19] K.R. Krish, A. Anwar, A.R. Butt, [phi] Sched: A heterogeneity-aware Hadoop
Workflow Scheduler, in: [EEE 22nd International Symposium on Modelling,
Analysis & Simulation of Computer and Telecommunication Systems, 2014.

[20] A. Kundu, K. Banerjee, N. Mellempudi, D. Mudigere, D. Das, B. Kaul, P. Dubey,
Ternary residual networks, arXiv preprint arXiv:1707.04679, 2017.

[21] S.Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, McPAT:
An integrated power, area, and timing modeling framework for multicore and
manycore architectures, in: Microarchitecture, 2009, MICRO-42.

[22] T.Li,Z.Sun, W. Jigang, X. Lu, n.d. Fast enumeration of maximal valid subgraphs
for custom-instruction identification, in: Proceedings of the 2009 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems.

[23] Z. Lin, P. Chow, n.d. Zcluster: A zyng-based hadoop cluster, in: Field
-Programmable Technology, FPT, 2013 International Conference on,
pp. 450-453, IEEE.

[24] L. Stolz, H. Endt, M. Vaaraniemi, D. Zehe, W. Stechele, Energy consumption
of graphic processing units with respect to automotive use-cases, in: En-
ergy Aware Computing, ICEAC, 2010 International Conference on, Dec 2010,
pp. 1-4.

[25] C. Luo,]. Zhan, Z. Jia, L. Wang, G. Ly, L. Zhang, C.Z. Xu, N. Sun, Cloudrank-
d: benchmarking and ranking cloud computing systems for data processing
applications, Front. Comput. Sci. 6 (4) (2012) 347-362.

[26] X. Luo, W. Najjar, V. Hristidis, n.d. Efficient near-duplicate document detec-
tion using FPGAs, in: Big Data, IEEE International Conference on, IEEE, 2013,
pp. 54-61.

[27] M. Malik, H. Homayoun, Big data on low power cores: Are low power embed-
ded processors a good fit for the big data workloads? in: 33rd IEEE Interna-
tional Conference on Computer Design, ICCD, 2015 pp. 379-382.

[28] M. Malik, K. Neshatpour, T. Mohsenin, A. Sasan, H. Homayoun, Big vs little core
for energy-efficient hadoop computing, in: 2017 Design, Automation & Test in
Europe Conference & Exhibition, DATE, IEEE, 2017, pp. 1480-1485.

[29] M. Malik, S. Rafatirah, A. Sasan, H. Homayoun, System and architecture level
characterization of big data applications on big and little core server archi-
tectures, in: Big Data (Big Data), 2015 IEEE International Conference on, Santa
Clara, CA, 2015.

[30] M. Malik, A. Sasan, R. Joshi, S. Rafatirah, H. Homayoun, Characterizing Hadoop
applications on microservers for performance and energy efficiency optimiza-
tions , in: IEEE International Symposium on Performance Analysis of Systems
and Software ISPASS, 2016.

[31] E.Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J.0.G. Hock, Y.T. Liew, K.
Srivatsan, D. Moss, S. Subhaschandra, et al., Can FPGAs beat GPUs in accelerat-
ing next-generation deep neural networks? in: FPGA, 2017, pp. 5-14.

[32] Yu.Pan, Tulika Mitra, Scalable custom instruction identification for instruction
set extensible processor, in: International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems, ACM, 2004, pp. 69-78.

[33] Janapa Reddi, Vijay, Benjamin C. Lee, Trishul Chilimbi, Kushagra Vaid, n.d. Web
search using mobile cores: Quantifying and mitigating the price of efficiency,
ACM SIGARCH Comput. Archit. News 38 (3) (2010) 314-325.

[34] M.K. Tavana, M.H. Hajkazemi, D. Pathak, I. Savidis, H. n.d. Homayoun, Elastic-
Core: Enabling dynamic heterogeneity with joint core and voltage/frequency
scaling, in: 52nd Annual Design Automation Conference, ACM, pp. 151.

https://doi.org/10.1016/j.jpdc.2018.02.017.

Please cite this article in press as: M. Malik, et al., Big vs little core for energy-efficient Hadoop computing,]. Parallel Distrib. Comput. (2018),

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://mahout.apache.org/
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb4
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb6
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb6
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb6
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb7
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb8
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb10
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb10
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb10
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb13
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb14
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb14
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb14
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb16
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb17
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb18
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb18
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb18
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb18
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb18
http://arxiv.org/1707.04679
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb25
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb26
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb26
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb26
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb26
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb26
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb28
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb28
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb28
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb28
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb28
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb32
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb32
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb32
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb32
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb32
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb33
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb33
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb33
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb33
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb33

M. Malik et al. /]. Parallel Distrib. Comput. 1 (11EE) INI-ENR 15

[35] Kontorinis Vasileios, Liuyi Eric Zhang, Baris Aksanli, Jack Sampson, Houman
Homayoun, Eddie Pettis, Dean M. Tullsen, Tajana Simunic Rosing, Managing
distributed ups energy for effective power capping in data centers,
in: Computer Architecture (ISCA), 2012 39th Annual International Symposium
on, IEEE, 2012, pp. 488-499.

[36] A. Verma, L. Cherkasova, R.H. Campbell, ARIA: Automatic resource inference
and allocation for mapreduce environments, in: 8th ACM International Con-
ference on Autonomic Computing 2011 Jun 14, ACM, 2011, pp. 235-244.

[37] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, 2014. Bigdatabench: A big
data benchmark suite from internet services, in: International Symposium on
High Performance and Computer Architecture, HPCA.

[38] Wattsuppro power meter, [Online]. Available: https://www.wattsupmeters.
com/secure/index.php.

[39] N.Yigitbasi, K. Datta, N. Jain, T. Willke, Energy efficient scheduling of mapre-
duce workloads on heterogeneous clusters, in: Green Computing Middleware
on Proceedings of the 2nd International Workshop 2011 Dec 12, ACM, 2011,
p. 1.

[40] P.Yu, T. Mitra, Disjoint pattern enumeration for custom instructions identifi-
cation, in: Field Programmable Logic and Applications, 2007 FPL 2007 Interna-
tional Conference on, IEEE, 2007, pp. 273-278.

Maria Malik is currently working towards the Ph.D. de-
gree in Electrical and Computer Engineering department,
at George Mason University, VA. She has received the
M.S. degree in Computer Engineering from the George
Washington University, DC and B.E. degree in Computer
Engineering from the Center of Advanced Studies in En-
gineering, Pakistan. Her research interests are in the field
of Computer Architecture with the focus of performance
characterization and energy optimization of big data ap-
“ l plications on the high performance servers and low-power

embedded servers, scheduling MapReduce application on
microserver, accelerating machine learning kernels, parallel programming lan-
guages and parallel computing.

Katayoun Neshatpour is a Ph.D. student at the depart-
ment of Electrical and Computer Engineering at George
Mason University. She is a recipient of the three-year
Presidential Fellowship and a 1-year supplemental ECE
department scholarship. Advised by Dr. Homayoun and
co-advised by Dr. Sasan, her Ph.D. research is on Hardware
Acceleration of Big data applications, with a focus on the
implementation of several machine learning algorithms in
Apache Hadoop and efficient implementation of convolu-
tional neural networks. Katayoun got her Master’s degree
from Sharif University of Technology, where she worked
on the VLSI implementation of a MIMO detector applied to the LTE.

Setareh Rafatirad is an Assistant Professor of the IST
department at George Mason University. Prior to joining
George Mason, she spent four years as a Research Assis-
tant at UC Irvine. Prior to that, she worked as a software
developer on the development of numerous industrial
application systems and tools. As a known expert in the
field of Data Analytics and Application Design, she has
published on a variety of topics related to big data, and
served on the panel of scientific boards. Setareh received
her Ph.D. degree from the Department of Information and
Computer Science at the UC Irvine in 2012. She was the
recipient of 3-year UC Irvine CS department chair fellowship. She received her M.S.
degree from the Department of Information and Computer Science at the UC Irvine
in 2010.

Rajiv V. Joshi is a research staff member at T. J. Watson
research center, IBM. He received his B.Tech LLT (Bom-
bay, India), M.S (M.LT) and Dr. Eng. Sc. (Columbia Uni-
versity). He holds 58 invention plateaus and has over 225
US patents and over 350 including international patents.
He has authored and co-authored over 185 papers. He
received the Best Editor Award from IEEE TVLSI journal.
He is recipient of 2015 BMM award. He is inducted into
/ \ New Jersey Inventor Hall of Fame in Aug 2014 along with
\ pioneer Nikola Tesla. He is a recipient of 2013 IEEE CAS
Industrial Pioneer award and 2013 Mehboob Khan Award
from Semiconductor Research Corporation. He is a member of IBM Academy of
technology. He served as a Distinguished Lecturer for IEEE CAS and EDS society. He
is IEEE, ISQED and World Technology Network fellow and distinguished alumnus of
IIT Bombay. He is in the Board of Governors for IEEE CAS. He serves as an Associate
Editor of TVLSL He served on committees of ISLPED (Int. Symposium Low Power
Electronic Design), IEEE VLSI design, IEEE CICC, IEEE Int. SOI conference, ISQED and
Advanced Metallization Program committees.

Tinoosh Mohsenin received the B.S. degree in electri-
cal engineering from the Sharif University of Technology,
Tehran, Iran, and the M.S. degree in electrical and com-
puter engineering from Rice University, Houston, TX. She
is currently working toward the Ph.D. degree in electrical
and computer engineering at the University of California,
Davis. She is the Designer of the Split-Row, multisplit,
and Split-Row Threshold decoding algorithms and archi-
tectures for low-density parity-check (LDPC) codes. She
was a Key Designer of the 167-processor Asynchronous
Array of simple Processors chip. Her research interests in-
clude algorithms, architectures and VLSI design for high-performance and energy-
efficient computation in the areas of networking and communications, digital signal
processing, and error-correction applications.

Hassan Ghasemzadeh received the B.Sc. degree from
Sharif University of Technology, Tehran, Iran, the M.Sc.
from University of Tehran, Tehran, Iran, and the Ph.D. from
the University of Texas at Dallas, Richardson, TX, in 1998,
2001, and 2010 respectively, all in Computer Engineering.
He was on the faculty of Azad University from 2003 to
2006 where he served as Founding Chair of Computer Sci-
ence and Engineering Department at Damavand branch,
Tehran, Iran. He spent the academic year 2010-2011 as a
Postdoctoral Fellow at the West Wireless Health Institute,
LaJolla, CA. He was a Research Manager at the UCLA Wire-
less Health Institute 2011-2013. Currently, he is Assistant Professor of Computer
Science in the School of Electrical Engineering and Computer Science at Washington
State University, Pullman, WA. The focus of his research is on algorithm design and
system level optimization of embedded and pervasive systems with applications in
healthcare and wellness.

Houman Homayoun is an Assistant Professor of the ECE
department at George Mason University. He also holds
a joint appointment with the Computer Science depart-
ment. Prior to joining GMU, he spent two years at the
UC San Diego, as NSF Computing Innovation (CI) Fellow
awarded by the CRA and CCC. Houman is currently leading
a number of research projects, including the design of
heterogeneous architectures for big data and non-volatile
logics to enhance design security, which are funded by Na-
tional Science Foundation (NSF), General Motors Company
(GM) and Defense Advanced Research Projects Agency
(DARPA). Houman received his Ph.D. degree from the Department of Computer
Science at the UC Irvine in 2010, an M.S. degree in computer engineering in 2005
from University of Victoria, and his B.S. degree in electrical engineering in 2003 from
Sharif University of technology.

https://doi.org/10.1016/j.jpdc.2018.02.017.

Please cite this article in press as: M. Malik, et al, Big vs little core for energy-efficient Hadoop computing, J. Parallel Distrib. Comput. (2018),

http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb35
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb36
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb36
https://www.wattsupmeters.com/secure/index.php
https://www.wattsupmeters.com/secure/index.php
https://www.wattsupmeters.com/secure/index.php
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb39
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb40
http://refhub.elsevier.com/S0743-7315(18)30095-9/sb40

	Big vs little core for energy-efficient Hadoop computing
	Introduction
	Experimental setup
	Measurement tools and methodology
	Operational cost and capital cost metric
	Application diversity
	Hadoop workload
	Traditional CPU benchmarks

	Traditional applications vs Hadoop applications on big and little cores
	Performance analysis
	Energy-efficiency analysis

	Experimental results and analysis
	Performance analysis
	Application execution time
	Sensitivity analysis

	Energy-efficiency analysis
	EDP of the entire application
	Map reduce phase analysis
	Sensitivity analysis

	Input data size sensitivity analysis
	Performance hotspot and post-acceleration CPU code characterization
	Frequency and HDFS block size sensitivity analysis before and after acceleration

	Scheduling

	Related work
	Conclusion
	Acknowledgment
	References

