
J. Parallel Distrib. Comput. 119 (2018) 1–17

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Energy-efficient acceleration of MapReduce applications using FPGAs
Katayoun Neshatpour a,*, Maria Malik a, Avesta Sasan a, Setareh Rafatirad a,
Tinoush Mohsenin b, Hassan Ghasemzadeh c, Houman Homayoun a

a Department of Electrical and Computer Engineering, George Mason University, United States
b Department of Computer Science and Electrical Engineering, Washington State University, United States
c School of Electrical Engineering and Computer Science, Washington State University, United States

h i g h l i g h t s

• MapReduce FPGA acceleration reduces performance and power gap between Xeon and Atom.
• Little core servers are more energy-efficient both before and after acceleration.
• FPGA-accelerated Atom server yields execution times comparable to stand-alone Xeon.
• Cost Analysis suggests replacing big-core with accelerated little core servers.
• FPGA acceleration of MapReduce maintains its benefit when scaled to larger clusters.

a r t i c l e i n f o

Article history:
Received 9 May 2017
Received in revised form 11 February 2018
Accepted 14 February 2018
Available online 19 March 2018

Keywords:
Machine learning
Hardware+software co-design
Zynq boards
MapReduce
Hadoop
FPGA

a b s t r a c t

In this paper, we present a full end-to-end implementation of big data analytics applications in a
heterogeneous CPU+FPGA architecture. Selecting the optimal architecture that results in the highest
acceleration for big data applications requires an in-depth of each application. Thus, we develop the
MapReduce implementation of K -means, K nearest neighbor, support vector machine and naive Bayes in
a Hadoop Streaming environment that allows developing mapper functions in a non-Java based language
suited for interfacing with FPGA-based hardware accelerating environment. We further profile various
components of Hadoop MapReduce to identify candidates for hardware acceleration. We accelerate the
mapper functions through hardware+software (HW+SW) co-design. Moreover, we study how various
parameters at the application (size of input data), system (number of mappers running simultaneously
per node and data split size), and architecture (choice of CPU core such as big vs little, e.g., Xeon
vs Atom) levels affect the performance and power-efficiency benefits of Hadoop streaming hardware
acceleration and the overall performance and energy-efficiency of the system. A promising speedup
as well as energy-efficiency gains of up to 8.3× and 15× is achieved, respectively, in an end-to-end
Hadoop implementation. Our results show that HW+SW acceleration yields significantly higher speedup
on Atom server, reducing the performance gap between little and big cores after the acceleration. On
the other hand, HW+SW acceleration reduces the power consumption of Xeon server more significantly,
reducing the power gap between little and big cores. Our cost Analysis shows that the FPGA-accelerated
Atom server yields execution times that are close to or even lower than stand-alone Xeon server for
the studied applications, while reducing the server cost by more than 3×. We confirm the scalability
of FPGA acceleration of MapReduce by increasing the data size on 12-node Xeon cluster and show that
FPGA acceleration maintains its benefit for larger data sizes on a cluster.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: kneshatp@gmu.edu (K. Neshatpour), mmalik9@gmu.edu
(M. Malik), asasan@gmu.edu (A. Sasan), srafatir@gmu.edu (S. Rafatirad),
tinoosh@umbc.edu (T. Mohsenin), hassan@eecs.wsu.edu (H. Ghasemzadeh),
hhomayou@gmu.edu (H. Homayoun).

1. Introduction

1 Emerging big data analytics applications require a significant
amount of server computational power. However, these applica-
tions share many inherent characteristics that are fundamentally

1 This work is an extension to a paper we published in IEEE Big Data 2015 [32].

https://doi.org/10.1016/j.jpdc.2018.02.004
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.02.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.02.004&domain=pdf
mailto:kneshatp@gmu.edu
mailto:mmalik9@gmu.edu
mailto:asasan@gmu.edu
mailto:srafatir@gmu.edu
mailto:tinoosh@umbc.edu
mailto:hassan@eecs.wsu.edu
mailto:hhomayou@gmu.edu
https://doi.org/10.1016/j.jpdc.2018.02.004


2 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

different from traditional desktop, parallel, and scale-out appli-
cations [11,30,44]. Big data analytics applications heavily rely on
specific deep machine learning and data mining algorithms. They
run a complex database software stack with various software
components (e.g. Hadoop, Spark, MPI, Hbase, Impala, MySQL, Hive,
Shark and MangoDB), which are bounded together with a runtime
software system and interact significantly with I/O and OS.

This new set of characteristics necessitates a change in the
direction of server-class microarchitecture to improve their com-
putational efficiency. However, while demand for data center com-
putational resources continues to grow as the size of data grows,
the semiconductor industry has reached scaling limits and is no
longer able to reduce power consumption in new chips. Physi-
cal design constraints, such as power and density, have there-
fore become the dominant limiting factors for scaling out data
centers [13,14]. Current server designs, based on commodity ho-
mogeneous processors, are not be the most efficient in terms of
performance/watt to process big data applications [19].

In other domains, heterogeneous architectures have emerged
as a promising solution to enhance energy efficiency by allowing
each application to run on a core that matches resource needs
more closely than a one size-fits-all processing node [16,40]. This
will be just as true for big data applications, if not more so.
A heterogeneous chip architecture integrates cores with various
micro-architectures (in-order or little, and out-of-order or big) or
even instruction set architectures (e.g., Thumb and ×86) with on-
chip GPU or FPGA accelerators to provide more opportunities for
efficientworkloadmapping so that the application can find a better
match among various components to improve power efficiency.
In particular, hardware acceleration through specialization, which
is enabled by tight integration of CPU core and FPGA logic has
received renewed interest in recent years, partially in response to
the dark silicon challenge.

As Hadoop MapReduce is a dominant framework in big data
analytics, in this paper, we will mainly focus on applications that
are developed in this framework.While hardware acceleration has
been applied to software implementation of many widely used
applications, MapReduce implementation of such applications
requires new techniques, which studies their MapReduce imple-
mentation and their bottlenecks, and selects the most efficient
functions for acceleration [17]. Also deploying hardware accel-
eration methods in a complex environment of big data (such as
Hadoop) with various phases of execution such as compression,
decompression, sorting, mapping, reduction and shuffling is be-
coming an even more challenging problem.

Most recent work on hardware acceleration have focused on
the implementation of an entire particular machine learning ap-
plication, or offloading an entire phase of MapReduce to the FPGA
hardware [17,25,36,7]. While these approaches provide perfor-
mance benefit, their implementations require excessive hardware
resources and extensive design effort. As an alternative, hard-
ware+software (HW+SW) co-design of an algorithm trades some
speedup at a benefit of less hardware and design automation using
high level synthesis (HLS) tools.

To understand the potential performance gain of using HW+SW
co-design to accelerate analytics applications in MapReduce en-
vironment, in this paper we present a full end-to-end imple-
mentation of big data analytics applications in a heterogeneous
CPU+FPGA architecture, taking into account various communi-
cation and computation overhead in the system including the
hardware communication overhead such as communication with
FPGA and communication among various nodes of a cluster, as
well as software computation overhead such as various phases
of MapReduce. In [32,33], various applications were studied in an
FPGA-accelerated framework. In this paper, we carry out extensive
analysis on big and little cores, and how they impact the role

of FPGA in the acceleration. Specifically, we compare the results
for execution time, power consumption and energy-delay-product
(EDP) of both big and little core architecture to show how the
FPGA acceleration targets the speed in Little core architecture
and the power in Big core architectures. Moreover, we carry out
simulations on a 12-node cluster on various data sizes to observe
the scalability of FPGA-accelerated architectures.

We assume the applications are fully known, therefore we can
find the best possible application-to-core+FPGA match. For map-
ping of big data analytics applications to FPGA, we are performing
the following tasks in this paper:

• Mapping hot regions of various data mining and machine
learning algorithms to the FPGA.

• Communication cost analysis of moving hotspot functions
to the FPGA.

• Evaluation of HW+SW implementation of the algorithms in
an end-to-end MapReduce system in terms of performance
and energy efficiency.

• Sensitivity analysis based on the number of mapper slots
and input data split size.

• A thorough performance and power comparison between
Xeon and Atom server.

• Study the scalability of the FPGA accelerated MapReduce on
a 12-node cluster for various input data sizes.

Consequently, we make the following major observations:

• The optimal application, architecture, and system level
parameters to maximize the performance and energy-
efficiency is different before and after acceleration.

• Performance and power sensitivity to various MapReduce
environment system parameters varies significantly before
and after acceleration. It also varies across big and little core
architectures.

• HW+SW acceleration yields higher speedup on atom server,
therefore significantly reducing the performance gap be-
tween little and big cores after acceleration.

• HW+SW acceleration yields higher power reduction on
Xeon server, therefore significantly reducing the power gap
between little and big core architectures after acceleration.

• For some applications (i.e. K -means and KNN) the FPGA
accelerated Xeon server yields lower power than stand-
alone Atom server.

• Atom server is more energy-efficient both before and after
acceleration (exhibits lower EDP).

• FPGA acceleration ofMapReducemaintains its benefit when
scaled to larger clusters.

• Our cost Analysis shows that the FPGA-accelerated Atom
server yields execution times that are close to or even
lower than stand-alone Xeon server, while reducing both
the server cost and the power consumption significantly.

This paper is organized as follows. In Section 2, a background
is provided on big data, MapReduce, and Apache Hadoop. In Sec-
tion 3, the end-to-end system architecture utilized for implemen-
tation and analysis purposes is introduced. In Section4, the acceler-
ation of studied benchmarks is described. Section 5 introduces the
analytical assumptions utilized for evaluation of potential speedup
and energy-efficiency gain. In Section 7, the results of profiling and
hardware implementation of micro kernels and functions within
the studied benchmarks are introduced. Section 6 introduces Zynq
as the case study for HW+SW acceleration. Section 10 shows the
scalability of the FPGAacceleration on a 12-node cluster. Section 11
discusses the relatedwork and Section 12 sums up the conclusions.



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 3

Fig. 1. Illustration of Four Vs of big data.

2. Big data and MapReduce framework

The cloud is a new platform that has been used to cost ef-
fectively deploy an increasingly wide variety of applications. Vast
amount of data is nowstored in a fewplaces rather thandistributed
across a billion isolated computers, therefore it creates opportunity
to learn from the aggregated data. The rise of cloud computing
and cloud data storage, therefore, has facilitated the emergence
of big data applications. Big data applications are characterized
by four critical features, referred as the four V, shown in Fig. 1:
volume, velocity, variety, and veracity [1]. Big data is inherently
large in volume. Velocity refers to how fast the data is generated
and to how fast it should be analyzed. In other words, velocity
addresses the challenges related to processing data in real-time.
Variety refers to the number and diversity of sources of data and
databases, such as sensor data, social media, multimedia, text, and
much more. Veracity refers to the level of trust, consistency, and
completeness in data.

MapReduce is the programming model developed by Google to
handle large-scale data analysis. MapReduce consists of map and
reduce functions. The map functions parcel out the work to dif-
ferent nodes in the distributed cluster. They process <key/value>
pairs to generate a set of intermediate <key/value> pairs. The
reduce functions merge all the intermediate values with the same
intermediate key and collate the work to resolve the results.

Apache Hadoop is an open-source Java-based framework of
MapReduce implementation. It assists the processing of large
datasets in a distributed computing environment and stores data
in highly fault-tolerant distributed file system (HDFS). Hadoop
runs the job by breaking it into tasks, i.e., map and reduce tasks.
The input data is divided into fixed-size pieces called input splits.
Each map task processes a logical split of this data that resides
on the Hadoop distributed file system (HDFS). Small input splits
yield better load balancing among mappers and reducers at the
cost of communication overhead. In order to perform data locality
optimization, it is best to run the map task on a node where, input
data resides in the HDFS. Thus, the optimal split size for data is the
size of an HDFS block (Typically 64 MB, 128 MB, etc.) [45].

The Hadoop MapReduce implementation consists of several
phases as depicted in Fig. 2. Compression and decompression are
optional phases, which can improve the performance of the system
especially for large data sizes.

2.1. Timing

InMapReduce a phase cannot complete before it receives all the
data from the previous phase. Thus, the job running time depends

Fig. 2. Hadoop MapReduce: Computational Framework Phases [2].

Fig. 3. Timing of various Hadoop phases.

on the time it takes to complete all the phases, rather than the
duration of individual phases comprising it [8].

While the programming model in MapReduce is comprised of
two phases, i.e., map and reduce, its execution model has four
phases [4]. The first phase is map in which, the map tasks are
executed on the entire input data. The map phase is completely
parallel. During this phase, the input data is divided into fixed-
size pieces called input splits. One map task is created for each
input split, on which the user-defined map function is executed
and the <key,value> pairs are generated. In the second phase all
<key,value> pairs for a particular key are sent to a single reduce
task. In [23], this phase is referred to as all-map-to-all-reduce
personalized communication. In MapReduce this phase is called
shuffle [10]. In the third phase, the <key,value> pairs are sorted
based on the key. In this phase, all the values associated with each
key are grouped together. The fourth and final phase is the reduce,
in which reduce tasks are applied to the <key,value> pairs of the
same key and the final output for that key is generated.

Fig. 3 shows the timing diagram of a MapReduce application
with 15 map jobs, 4 mapper slots and one reduce job. In [3]
a thorough analysis is carried out on the timing of MapReduce
phases. Fig. 3 shows only the timings that are relevant to our work
and play a part in the timing analysis after HW+SW acceleration.

As shown in Fig. 3, the map phase starts with the start of the
first map task and finishes when the last map task completes its
execution. Other phases are also shown in Fig. 3. It should be noted
that shuffle starts shortly after the first map, andwill not complete
until all themap tasks are finished. In this example, shuffle finishes
shortly after the last map, i.e., a low-volume shuffle. In case of a
high-volume shuffle, the shuffle takes longer to finish. The third
phase, i.e., sort, finishes after the shuffle. The reduce phase only
starts after all the data is sorted. Upon the completion of the reduce
phase, the whole MapReduce job is finished.

In the MapReduce platform, a significant portion of the execu-
tion time is devoted to the map and reduce phase, as they carry
out the computation part. In this paper, we target the map phase
for acceleration, as it accounts for a high portion of the execution
time across studied machine learning kernels. It should be noted
that, even if we are able to accelerate the map phase significantly,
still the other phases take up a significant part of the execution
time. Thus, they limit the extent to which we are able to accelerate
a MapReduce job.



4 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

3. System architecture

3.1. Single-node

Fig. 4 shows the system architecture of the single-node, multi-
core platform studied in this paper. The multi-node architecture
will be discussed in the sequel.

A general-purpose CPU comprises of several identical cores,
connected to each other through their shared-memory distributed
interconnect. However, for hardware acceleration,we assume each
core is extended with a small FPGA fabric. We study how adding
on-chip FPGAs to each core would enhance the performance of
the multi-core architecture that runs Hadoop MapReduce. While
in a general purpose multi-core CPU, mapper/reducer slots are
mapped to a single node, in the heterogeneous architecture de-
picted in Fig. 4, each mapper/reducer slot is mapped to a core that
is integrated with the FPGA. Given the tight integration between
FPGA and CPU, the interconnection interface between the two is
the main overhead that is accounted for in this work. Thus, each
mapper and reducer is acceleratedwith the FPGA,without anyhigh
off-chip data transfer overhead.

For implementation purposes, we compare two types of core
architectures; little core Intel Atom C2758, and big core Intel Xeon
E5. These two types of servers represent two schools of thought
in server architecture design: using big Xeon server, which is a
conventional approach to designing a high-performance server,
andAtom,which is a new trajectory in server design that advocates
the use of a low-power core to address the dark silicon challenge
facing servers [14,29].

Intel Atom C2758 server deploys 8 processor cores, a two-level
cache hierarchy (L1 and L2 cache sizes of 24 KB and 1024 KB,
respectively), and an operating frequency of 2.4 GHz with Turbo
Boost. Intel Xeon has two socket of six aggressive processor cores
per node, three levels of cache hierarchy, private L1 and L2 cache
and shared L3 cache. L1, L2 and L3 cache sizes are 32 KB, 256 KB
and 15 MB, respectively.

Moreover, each FPGA in Fig. 4 is a low cost Xilinx Artix-7with 85
KB logic cells and 560 KB block RAM. The integration between the
core and the FPGA is established through the Advanced eXtensible
Interface (AXI)-interconnect.

AXI is an interface standard through which, different compo-
nents communicate with each other. The AXI link contains an AXI
master, which initiates transactions, and the AXI slave, which re-
sponds to the transactions initiated by the master. The data that is
transferred between the core and the FPGA, is rearranged to create
transfer streams. A direct memory access (DMA) engine is used to
move streams in and out of the memory that is shared between
the FPGA and the core. The DMA provides high-bandwidth direct
memory access between the AXI-stream and the IP interfaces that
are implemented on the FPGA.

3.2. Multi-node

Fig. 5 shows the system architecture of the proposed multi-
node cluster. The architecture consists of a homogeneous CPU as
the NameNode, which is connected to several DataNodes with a
heterogeneous architecture. The architecture of each DataNode is
similar to the architecture in Fig. 4.

The NameNode runs the JobTracker and is responsible for the
job scheduling between all the DataNodes. It is configured to
distribute the computation workloads among the DataNodes. Each
DataNode has several mapper and reducer slots. The number of
mapper and reducer slots on each DataNode is based on its number
of cores. The interconnection between the NameNode and DataN-
odes is established through amulti channel Gigabit switch to allow
high data transfer rates.

4. Benchmark acceleration

Acceleration of the applications through HW+SW co-design
is a complex problem, particularly because different phases of
the same application often prefer different configurations and,
thus, it requires specific scheduling and mapping to find the best
match. Making wrong scheduling decisions leads to suboptimal
performance and negatively impacts power and energy consump-
tion [42].

The primary step to deal with these problems is a comprehen-
siveworkload analysis and performancemonitoringwhen running
an end-to-end or full system benchmark. To this end, we introduce
the architecture of an end-to-end MapReduce implementation.

It is worth noting that MapReduce is best suited for classic
machine-learning applications including classification and clus-
tering. For instance, Google Maps utilizes MapReduce to find all
roads connecting to a specific intersection, or finding the nearest
feature to a given address or current location. Thus, we select
four widely used machine-learning application for HW+SW co-
design namely, K -means, KNN, Naive Bayes and SVM. It should be
noted that few works have focused on implementation of neural
networks in theMapReduce [26,27]. However, since GPUs are ideal
for situations involving applying the same vector/matrix operation
across a large number of datasets, most recently they are mainly
being used for neural networks. Thus, we limit our experiments
to classic machine-learning applications. Subsequently, We char-
acterize each application in order to find out which kernels are the
best candidates to be offloaded to the hardware for acceleration.

4.1. Profiling

As a first step, a comprehensive workload analysis and perfor-
mance monitoring is done for four widely used machine learning
kernels. We profile each application using the GNU profiler. We
execute the profiling for various input data sizes and different pa-
rameters. Table 1 shows the profiling results for selected examples
for each application. A detailed description of the results for each
application comes in the sequel.

4.1.1. K-means
K -means is a partitioning-based clustering application that par-

titions n observations into k clusters such that each observation
is mapped to the cluster with the closest mean based on spe-
cific features. In this paper, the K -means application from NU-
MineBench [31] is studied.

K -means comprises several kernels. Three dominant ones,
which account for a considerable portion of the execution
time are kmeans_clustering, find_nearest_point and euclid_dist_2.
Kmean_clustering is the top function,which calls find_nearest_point,
which in turn calls euclid_dist_2. The timing behavior of the appli-
cation is highly dependent on input parameters including number
of points (N), number of clusters (k), and the feature size (f ). Based
on Table 1, the time spent in all of the functions increases with the
number of points and feature size. Note, that since the functions
are nested, the percentage numbers are not adding up to 100%.

4.1.2. KNN
KNN is a pattern recognition algorithm, which finds the k near-

est neighbors of a vector among N training vectors based on f
features. In order to profile the KNN algorithm, a C-based imple-
mentation of KNN is profiled. Table 1 shows the profiling results of
KNN classifier for two functions that dominate the execution time,
i.e KNN_classify and sq_euclid_dist. The results show that the time
per call increases with the feature size.



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 5

Fig. 4. System architecture of HW accelerator for a single node.

Fig. 5. System architecture for a multi-node cluster.

4.1.3. SVM
SVM is amachine learning algorithm, that is used extensively in

data analysis and pattern recognition as non-probabilistic binary
linear classifier. We utilize SVM-light C-based code [21] for differ-
ent datasets. Sprod_ns, sprod_ss and solve_dual are three indepen-
dent functions, which take up most of the SVM-learn execution
time. The first two compute the inner product of sparse vectors,
and the latter solves dual problems. Based on the results in Table 1,

the number of training documents (N), support vectors (M) and
feature size (f ) are important factors that influence the execution
time.

4.1.4. Naive Bayes
Bayes classifier is anothermachine learning algorithm, which is

used as a probabilistic classifier using strong independent feature
model and the Bayesian theorem. A C-based implementation of



6 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

Table 1
Profiling results.

Application Function Calls Percentage Time/call

Example 1 N = 100 k = 13 f = 10
K_means_clustering 80 100% 500 µs
find_nearest_point 10321 75% 2.91 µs

K -means euclid_dist_2 89783 50% 223 ns

Example 2 N = 17 695 k = 13 f = 18
K_means_clustering 80 99.9% 358 ms
find_nearest_point 17025982 84.6% 1.424 µs
euclid_dist_2 134110063 75.7% 162 ns

Example1 f = 5
KNN_classify 18597 97.07% 889.29 µs

KNN sq_euclid_dist 280004358 80.26% 59.39 ns

Example2 f = 10
KNN_classify 18597 99% 1.571 ms
sq_euclid_dist 280004358 88.28% 114.92 ns

Example 1 N = 610 M = 370 f = 9930
solve_dual 7136 78.3% 375.56 µs
sprod_ns 2667530 8.2% s 105 ns

SVM sprod_ss 245091 2.6% 367 ns

Example 2 N = 2000 M = 879 f = 9947
solve_dual 7136 91.41% 388.17 µs
spro_ns 2667530 8.5% s 97.5 ns
sprod_ss 245091 1.3% 163 ns

linelength 18597 13.85% 2.094 µs
areaunderCurve 18597 13.48% 1.997 µs

Naive Bayes normDecay 18597 11.61% 1.687 µs
abs 9521459 11.98% 3.3 ns
nb_classify 18597 8.99% 1.205 µs

the Naive Bayes was profiled for several examples. Nb_classify,
Linelength, AreaUnderCurve, normDecay are a number of functions
that carry out mathematical operations on the data and abs is
another function that is called within these functions.

4.2. High-level synthesis of hotspot functions

While a hardware equivalent of a C or C++ function can be
realized manually with optimal performance, it can be extremely
time consuming for complex functions. In order to speedup this
process, high-level synthesis (HLS) is used. HLS is the automated
process of transforming a C or C++ code into a register transfer
level (RTL) description. The C/C++ language provides constructs to
directly access memory. However the synthesis of such structures
is a big challenge for HLS tools.

Recent works have addressed the problem of the implemen-
tation of dynamic, pointer-based structures [39,46]. Xilinx Vivado
HLS tool supports pointer arrays, provided each pointer points to
a scalar or an array of scalars. It also supports pointer casting be-
tween native C type. However, it does not support array of pointers
pointing to additional pointers or general pointer castings [43].
Recent works have addressed the problem of the implementation
of dynamic, pointer-based structures [39,46]. Thus, a number of
changes were made to the functions that were selected for hard-
ware implementations to synthesize them,whilemaintaining their
functionality.

It should be noted that the hardware implementations of some
of the selected functions are dependent on input parameters,
which is specific to each example. For the K -means applications
for instance, the RTL equivalent of the find_nearest_point function
is highly dependent on the number of points.

Exploration of the dependencies in the code are of high impor-
tance for optimization purposes. The dependencies could be at fine
granularity, i.e., the dependencies between each iteration of the
loopswithin each function, which can limit the performance bene-
fit gained through pipelining and loop unrolling, given availability
of unlimited hardware resources. At a coarse granularity, multiple
execution of the same function may be explored for parallelism.

If the result of each call of the hotspot function is independent
from the result of the previous call, multiple instances of the same
function may be instantiated to speed up the overall execution
time; however, FPGA transfer bandwidth capacity and hardware
resources may become a bottleneck.

Exploitation of parallelism at these levels requires an in-depth
analysis of the code, function calls and timing diagram of each
application for various inputs. In this paper, we aim to optimize
each function exploiting various design techniques such as pipelin-
ing and loop unrolling. Further incorporation of inter-function
parallelization will be the focus of future work.

Table 2 shows the HLS implementation results of the studied
functions on the ZedBoard. All designs are pipelined in order to
get the best results. The latency values show the number of clock
cycles it takes to produce an output value, which shows the delay
of the circuit. The interval values show the number of clock cycles
between when the task starts to accept new input data, which is
an indicator of the speedup the function can achieve. It should be
noted that loop un-rolling and pipelining significantly reduces the
interval and thus increases the speed of the accelerated functions.
Without them, the throughput of the accelerated functions would
have been comparable to the software version.

5. Hardware+software speedup calculation

In case of acceleration of applications in the MapReduce plat-
form, what needs to be taken into account is the highly parallel
nature of the map functions, which allows higher acceleration by
concurrent processing of multiple computations that have no data
dependencies.Most efforts formodeling of the hardware+software
co-design have founddata dependencies to be an important barrier
in the extent to which a function is accelerated [6,9,47], how-
ever this is not the case for MapReduce. In the map phase of
most machine-learning applications a small function, i.e., an in-
ner product or a Euclidean distance calculation is the most time-
consuming part of the code, where multiple instances of a small
function can be executed in parallel with no data dependencies.



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 7

Table 2
HLS implementation results.

Application Function Clock [ns] Latency [cycles] Interval [cycles]

K -means K_means_clustering 4.01 686 687
N = 10, k = 13, f = 10 find_nearest_point 3.36 2 3

euclid_dis_2 3.36 1 2

K -means K_means_clustering 4.01 18697 18698
N = 17 695, k = 13, f = 18 find_nearest_point 3.38 2 3

euclid_dis_2 3.38 1 2

KNN classify sq_euclid_dist 5.2 154 3
f = 5

KNN classify sq_euclid_dist 5.2 224 5
f = 10

SVM learn solve_dual 4.55 105 106
N = 610,M = 370, sprod_ns 3.65 3210 100
f = 9947 sprod_ss 3.65 5113 150

SVM learn solve_dual 4.55 3327 3328
N = 2000,M = 879 sprod_ns 3.65 3210 100
f = 9930 sprod_ss 3.64 5113 150

lineLength 3.65 4116 128
areaUnderCurve 3.65 4134 128

Naive Bayes normDecay 4.13 4146 128
abs 3.13 4 1
nb_classify 4.55 957 25

This significantly increases the benefit of hardware acceleration for
MapReduce.

While a thorough investigation of the codes and timing dia-
gramswill help resolve the dependencies and addmoreparallelism
to the implementation, in this paper for the purpose of a general
model applicable to all applications, a worse case scenario is con-
sidered inwhich, it is assumed that various functions implemented
in the hardware may incur dependencies, thus they are not called
simultaneously.

Firstly, we drive the speedup ignoring the overhead. While this
is not a realistic assumption given the communication latency in
ZedBoard, it provides us with an estimate of the upper-bound
speedup that can be achieved. Subsequently, a basic estimation
for the transfer time is also incorporated into the calculations for
deriving the overall execution time.

5.1. Zero-overhead communication

In Section 4 we derived the amount of time spent in each
function in the software implementations. Here, for the purpose
of a general model applicable to all applications, it is assumed
that various functions implemented in the hardware may not be
called simultaneously. The amount of time spent in each function
is therefore deducted from the overall execution time to find the
time spent in the software. Then, for each function implemented
in the hardware, the hardware time per call for each function is
calculated as the interval cycles multiplied by the clock period.
For each function, the number of times that function is called is
multiplied by the hardware time per call to find the hardware
time for that function. If more than one function is implemented
in the hardware, the total hardware times for all the functions
will be added together to get the total hardware times. The final
accelerated execution time will be the total software time plus the
total hardware time.

Eq. (1) shows the equation used to derive the accelerated time.

Tacc = Torig −

n∑
i=1

SWi,PC × Ci +

n∑
i=1

HWi,PC × Ci, (1)

where Tacc and Torig show the total execution time in the accel-
erated design and the purely software implementations, respec-
tively. n is the number of accelerated functions, SWi,PC and HWi,PC
are the software and hardware time per call for function i, and Ci is
the number of calls to function i.

5.2. Modeling the overhead

The assumptions for the calculation of the overhead due to
PS–PL communication are described in the sequel; however, these
assumptions are used for a first order assessment. Network queue-
ing depth, latency, contention in larger networks and the switching
network will have to be addressed for a more detailed assessment.

5.2.1. The PL–PS data transfer overhead
In order to calculate the transfer time, we add the time for com-

munication of the core with the FPGA. Note that the transfer time
is device-dependent. Moreover, the size of data that is communi-
cated between the core and the hardware should be compared to
the bus bandwidth of the board that is being used. Thus, if the size
of transfer data is large, the communication bandwidth between
the software and hardware may be potential bottlenecks.

The accelerated time calculated in (1) is modified in (2) to
estimate the new accelerated timeswith the communication over-
head.

T ′

acc = Tacc +

n∑
i=1

Ti,tr × Ci, (2)

where, T ′
acc is the total accelerated time and Ti,tr is the transmission

time for each call of function i. Ti,tr is calculated as:

Ti,tr =
Di

BWPL,PS
, (3)

where Di is the size of data being transferred between the PL and
PS through each call of the accelerated function, and BWPL,PS is the
bandwidth of the data transfer between the PL and PS.

Considering the Zynq architecture, data transfer is done using
AXI interconnect. Direct memory access (DMA) is mostly used for
larger amount of data to improve the efficiency and reduce CPU
intervention. Thus, the contention and the cachemisses eventually
reduces the effective communication bandwidth.

It should be noted that (2) considers a worse case scenario;
however,we are able to reduce the accelerated timebyoverlapping
communication and computation on accelerators.

5.2.2. Communication overhead in Hadoop environment
PCI-Express is used for the communication between the nodes

in the system. Based on the number of nodes, the data is transferred



8 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

among the various nodes in the system. In this paper, we assume
that the entire input data is passed from the master to the slave
nodes. Thus, the communication overhead is calculated as follows.

Tntw =

∑N
i=1 Di,ntw

BWPCI
, (4)

where Di,ntw is the size of data transferred from the master node
to node i, BWPCI is bandwidth of the PCI-Express bus and N is the
number of nodes.

6. Case study for ZedBoard

AXI is an interface standard through which, different compo-
nents communicate with each other. The AXI link contains an
AXI master, which initiates transactions, and the AXI slave, which
responds to the transactions initiated by the master. The are two
types of AXI interfaces, AXI memory mapped interface and AXI
stream interface.

AXI4 is for memory mapped interfaces and allows burst of up
to 256 data transfer cycles with just a single address phase. AXI4-
Stream removes the requirement for an address phase altogether
and allows unlimited data burst size. AXI4-Stream interfaces and
transfers do not have address phases and are therefore not consid-
ered to be memory-mapped. Another approach is to build systems
that combine AXI4-Stream and AXI memory mapped IP together.
Often a DMA engine can be used to move streams in and out of
the shared memory. To this end AXI Direct Memory Access (DMA)
IPs are utilized in this paper, which provide high-bandwidth direct
memory access between the AXI4 memory mapped and AXI4-
Stream IP interfaces.

At a 100 MHz clock frequency, data transitions may be realized
from AXI4 master to AXI stream slave and AXI stream slave to
AXI4master at data-rates of 400MBps and 300MBps, respectively,
which are 99.76% and 74.64% of the theoretical bandwidths [28].
These numbers are utilized to find the data transfer overhead
between the PL and PS in the Zynq devices.

7. Implementation results

7.1. Acceleration results on the zedboard

Table 3 shows the results of the overall speedup. For each
application, various functions were selected for acceleration. The
first set of reported speedups is derived based on (1), with zero-
overhead. The second set of results includes the overhead. The
overhead-included speedup is considerably lower than the zero-
overhead speedup, only if the size of data being transferred is large,
or the accelerated function is called many times.

For each application, various functions were selected for ac-
celeration. For the K -means application, implementing the top
module yields a noticeably high speedup. Table 3 shows that when
we select lower-level functions such as find_nearest_point and eu-
clid_dist_2, the resulting speedup is becoming significantly lower.
That is to be expected, since utilization of a dedicated hardware
optimized for a specific function will result in a faster design.

Implementation of the sprod_ns and sprod_ss function for SVM
showed that the hardware time for these functions is higher than
the software time, which precludes them for being accelerated
through hardware. The solve_dual function however resulted in
lower hardware time, which is thus the only results reported for
SVM in Table 3.

For the Naive Bayes algorithm, various functions were selected
for hardware implementation. The first results are derived for
when only one of the functions were selected and the last result
is derived for the case where several functions were selected.
The results show that by increasing the number of functions that

are moved to the hardware, the speedup increases; however the
amount of available hardware should also be considered.

In Table 3, the size of data being transferred during each call of
the k_means_clustering is considerably high, thus the overhead of
the data transmission results in a significant drop in the speedup
(64% and 54% drop for feature sizes of 10 and 18, respectively).
When the find_nearest_point function is accelerated, the size of
transferred data during each call is much lower; however, since
the number of function calls is higher, we still observe some drop
in the speedup (3.2% and 3.6% drop for feature sizes of 10 and 18,
respectively).

Table 3 shows that selection of the functions for acceleration is
not only concluded based on the implementation on the hardware,
but also on the data transfer overhead.

7.2. Acceleration results in Hadoop environment

In this section, we present the speedup results in an end-to-
end Hadoop system for offloading time-intensive functions of the
studiedmachine learning kernels to FPGA accelerator.We use Intel
Vtune for hotspot analysis of Hadoop MapReduce. Intel VTune
is a performance-profiling tool that provides an interface to the
processor performance counters [18]. Using Vtune, we analyze the
contribution of kernel execution time over the total execution time
when running Hadoop.

Fig. 6 shows the common hotspot modules of big data applica-
tions on both Intel Atom C2758 and Xeon E5, for different number
of mappers. Application kernel represents the computation part to
perform the task such as K -means, KNN, etc. Libz performs the data
compression and decompression tasks for the Hadoop workload.

Amdahl’s law is used to calculate the overall speedup on an end-
to-end Hadoop system, based on the speedup results from Table 3
and Hadoop hotspot analysis in Fig. 6.

Fig. 7 shows the achievable acceleration of the Hadoop system
for selected examples in Table 3 for an architecture with four
mapper slots. Results show that the speedup of each application
through HW+SW acceleration is translated into a lower speedup
on the end-to-end Hadoop system. For instance, while the acceler-
ation of the K -means yields a speedup of the order of 312× with
zero overhead, the speedup drops to 146× with the data transfer
overhead, and 2.78× and 2.29× on Hadoop platform with Atom
and Xeon, respectively. The final speedup is greatly affected by the
fraction of time the kernel execution takes to run in the Hadoop
environment. In other words, even if we are able to significantly
accelerate the kernel through HW+SW co-design, the overall ac-
celeration on the Hadoop platform is insignificant if most of the
time is spent on operations other than the kernel, including data
compression and transfers.

7.3. Power and energy-delay product

An important benefit of offloading applications to dedicated
hardware is enhancing power efficiency. General-purpose CPUs
such as Atom and Xeon are not designed to provide maximum
efficiency for every application. Accelerators can help improve
the efficiency by not only speeding up execution time, but also
executing the task with just enough required hardware resources.

The power values were calculated with the same methodology
as the one used to calculate the execution time in Section 5.
Power measurement for each application is done using picoScope
digital oscilloscope for the ARM and FPGA board (the board idle
powerwas deducted from the power readings valuewhen running
application to estimate core power). We measured the power by
measuring the current flowing to core and multiplying that by the
core voltage. To measure the current, we measured the voltage



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 9

Table 3
HLS implementation results.

Application Accelerated function Zero-overhead Speedup Overhead-included Speedup

N = 100, k = 13, f = 10

k_means_clustering 181.5 65.08
find_nearest_point 3.96 3.83

K -means euclid_disc_2 1.94 1.94

N = 17 695, k = 13, f = 18

k_means_clustering 312.5 146.83
find_nearest_point 5.89 5.77
euclid_dist_2 3.64 3.64

f = 5

KNN sq_euclid_dist 2.44 1.92

f = 10

sq_euclid_dist 3.15 2.37

N = 2000,M = 879 f = 9947

SVM solve_dual 4.03 4.03

N = 610,M = 370 f = 9930

solve_dual 8.23 8.23

lineLength 1.126 1.126
areaUnderCurve 1.138 1.138
normDecay 1.091 1.091
nb_classify 1.093 1.093

Naive Bayes mh_abs 1.0071 1.0071
(lineLength,
areaUnderCurve, 1.629 1.629
normDecay,
nb_classify)

Fig. 6. Hotspot analysis before acceleration.

Fig. 7. Acceleration on a full-blown system with four mapper slots.



10 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

drop across the test points provided on the board divided by the
resistance around those points.

Assuming a uniform distribution of energy over the execution
time, the energy dissipation of the accelerated regions was re-
placed with that of the FPGA to get the energy of the accelerated
kernel. Wattsup pro meter was used for power reading on the
end-to-end Hadoop system running on Xeon and Atom servers;
however, only a fraction of the total energy is due to the kernel,
which is substituted with the energy of accelerated kernel. By
averaging the resulting Hadoop energy over the new execution
time, the power consumption values were calculated.

Table 4 shows the power and energy-delay-product (EDP) re-
sults for four mappers on Xeon and Atom. The initial power num-
bers refer to the power values on Hadoop before acceleration and
the accelerated power refer to power number after acceleration.
Power ratio shows the ratio of power before the acceleration to the
power after the acceleration. EDP shows the energy delay product.

Based on Table 4, power is reduced by up to 3.7× in the studied
applications. Moreover, since both the execution time and the
power has been reduced through the acceleration, EDP is signifi-
cantly reduced by up to 15.21×.

8. Sensitivity analysis

8.1. Number of mapper slots

An important factor in determining the performance of an an-
alytics application running in Hadoop MapReduce environment is
the number of mapper and reducer slots. The optimal number of
mappers and reducers aims to create a balance among the CPU
computing power and the amount of data that is transported across
nodes. In this section, we evaluate FPGA acceleration results using
different number of mappers for running the Hadoop with 1, 4 and
8 mapper slots.

Fig. 6 shows the results of the hotspot analysis for different
number of mappers. Fig. 8 shows the FPGA acceleration results
using different number of mapper slots.

Results show that for Atom, K -means, KNN and SVM yield
almost the same execution time for different number of mapper
slots and for the Naive Bayes, four mapper slots yield the best
results.When Xeon server runs themaster node, for KNN and SVM,
four mapper slots yield the best results.

While increasing the number ofmapper slots in the architecture
allows the exploitation of more levels of parallelism, the com-
munication overhead limits the range of achievable speedup. For
instance, Fig. 8 shows that increasing the number of mapper slots
to four enhances the performance; however, further increase has
no or negative effect on the execution time. However, the optimal
configuration is highly dependent on the application type, the
architecture of the master node, the hotspot characteristics of the
application on the Hadoop framework, size of input data splits and
the implementation.

8.2. Size of data

In theMapReduce platform, the input data is split into a number
of input splits. Each map task processes a logical split of data. The
splits of data go to the kernel. Thus, the size of the data that goes
to the accelerated kernels is the size of the input splits (not to be
confused with the size of input data).

It should be noted that the number of times each function is
called within each run of the algorithm, and the fraction of the
execution time devoted to that function is dependent on the size
of input data. Thus, we conducted the data size sensitivity analysis
of studied machine learning applications on the Zynq platform to
find out the trend of speedup changes with respect to the input

data size. For each application, the profiler calculated the fraction
of time spent for each accelerated function and the corresponding
speedup was calculated.

Table 5 shows the execution time after acceleration and the
speedup for different data sizes for all applications. Table 5 shows
that as expected, the execution time increases with the increase in
data size. Moreover, the data size has little impact on the achiev-
able speedup, which is due to the overhead for the transfer of data
through the switching network and PCI-express.

Fig. 9 shows the speedup results for a studied range of data
sizes. Since the execution of some of the applications including
the Naive Bayes on small data sizes resulted in very low execution
times, (less than 0.1 s), the profiling results were not reliable and
thus not reported.

As the results show, the input data size have a significant effect
on the speedup in some applications. In case of the K -means al-
gorithm, the speedup increases significantly with the size of input
data. The size of data does not have much effect on the speedup of
Naive Bayes and KNN. Finally, the speedup of the SVM algorithm
decreases as the data size increases in the SVM algorithm. The
different trend observed in these applications for small sizes is due
to both the PS–PL overhead and change in the fraction of execution
time devoted to different accelerated functions. However, as input
data size increases (beyond 10 MB for these applications), the
speedup values start to converge.

9. Performance and cost analysis

9.1. Power and performance comparison of big and little core archi-
tecture

We studied two very distinct server microarchitectures; a high
performance big Xeon core and a low power embedded-like little
Atom core. These two types of servers represent two schools of
thought on server architecture design: using big core like Xeon,
which is a conventional approach to designing a high-performance
server, and the Atom, which is a new trajectory in server design
that advocates the use of a low-power core to address the dark
silicon challenge facing servers.

Based on the results from Fig. 7, the range of speedup achieved
through HW+SW co-design is the higher for Atom considering all
the applications. This is due to the fact that for the Atom server,
a larger part the application is being accelerated at a higher rate.
To compare the overall execution time, Fig. 10 shows the execu-
tion time before and after the acceleration for Atom and Xeon.
The figure shows that the overall execution time is lower on the
architecture in which, HDFS runs on the high-end cores (Xeon).
However the acceleration reduces the execution time of Atom at a
higher rate. Thus FPGA acceleration, reduces the performance gap
between Atom and Xeon.

The results show that the FPGA-accelerated Atom server out-
perform the non-accelerated Xeon server for most of the appli-
cations. This is due to the fact that on the one hand, for these
applications the map phase accounts for a higher portion of the
execution time on Atom, and on the other hand, the map functions
on slower Atom server are accelerated at a higher rate.

Fig. 11 shows the power consumption of Atom and Xeon server
before and after the acceleration. The results show that while the
power consumption is higher on the Xeon server, the rate of power
reduction due to FPGA acceleration is higher on the Xeon server
too, thus reducing the power gap between Atom and Xeon. For
some applications (i.e.,K -means andKNN) the power consumption
of FPGA-accelerated Xeon server is lower that the non-accelerates
Atom server. This is to be expected, as Atom uses small cores,
designed to consume low power. However, the power reduction
through hardware acceleration is lower for the low-end server
(Atom), since it already consumes lower power.



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 11

(a) (b)

Fig. 8. Execution time after acceleration for various number of mapper slots on Atom (a) and Xeon (b).

Fig. 9. Kernel acceleration for different input data sizes.

Fig. 10. Execution time comparison of Atom and Xeon.

Fig. 11. Power comparison of Atom and Xeon.



12 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

Table 4
Power and energy analysis for four mapper slots.

Application ini power [W] acc power [W] ini EDP [W s2] acc EDP [W s2] power ratio EDP ratio

Xeon

K -means 15.88 7.45 42939.52 2823.1 2.13 15.21
KNN 18.59 9.07 22330.06 3853.57 2.05 5.79
SVM 17.37 12.24 13615.73 4601.9 1.42 2.96
NB 32.26 8.72 18580.43 2316.3 3.7 8.02

Atom

K -means 2.99 2.68 5412.17 680.84 1.11 7.95
KNN 3.14 2.87 14912.68 4283.73 1.09 3.48
SVM 2.87 2.77 5062.68 862.09 1.03 5.87
NB 4.26 3.96 5103.49 2242.03 1.07 2.28

Table 5
Execution time for different data sizes.

Execution time [s] Speedup

Data input 284 KB 128 MB 2 GB 284 KB 128 MB 2 GB
K -means 19.20 181.60 303.26 2.708 2.708 2.707

Data input 172 K 4 MB 16 MB 172 K 4 MB 16 MB
KNN 19.91 132.90 504.62 1.740 1.740 1.740

Data input 100 MB 2 GB 10 GB 100 MB 2 GB 10 GB
SVM 18.93 85.71 337.31 1.479 1.479 1.478

Data input 100 MB 2 GB 7 GB 100 MB 2 GB 7 GB
Naive Bayes 16.62 48.48 104.57 1.444 1.444 1.443

Fig. 12. EDP time comparison of Atom and Xeon.

Fig. 11 shows the EDP of Atom and Xeon server before and after
the acceleration. The results show that while the energy efficiency
is enhanced more significantly for the high-end server (Xeon),
both stand-alone Atom server and FPGA-accelerated Atom server
still yield lower EDP and exhibit enhanced energy-efficiency (see
Fig. 12).

The comparison of Intel Atom and Xeon shows how the FPGA
acceleration targets the speed in Little core architecture and the
power in Big core architectures. Moreover, the FPGA-accelerated
little core architecture is the most energy-efficient choice for
MapReduce acceleration, with its execution time comparable to
(and sometimes even lower than) that of Xeon. This finding is
significant in making architectural decisions while designing an
efficient platform for MapReduce.

9.2. Cost analysis

Fig. 13 shows the capital cost of studied architectures normal-
ized to the cost of Atom server. We utilize conventional costs for
various componentswith Xeon and a low-end FPGA (Artrix-7) hav-
ing 4.1× and 30% of the cost of an Atom server. The figure shows

Fig. 13. Cost comparison for various architectures.

that while execution time of applications on the — Xeon+FPGA
platform is the lowest, it is not the most cost-efficient solution.
On the other hand, adding FPGAs to Atom server is a cost effective
solution to get enhanced performance without having to move to
expensive servers like Xeon. The FPGA-accelerated Atom server
yields execution times that are close to or lower than stand-alone
Xeon server for the studied applications, while reducing the server
cost by more than 3×. However, if the main optimization goal is
the execution time, accelerating Xeon server is the best solution,
albeit not cost-efficient.



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 13

10. Scalability in a multi-node architecture

In order to understand the scalability of the acceleration
method presented in this paper, in this section we study HW
acceleration in a multi-node cluster and across a large range of
input data size.Weuse a 12-node (1NameNode and 11DataNodes)
cluster, each with dual Intel Xeon E5-2670 (2.60 GHz) 8 core
CPUs allowing up to 176 mapper/reducer slots. We execute the
applications for various data sizes. The HDFS block size is set to
128 MB. Thus, based on the input data size, the number of data
splits vary (i.e, 8, 40, 80, 160 and 800 for input data of 1, 5, 10,
20 and 100Gb, respectively). Table 6 shows the result collected on
the cluster, where mapper shows the number of occupied mapper
slots among the available slots. The rest of the slots are utilized
for other tasks, including reduce. Table 6 shows that the HW+SW
acceleration of mapper functions, accelerates the MapReduce ap-
plications running on a cluster, with a speedup comparable to that
on a single-node.

Moreover, as shown in Table 6, the execution times before and
after the acceleration change semi-logarithmically with the size of
input data. Also note that while in some cases the overall speed
up after acceleration increases as the size of data increases (e.g., in
K -means), in other cases the speed up reduces as the size of data
grows. In fact changing the size of data changes the amount of
intra-node communication, which is the contribution of map time
to the total time.

Moreover, it is interesting to observe the speedup for various
input data sizes. Fig. 15 shows the speedup for the studied data
sizes. The results shows variation of up to 40% in the speedup
for the some applications, (i.e., SVM and KNN), and monotonic
change in the speedup for others (i.e., Naive Bayes and K -means).
Regardless, all the applications benefit from the FPGA acceleration
for large data sizes.

Fig. 14 shows the execution time both before and after the
acceleration for the studied applications, which shows that on
the 12-node cluster, the gap between the execution time of the
acceleration applications, and the non-accelerated ones does not
change significantly over various range of data. By extending the
results from one server to a multi-node cluster and experimenting
with large data size, we show that for some applications, the FPGA
acceleration of MapReduce is more significant, when the size of
data increases. This is due the data parallel nature of the MapRe-
duce applications and promise extensive benefits in the world of
Big Data, with its ever-increasing demand for processing large data
sizes.

11. Related work

The performance and bottlenecks of Hadoop MapReduce have
been extensively studied in recent work [17,20,41,49]. To enhance
the performance of MapReduce and based on the bottlenecks
found for various applications, hardware accelerators are finding
their ways in system architectures [15,38].

In MARS [15], a MapReduce framework on an NVIDIA G80
GPU was developed in which the GPU’s computational power was
harnessed for the MapReduce. In this platform the programming
complexity of the GPU was hidden behind the simple and familiar
MapReduce interface. The results yield a 16× faster speed than a
quad-core CPU-based implementation for six common web appli-
cations. In [38], GPU MapReduce (GPMR) is presented as a stand-
alone MapReduce library that modifies the typical MapReduce
tasks to fit into GPMR and leverage the power of GPU clusters
for large-scale computing. While the GPU-based platforms have
achieved significant speedup across a wide range of benchmarks,

their highpower demandspreclude them for energy-efficient com-
puting [37]. Alternatively, FPGAs have shown to bemore energy ef-
ficient, specifically for handheld devices where prolonged battery
life is one of the most important design goals [12,37].

Given the industry trend (e.g., Microsoft Catapult) it seems GPU
is not the accelerator of choice for cloud scale computing running
diverse type of workloads. For domain specific applications such
as neural network, however, GPU remains a competitive choice. It
should be noted that current deep Neural Networks rely heavily
on dense floating-point matrix multiplication, which maps well to
GPUs. While current FPGAs offer superior energy efficiency, but
they do not offer the performance of todays GPUs on DNNs. How-
ever, advances in the FPGA technology, suggest that new genera-
tion of FPGAs will outperform GPUs. In [34] the authors compare
two generations of Intel FPGAs (Arria 10, Stratix10) against the
latest highest performance Titan X Pascal GPU. For a ResNet case
study, their results show that for Ternary ResNet [24], the Stratix
10 FPGA can deliver 60% better performance over Titan X Pascal
GPU, while being 2.3× better in performance/watt showing that
FPGAs may become the platform of choice for accelerating next-
generation DNNs.

Various platforms have been deployed to leverage the power
of FPGA for acceleration and energy-efficiency purposes. Microsoft
Catapult has built a composable, reconfigurable fabric to accelerate
portions of large-scale software services, which consists of 6× 8 2-
D torus of high-end Stratix V FPGAs embedded into a half-rack of 48
machines. One FPGA is placed into each server, accessible through
PCIe, and wired directly to other FPGAs with pairs of 10 Gb SAS
cables [35]. Alternatively, hybrid chips that integrate FPGAs with
processors reduce the overhead of data transfers, allowing low-
cost on-chip communication between the two. Heterogeneous
architecture research platform (HARP), is one such platform that
integrates Intel CPU with Altera FPGAs. Another example is Zynq-
7000 SoC platform, which integrates ARM cores with Xilinx FPGAs.
In [36], a MapReduce framework on FPGA (FPMR) is described
in which programming abstraction, hardware architecture and
basic building blocks are introduced for RankBoost application
along with an on-chip processor scheduler that maximizes the
utilization of computation resources and enhances the load bal-
ancing. This platform is utilized to compare the performance of
RankBoost application with respect to its full software imple-
mentation. In [48], a MapReduce framework on FPGA accelerated
commodity hardware is presented, which consists of FPGA-based
worker nodes operating extended MapReduce tasks to speed up
the computation process, and CPU-based worker nodes, which run
the major communications with other worker nodes. The FPGA-
basedworkers are shown to offer×10 faster task processing. In [5],
a MapReduce programming model is evaluated that exploits the
computing capacity present in a cluster of nodes equipped with
hardware accelerators. They use the cluster of Cell BE processors
to accelerate mapper functions for the AES encryption as a data-
intensive application and Pi number estimator as a CPU-intensive
application. They show that benefits for CPU-intensive applications
are remarkable; however, the communication and synchronization
overheads can significantly degrade the performance benefits of
hardware accelerators in data-intensive applications.

In [17], a hardware accelerated MapReduce implementation of
Terasort is proposed on Tilera’s many core processor board. In this
architecture, data mapping, data merging and data reducing are
offloaded to the accelerators. The Terasort benchmark is utilized
to evaluate the proposed architecture. In Zcluster [25], hardware
acceleration of FIR is explored through an eight-salve Zynq-based
MapReduce architecture. Zcluster is implemented for a standard



14 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

Table 6
Results for various input data sizes on a 12-node cluster.

Input (GB) mappers total_time (s) map_time (%) accelerated_time (s) speedup

Naive Bayes

1 8 93 63.44 70.19 1.32
5 40 401 52.62 319.45 1.26

10 71 583 41.17 490.23 1.19
20 69 1256 46.02 1032.60 1.22

100 71 6031 47.55 4517.34 1.16

K -means

1 8 20 85.21 3.12 6.42
5 40 49 86.88 7.15 6.85

10 78 62 87.16 8.74 7.1
20 78 87 88.40 10.96 7.93

100 85 383 88.65 48.27 7.93

KNN

1 8 245 87.35 57.42 4.27
5 40 577 78.86 178.17 3.24

10 69 872 393.41 2.22
20 80 1297 74.50 450.26 2.88

100 82 4849 78.67 1504.91 3.22

SVM

1 8 18 83.33 4.82 3.73
5 40 21 71.43 7.82 2.68

10 71 37 81.08 10.65 3.48
20 76 51 70.59 19.37 2.63

100 77 173 88.44 38.59 4.48

(a) (b)

(c) (d)

Fig. 14. Execution time before and after the acceleration on a 12-node cluster for (a) Naive Bayes, (b) K -means, (c) KNN and (d) SVM.

FIR filter to show the benefits gained through hardware acceler-
ation in the MapReduce framework, where the entire low-pass
filter is implemented on the FPGA. In [22], a configurable hardware
accelerator is used to speed up the processing of reduce tasks in
cloud computing applications on the MapReduce framework. The
accelerator is utilized to carry out the reduce tasks. TheMapReduce
accelerator has been implemented and mapped to a multi-core
FPGA with embedded ARM processors. They showed up to 1.8×
system speedup of the MapReduce applications. In [7], a detailed

MapReduce implementation of the K -means application is pre-
sented. Which was shown to enhance the speedup of software
implementation of K -means.

In recent years, several FPGA-based heterogeneous accelera-
tors, have been proposed for big data analytics and cloud com-
puting and in particular for MapReduce programming model.
However, these efforts mainly attempt to accelerate a particular
MapReduce application and deploy it on a specific architecture
that fits well the performance and power requirements of the



K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 15

Fig. 15. Speedup of the execution for various data sizes on a 12-node cluster.

application. Given the diversity of architectures presented, the im-
portant research question iswhich architecture is better suited and
more cost-efficient to meet the performance, power and energy-
efficiency requirements of a wide and diverse range of MapRe-
duce applications. There has been no prior effort on performing
design space exploration to find the choice of hardware acceler-
ator architecture that can be deployed in cloud for MapReduce
analytics applications. Our experiments answer the questions of
what is the role of processor after acceleration in a heterogeneous
architecture; whether a high-end server is most suited to run big
data applications or a low-end server equippedwith FPGAprovides
sufficient performance with lower power consumption and capital
cost?

12. Conclusions

In this paper we presented an end-to-end implementation of
big data analytics applications in a heterogeneous CPU+FPGA ar-
chitecture.We developed theMapReduce parallel implementation
of K -means, KNN, SVM and naive Bayes in a Hadoop MapReduce
environment and profiled various phases of Hadoop execution
on Atom and Xeon architectures to understand the breakdown
of execution time on various microarchitectures. We accelerated
the mapper functions through HW+SW co-design on the Zynq
FPGA platform. The results show promising speedups as well as
energy-efficiency gains of up to 8.2× and 15×, respectively for
large data sizes. We further studied how application, system, and
architecture level parameters such as the choice of CPU (big vs
little), the number ofmapper slots, and the data split size affect the
performance and power-efficiency benefits of Hadoop Streaming
hardware acceleration. Our analysis concluded that power andper-
formance sensitivity to various MapReduce environment system
parameters vary significantly before and after acceleration. They
also vary across big and little core architectures. The results show
that HW+SW acceleration yields higher speedup on Atom server,
therefore significantly reducing the performance gap between lit-
tle and big cores after acceleration. The results show that the FPGA-
accelerated Atom server outperforms the non-accelerated Xeon
server for most of the applications. Moreover the results show
that while the power consumption is higher on the Xeon server,
the rate of power reduction due to FPGA acceleration is higher
on the Xeon server too, thus reducing the power gap between
AtomandXeon. For some applications. (i.e., K -means and KNN) the
power consumption of FPGA-accelerated Xeon server is lower that
the non-accelerates Atom server. Based on the results and capital
cost analysis, when the main optimization goal is the execution
time, accelerating Xeon server is the best solution, albeit not cost-
efficient, since FPGA-accelerated Atom server yields execution

times that are close to or lower than stand-alone Xeon server
for the studied applications, while reducing the server cost by
more than 3×. To confirm the scalability of FPGA acceleration for
MapReduce, we study a 12-node Xeon cluster and increase the size
of data to observer the range of speedup. While a small variation is
observed in the speedup of some applications, all the applications
benefit from FPGA acceleration at large data sizes. Moreover, for
some applications, the speedup is higher for larger data sizes.

References

[1] Accelerating hadoop applications using intel quichassist technology, http://
www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/
accelerating-hadoop-applications-brief.pdf.

[2] Accelerating hadoop applications using intel quickassist technology http://
www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/
accelerating-hadoop-applications-brief.pdf Accessed: 2014-11-30.

[3] F. Ahmad, S.T. Chakradhar, A. Raghunathan, T.N. Vijaykumar, optimizing
MapReduce on heterogeneous clusters, in: Proceedings of the Seventeenth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS, pp. 61–74.

[4] F. Ahmad, S. Lee, M. Thottethodi, T.N. Vijaykumar, MapReduce with commu-
nication overlap (MaRCO), J. Parallel Distrib. Comput. (2013) 608–620.

[5] Y. Becerra, V. Beltran, D. Carrera, M. Gonzalez, J. Torres, E. Ayguade, Speeding
up distributedmapreduce applications using hardware accelerators, in: Paral-
lel Processing, 2009. ICPP ’09. International Conference on, 2009, pp. 42–49.

[6] P. Eles, et al., Scheduling of conditional process graphs for the synthesis of
embedded systems, in: Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’98, IEEE Computer Society, Washington, DC, USA,
1998, pp. 132–139 http://dl.acm.org/citation.cfm?id=368058.368119.

[7] Y.-M. Choi, H.-H. So, Map-reduce processing of k-means algorithmwith FPGA-
accelerated computer cluster, IEEE ASAP (2014) 9–16.

[8] M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, I. Stoica, Managing data transfers
in computer clusters with orchestra, in: Proceedings of the ACM SIGCOMM
2011 Conference, 2011, pp. 98–109.

[9] L.A. Cortes, L. Alej, R. Corts, P. Eles, Z. Peng, A survey on hardware/software
codesign representation models, 1999.

[10] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
in: Proc. Conf Symp Operation Systems Design and Implementation, 2004.

[11] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A.D. Popescu, A. Ailamaki, B. Falsafi, Clearing the clouds: A study
of emerging scale-out workloads on modern hardware, SIGPLAN Not. 47 (4)
(2012) 37–48.

[12] J. Fowers, G. Brown, P. Cooke, G. Stitt, A performance and energy comparison of
FPGAs, GPUs, and multicores for sliding-window applications, in: Proceedings
of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’12, 2012, New York, NY, USA pp. 47–56.

[13] A. Gutierrez, M. Cieslak, B. Giridhar, R.G. Dreslinski, L. Ceze, T. Mudge,
Integrated 3d-stacked server designs for increasing physical density of key-
value stores, in: Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS
’14, ACM, 2014, pp. 485–498.

[14] N. e. Hardavellas, Toward dark silicon in servers, IEEE Micro 31 (2011) 6–15.
[15] B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: A MapReduce

framework on graphics processors, in: Proc Int Conf Parallel Architectures and
Compilation Techniques, 2008, pp. 260–269.

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb4
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb4
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb4
http://dl.acm.org/citation.cfm%3Fid%3D368058.368119
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb7
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb7
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb7
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb11
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb13
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb14


16 K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17

[16] H. Homayoun, V. Kontorinis, A. Shayan, T.W. Lin, D.M. Tullsen, Dynamically
heterogeneous cores through 3D resource pooling, in: IEEE International Sym-
posium on High-Performance Comp Architecture, 2012, pp. 1–12.

[17] T. Honjo, K. Oikawa, Hardware acceleration of hadoopmapreduce, in: IEEE Int.
Conf. Big Data, 2013, pp. 118–124.

[18] Intel vtune amplifier xe performance profiler http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/, Accessed: 2014-11-30.

[19] V. Janapa Reddi, B.C. Lee, T. Chilimbi, K. Vaid, Web search using mobile cores:
Quantifying and mitigating the price of efficiency, ACM SIGARCH Comput.
Archit. News 38 (3) (2010) 314–325.

[20] D. Jiang, B.C. Ooi, L. Shi, S. Wu, The performance of MapReduce: An in-depth
study, Proc. VLDB Endow. 3 (1–2) (2010) 472–483.

[21] T. Joachims, Making large-Scale SVM learning practical, in: B. Schölkopf, C.
Burges, A. Smola (Eds.), Advances inKernelMethods - Support Vector Learning,
MIT Press, Cambridge, MA, 1999, pp. 169–184.

[22] C. Kachris, G.C. Sirakoulis, D. Soudris, A configurablemapreduce accelerator for
multi-core FPGAs (abstract Only), in: Proc ACM/SIGDA Intl Symp FPGAs, 2014
241–241.

[23] V. Kumar, A. Grama, A. Gupta, G. Karpis, Introduction to parallel computing:
Design and analysis of parallel algorithms, 1994.

[24] A. Kundu, K. Banerjee, N. Mellempudi, D. Mudigere, D. Das, B. Kaul, P. Dubey,
Ternary residual networks, 2017, arXiv preprint arXiv:1707.04679.

[25] Z. Lin, P. Chow, ZCluster: A Zynq-based Hadoop cluster, 2013 FTP, 2013,
pp. 450–453.

[26] Y. Liu, J. Yang, Y. Huang, L. Xu, S. Li, M. Qi, Mapreduce based parallel neural
networks in enabling large scale machine learning, Comput. Intell. Neurosci.
2015 (2015) 1.

[27] Z. Liu, H. Li, G. Miao, Mapreduce-based backpropagation neural network over
large scale mobile data, in: Natural Computation, ICNC, 2010 Sixth Interna-
tional Conference on, Vol. 4, IEEE, 2010, pp. 1726–1730.

[28] LogiCore AXI DMA v7.1, Product Guide for Vivado Design Suite, 2013.
[29] M. Malik, K. Neshatpour, T. Mohsenin, A. Sasan, H. Homayoun, Big vs little core

for energy-efficient hadoop computing, in: 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2017, pp. 1480–1485.

[30] M. Malik, K. Neshatpour, S. Rafatirad, H. Homayoun, Hadoop workloads char-
acterization for performance and energy efficiency optimizations on mi-
croservers, IEEE Trans. Multi-Scale Comput. Syst. (2017).

[31] e.a. Narayanan, MineBench: A benchmark suite for data mining workloads, in:
IEEE Int SympWorkload Characterization, 2006, pp. 182–188.

[32] K. Neshatpour, M. Malik, M.A. Ghodrat, A. Sasan, H. Homayoun, Energy-
efficient acceleration of big data analytics applications using fpgas, in: Big Data
(Big Data), 2015 IEEE International Conference on, IEEE, 2015, pp. 115–123.

[33] K. Neshatpour, A. Sasan, H. Homayoun, Big data analytics on heteroge-
neous accelerator architectures, in: 2016 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2016, pp. 1–3.

[34] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J.O.G. Hock, Y.T. Liew, K.
Srivatsan, D. Moss, S. Subhaschandra, et al., Can FPGAs Beat GPUs in accelerat-
ing next-generation deep neural networks? in:, FPGA, 2017, pp. 5–14.

[35] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme, H.
Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A.
Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P.
Xiao, D. Burger, A reconfigurable fabric for accelerating large-scale datacenter
services, in: Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on, 2014, pp. 13–24.

[36] Y.e. a. Shan, FPMR: mapreduce framework on fpga, in: Proc. ACM/SIGDA Int
Symp FPGA, pp. 93–102.

[37] L. Stolz, H. Endt, M. Vaaraniemi, D. Zehe, W. Stechele, Energy consumption
of graphic processing units with respect to automotive use-cases, in: Energy
Aware Computing, ICEAC, 2010 International Conference on, 2010, pp. 1–4.

[38] J.A. Stuart, J.D. Owens, Multi-GPUMapReduce on GPU clusters, in: IPDPS 2011,
2011, pp. 1068–1079.

[39] L. Smria, K. Sato, G.D. Micheli, Synthesis of hardwaremodels in Cwith pointers
and complex data structures, IEEE TVLSI 9 (6) (2001) 743–756.

[40] M.K. Tavana, A. Kulkarni, A. Rahimi, T. Mohsenin, H. Homayoun, Energy-
efficient mapping of biomedical applications on domain-specific accelerator
under process variation, in: 2014 IEEE/ACM International Symposium on Low
Power Electronics and Design, ISLPED, pp. 275–278, 2014.

[41] C. Tian, H. Zhou, Y. He, L. Zha, A dynamic mapreduce scheduler for heteroge-
neous workloads, 2009, GCC 2009, pp. 218–224.

[42] e. a. Van Craeynest, Scheduling heterogeneous multi-cores through perfor-
mance impact estimation, PIE in: ISCA 2012, 2012, pp. 213–224.

[43] Vivado Design Suite User Guide: High-Level Synthesis, http://www.xilinx.com
/support/documentation/sw_manuals/xilinx2013_2/ug902-vivado-high-leve
l-synthesis.pdf..

[44] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C.
Zheng, G. Lu, K. Zhan, X. Li, B. Qiu, BigDataBench: A big data benchmark suite
from internet services, in: High Performance Computer Architecture, HPCA,
2014 IEEE 20th International Symposium on, 2014, pp. 488–499.

[45] T. White, Hadoop: The Definitive Guide, first ed., O’Reilly Media, Inc., 2009.

[46] F. Winterstein, S. Bayliss, G. Constantinides, High-level synthesis of dynamic
data structures: A case study using Vivado HLS, in: 2013 FTP, 2013, pp. 362–
365.

[47] W.H. Wolf, Hardware-software co-design of embedded systems, Proc. IEEE
(1994) 967–989.

[48] D. Yin, G. Li, K.-d. Huang, Scalable mapreduce framework on fpga acceler-
ated commodity hardware, in: S. Andreev, S. Balandin, Y. Koucheryavy (Eds.),
Internet of Things, Smart Spaces, and Next Generation Networking, in: Lecture
Notes in Computer Science, Vol. 7469, Springer Berlin Heidelberg, 2012,
pp. 280–294.

[49] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica, Improving mapre-
duce performance in heterogeneous environments, in: Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation,
OSDI’08, 2008, Berkeley, CA, USA, pp. 29–42.

Katayoun Neshatpour is a Ph.D. student at the depart-
ment of Electrical and Computer Engineering at George
Mason University. She is a recipient of the three-year
Presidential Fellowship and a 1-year supplemental ECE
department scholarship. She has received herM.Sc. degree
in Electrical Engineering from Sharif University of Tech-
nology and B.Sc. degree from Isfahan University of Tech-
nology. Her research interests are acceleration of Big data
applicationswith a focus onMapReduce platform, energy-
efficient implementation of machine-learning application
including Convolutional Neural Networks and low-power

VLSI design.

Maria Malik is currently working towards the Ph.D. de-
gree in Electrical and Computer Engineering department,
at George Mason University, VA. She has received the
M.S. degree in Computer Engineering from the George
Washington University, DC and B.E. degree in Computer
Engineering from the Center of Advanced Studies in En-
gineering, Pakistan. Her research interests are in the field
of Computer Architecture with the focus of performance
characterization and energy optimization of big data ap-
plications on the high performance servers and low-power
embedded servers, scheduling MapReduce application on

microserver, accelerating machine learning kernels, parallel programming lan-
guages and parallel computing.

Avesta Sasan received his B.Sc. in Computer Engineering
from the University of California Irvine in 2005 with the
highest honor (Summa Cum Laude). He then received his
M.Sc. and his Ph.D. in Electrical and Computer Engineer-
ing from the University of California Irvine in 2006 and
2010 respectively. In 2010, Dr. Sasan joined the Office of
CTO in Broadcom Co. working on the physical design and
implementation of ARM processors, serving as physical
designer, timing signoff specialist, and lead of signal and
power integrity signoff in this team. In 2014 Dr. Sasan was
recruited by Qualcomm office of VLSI technology. In this

role, Dr. Sasan developed different methodology and in-house EDAs for accurate
signoff, and analysis of hardened ASIC solutions. Dr. Sasan joined George Mason
University in 2016, and he is currently serving as an Associate Professor in the
Department of Electrical and Computer Engineering. Dr. Sasan research spans
low power design and methodology, hardware security, accelerated computing,
approximate computing, near threshold computing, neuromorphic computing, and
the Internet of Things (IoT) solutions.

Setareh Rafatirad is an Assistant Professor of the IST
department at George Mason University. Prior to joining
George Mason, she spent four years as a Research Assis-
tant at UC Irvine. Prior to that, she worked as a software
developer on the development of numerous industrial
application systems and tools. As a known expert in the
field of Data Analytics and Application Design, she has
published on a variety of topics related to Big Data, and
served on the panel of scientific boards. Setareh received
her Ph.D. degree from the Department of Information and
Computer Science at the UC Irvine in 2012. She was the

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb19
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb19
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb19
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb19
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb19
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb20
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb20
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb20
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb21
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb21
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb21
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb21
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb21
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb22
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb22
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb22
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb22
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb22
http://arxiv.org/1707.04679
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb26
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb26
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb26
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb26
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb26
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb27
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb27
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb27
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb27
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb27
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb29
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb29
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb29
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb29
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb29
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb30
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb30
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb30
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb30
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb30
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb32
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb32
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb32
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb32
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb32
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb39
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb39
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb39
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2013%5F2/ug902-vivado-high-level-synthesis.pdf
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb45
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb46
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb46
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb46
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb46
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb46
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb47
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb47
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb47
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48
http://refhub.elsevier.com/S0743-7315(18)30075-3/sb48


K. Neshatpour et al. / J. Parallel Distrib. Comput. 119 (2018) 1–17 17

recipient of 3-year UC Irvine CS department chair fellowship. She received her M.S.
degree from the Department of Information and Computer Science at the UC Irvine
in 2010.

TinoushMohsenin is an Assistant Professor in theDepart-
ment of Computer Science and Electrical Engineering at
University ofMarylandBaltimore County. She receivedher
Ph.D. from University of California, Davis in 2010 and M.S.
degree from Rice University in 2004, both in Electrical and
Computer Engineering. Prof. Mohsenin’s research focus
is on designing highly accurate and energy efficient em-
bedded processors for machine learning, signal process-
ing and knowledge extraction techniques for autonomous
systems, wearable smart health monitoring, and embed-
ded big data computing. She has over 80 peer-reviewed

journal and conference publications and is the recipient of NSF CAREER award in
2017, the best paper award in the GLSVLSI conference in 2016, and the best paper
honorable award in ISCAS 2017 for developing domain-specific accelerators for
biomedical, deep learning and cognitive computing. She currently leads 8 research
projects in her labwhich are all funded by National Science Foundation (NSF), Army
Research Lab (ARL), Northrop Grumman, Boeing, Nvidia and Xilinx. She has served
as associate editor in IEEE Transactions on Circuits and Systems-I (TCAS-I) and
IEEE Transactions on Biomedical Circuits and Systems (TBioCAS). She was the local
arrangement co-chair for the 50th IEEE International Symposium on Circuits and
Systems (ISCAS) in Baltimore. She has also served as technical program committee
member of the IEEE International Solid-State Circuits Conference Student Research
(ISSCC-SRP), IEEE Biomedical Circuits and Systems (BioCAS), IEEE International
Symposium on Circuits and Systems (ISCAS), ACM Great Lakes Symposium on VLSI
(GLSVLSI and IEEE International Symposium on Quality Electronic Design (ISQED)
conferences. She also serves as secretary of IEEE P1890 on Error Correction Coding
for Non-Volatile Memories.

Hassan Ghasemzadeh received the B.Sc. degree from
Sharif University of Technology, Tehran, Iran, the M.Sc.
fromUniversity of Tehran, Tehran, Iran, and the Ph.D. from
the University of Texas at Dallas, Richardson, TX, in 1998,
2001, and 2010 respectively, all in Computer Engineering.
He was on the faculty of Azad University from 2003 to
2006 where he served as Founding Chair of Computer Sci-
ence and Engineering Department at Damavand branch,
Tehran, Iran. He spent the academic year 2010–2011 as a
Postdoctoral Fellow at theWest Wireless Health Institute,
La Jolla, CA. He was a ResearchManager at the UCLAWire-

less Health Institute 2011–2013. Currently, he is Assistant Professor of Computer
Science in the School of Electrical Engineering and Computer Science atWashington
State University, Pullman, WA. The focus of his research is on algorithm design and
system level optimization of embedded and pervasive systems with applications in
healthcare and wellness.

Houman Homayoun received the B.S. degree in electrical
engineering from Sharif University of Technology, Tehran,
Iran, in 2003, the M.S. degree in computer engineering
from the University of Victoria, Victoria, BC, Canada, in
2005, and the Ph.D. degree from the Department of Com-
puter Science, University of California at Irvine, Irvine, CA,
USA, in 2010. Hewas anNSF Computing Innovation Fellow
at the University of California at San Diego, San Diego, CA,
USA, for two years. He is currently anAssistant Professor at
the Electronics and Communication Engineering Depart-
ment, George Mason University, Fairfax, VA, USA. He also

holds a joint appointment with the Computer Science Department. He is currently
leading a number of research projects, including the design of heterogeneous
architectures for big data and nonvolatile logics to enhance design security, which
are funded by the National Science Foundation, General Motors Company, and the
Defense Advanced Research Projects Agency. Dr. Homayoun was a recipient of the
NSF Computing Innovation Fellowship from the CRA and CCC.


	Energy-efficient acceleration of MapReduce applications using FPGAs
	Introduction
	Big data and MapReduce framework
	Timing

	System architecture
	Single-node
	Multi-node

	Benchmark acceleration 
	Profiling
	K-means
	KNN
	SVM
	Naive Bayes 

	High-level synthesis of hotspot functions

	Hardware+software speedup calculation
	Zero-overhead communication
	Modeling the overhead
	The PL–PS data transfer overhead
	Communication overhead in Hadoop environment


	Case study for ZedBoard
	Implementation results
	Acceleration results on the zedboard
	Acceleration results in Hadoop environment
	Power and energy-delay product

	Sensitivity analysis
	Number of mapper slots
	Size of data

	 Performance and cost analysis
	Power and performance comparison of big and little core architecture 
	Cost analysis

	Scalability in a multi-node architecture
	Related work
	Conclusions 
	References


