
Architecture Exploration for Energy-Efficient Embedded Vision Applications:
From General Purpose Processor to Domain Specific Accelerator
Maria Malik1, Farnoud Farahmand1, Paul Otto1, Nima Akhlaghi1, Tinoosh Mohsenin3,

Siddhartha Sikdar2, Houman Homayoun1
 1Department of Electrical and Computer Engineering, 2Department of Bioengineering,

George Mason University, Fairfax County, {mmalik9, ffarahma, potto, nakhlagh, ssikdar, hhomayou}@gmu.edu
3Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, {tinoosh}@umbc.edu

Abstract- OpenCV applications are computationally intensive
tasks among computer vision algorithms. The demand for low
power yet high performance real-time processing of OpenCV
embedded vision applications have led to developing their
customized implementations on state-of-the-art embedded
processing platforms. Given the industry move to heterogeneous
platforms which integrates single core or multicore CPU with on-
chip FPGA accelerators and GPU accelerators, the question of
what platform and what implementation, whether hardware or
software, is best suited for energy-efficient processing of this class
of applications is becoming important. In this paper, we seek to
answer this question through a detailed hardware and software
implementation of OpenCV applications and methodically
measurement and comprehensive analysis of their power and
performance on state-of-the-art heterogeneous embedded
processing platforms. The results show that in addition to
application behavior, the size of image is an important factor in
deciding the efficient platform in terms of highest energy-
efficiency (EDP) among hardware accelerators on FPGA and
software accelerators on GPU and multicore CPUs. While
hardware implementation on ZYNQ shown to be the most
performance and energy-efficient for image size of 500x500 or
less, software GPU implementation found to be the most efficient
and achieves highest speedup for larger image sizes. In addition,
while for compute intensive vision applications the gap between
FPGA, CPU and GPU reduces as the size of image increases, for
non-intensive applications, a large performance and EDP gap is
observed between the studied platforms, as the size of the image
increases.
Keywords-Computer vision; OpenCV; GPU; FPGA; Multicore CPU

I. INTRODUCTION
Recent innovations in the semiconductor industry made it

possible to integrate various sensors and computing
components in an embedded system on a chip (SoC)
processing platform. Mobile platforms use embedded SoC to
process sophisticated and computationally intensive computer
vision applications. An example of such system is a wearable
glass with camera, which has numerous applications in
healthcare, robotics, navigation and security[1, 2].

Low power yet high performance image processing on
embedded vision platform has many applications in various
domains including healthcare, security, telecomm and IoT, just
to name a few. An example is in healthcare, for patient
rehabilitation, where a user’s movement or posture needs to be
accurately tracked to detect the need for corrective action[3].
This is true if a patient is at risk of falling and an alert needs to
be automatically generated in case of injury. Another example
is in remote sensing and monitoring, where accurate tracking

required for autonomous drones is partially performed by
interpreting location change through image content being
received and processed at a high frame rate [4,5]. For instance,
Parrot’s AR.Drone- a dual camera system whose vertical
camera generates images at 60 frames a second rely on a
navigation system that uses corner detection algorithms that
run Sobel filtering on large images at high frame rate[4]. In
general, remote sensing and monitoring applications rely on
sophisticated computer vision algorithms to run on low power
embedded hardware to maximize their operating time.
Similarly in the field of security, image processing at the
camera before transmission is critical to reduce bandwidth of
distributed surveillance systems[6]. These systems may
employ filtering on the embedded camera hardware and only
transmit the approximated target state coefficients[6]. This
eliminates the need for a high bandwidth links, while allowing
multiple target information to be captured.

While demand for high performance computing vision
continues to grow, the physical design constraints, such as
power and density, have become the dominant limiting factors
for scaling out embedded computing systems. Current
processor design, based on commodity homogeneous
processors, are not the most efficient in terms of
performance/watt to process compute intensive
applications[15, 19, 20]. To address the energy-efficiency
challenge, heterogeneous architectures have emerged as a
promising solutions in high performance as well as embedded
systems to significantly improve the energy-efficiency by
allowing applications to run on a computing core that matches
the resource needs more closely than a single one-size-fits-all
general purpose core. A heterogeneous chip architecture
integrates cores with various micro-architectures (in-order or
out-of-order) or instruction set architectures (Thumb and x86)
with on-chip GPU or FPGA accelerators to provide more
opportunities for efficient workload mapping so that the
application can find a better match among various components
to improve power efficiency. In particular, hardware
acceleration through specialization, which is enabled by tight
integration of CPU core and FPGA logic, has received renewed
interest in recent years, partially in response to the dark silicon
challenge. Examples of heterogeneous architectures in
embedded domains are Xilinx ZYNQ (CPU+FPGA), NVIDIA
Tegra (CPU+GPU), Qualcomm Snapdragon
(CPU+DSP+GPU) and Samsung Exynos (Big +Little
CPU+GPU). Given the diversity of architectures for these
emerging heterogeneous platforms, the question is which

2016 IEEE Computer Society Annual Symposium on VLSI

978-1-4673-9039-2/16 $31.00 © 2016 IEEE

DOI 10.1109/ISVLSI.2016.112

559

architecture best suits the power and performance requirement
of computer vision applications becomes important.

The objective of this paper is to answer this question through
a detailed hardware and software implementation of various
OpenCV applications and methodically measurement and
comprehensive analysis of their power and performance on
state-of-the-art heterogeneous embedded processing
platforms. Among OpenCV applications, we are mainly
focusing on the convolution based filters (Sobel and Gaussian)
representing more computationally intensive vision
applications, as well as general image processing techniques
(Average subtraction, Image thresholding, and Image scaling)
representing less computationally intensive vision
applications. Filtering algorithms are being used extensively in
various vision domains for feature detection, image analysis
and noise reduction [7–9]. The Sobel filter is employed in
application involves with edge detection[10, 12, 18, 22] where
Gaussian filter is utilized for noise reduction and suppressing
image details [13]. These filters usually are implemented by
using convolution, where an image is convolved with the
kernel corresponding to a particular filter. Convolution is a
computationally intensive operation mainly for real-time
performances; therefore there is a need for better optimization
at the system and algorithm level to enhance the power
efficiency.

For the choice of heterogeneous architecture, our
experimental work implemented these vision algorithms on
Nvidia Tegra, Xilinx ZYNQ and Multicore Intel ATOM and
ARM to study the choice between Multicore CPU with diverse
ISA (x86 ATOM vs ARM thumb), GPU, as well as FPGA
implementations. To find out how the results are sensitive not
only to application behavior (computationally intensive vs
non-intensive) but also image characteristics, we measure and
analyze performance and power consumption in terms of
energy-delay product (EDP) for several image sizes.

Several research works have reported the performance
results of parallel implementation of computer vision
algorithms on CPU and compared it with the accelerator
implementations [11, 16, 24]. Cope et al, have compared the
implementation performance of image convolution on GPU,
FPGA and CPU [12]; Russo et al, have compared image

convolution processing on GPU and FPGA [23]; Also Asano
et al have investigated the performance comparison of two-
dimensional filter on FPGA, GPU and CPU[17, 25]; however
none of this work has studied the trade-off between power and
performance on state-of-the-art embedded heterogeneous
platforms. To the best of our knowledge this is the first
experimental work that compares hardware and software
implementations of several OpenCV computer vision kernels
on state-of-the-art heterogeneous embedded platforms.

The rest of the paper is organized as follows: In section II,
we explain the experimental methodology and setup. In section
III, we present the results. Section IV discusses in details the
power and performance measurements results across studied
architectures. Finally, in section V we present the conclusion
remarks.

II. METHODOLOGY
Two convolution based filters (Sobel and Gaussian) and

three general image processing techniques (Average
subtraction, Image thresholding, and Image scaling) were
implemented on three different platforms: GPU, FPGA and
two types of CPU (ATOM and ARM). The algorithms are
implemented as individual standalone programs. Multicore
implementation of studied applications are performed with
OpenCV and OpenMP.

The algorithms processed seven different images sizes in the
range of 60 by 60 up to 1600 by 1200. The total pixels
calculated by multiplying the image dimensions and is used

Figure. 2: FPGA Implementation Design

S_AXIS_S2MM

M_AXIS_MM2S

S_AXI_LITE

M_AXI_S2MM

M_AXI_MM2S S00_AXI

S01_AXI
M00_AXI

M00_AXI
M01_AXI

S00_AXIM02_AXI

S_AXI_HP3

M_AXI_GP0

Output_Stream

Input_Stream

S_AXI_Control_Bus

Accelerator_0
AXI Direct Memory Access_0

AXI Interconnect

AXI Interconnect

Zynq

Programmable Logic (PL) Interconnects Processing System (PS)

IRQ_F2P

mm2s_introut
s2mm_introut

S_AXIS_S2MM

M_AXIS_MM2S

S_AXI_LITE

M_AXI_S2MM

M_AXI_MM2S

Output_Stream

Input_Stream

S_AXI_Control_Bus

Accelerator_1
mm2s_introut
s2mm_introut

AXI Direct Memory Access_1

S_AXIS_S2MM

M_AXIS_MM2S

S_AXI_LITE

M_AXI_S2MM

M_AXI_MM2S

Output_Stream

Input_Stream

S_AXI_Control_Bus

Accelerator_2
AXI Direct Memory Access_2

mm2s_introut
s2mm_introut

S_AXIS_S2MM

M_AXIS_MM2S

S_AXI_LITE

M_AXI_S2MM

M_AXI_MM2S

Output_Stream

Input_Stream

S_AXI_Control_Bus

Accelerator_3
AXI Direct Memory Access_3

mm2s_introut
s2mm_introut

S_AXI_HP2
S_AXI_HP1

S_AXI_HP0

S00_AXI

S01_AXI
M00_AXI

AXI Interconnect

S00_AXI

S01_AXI
M00_AXI

AXI Interconnect

S00_AXI

S01_AXI
M00_AXI

AXI Interconnect

S_AXI

AXI Timer

M03_AXI
M04_AXI

M06_AXI
M07_AXI

S0
S1
S2
S3
S4

S6
S7

M05_AXIS5

S0

S1

S2

S3

S4

S5

S6

S7

In0
In1
In2
In3
In4

In5
In6
In7

M08_AXI
dout

C0
C1

C2
C3

C4
C5

C6
C7

C0
C1
C2
C3
C4

C5
C6
C7

Concat

Benchmarks Platform

Performance Power

System Analysis

Perf Tool
Watts Up?

Power
meter

Ha
rd

w
ar

e/
So

ftw
ar

e
In

fra
st

ru
ct

ur
e

M
ea

su
re

m
en

t
An

al
ys

is Performance Power

EDPSpeedup

Image Size Total Pixels
60x60 3600
120x120 14400
250x250 62500
500x500 250000
700x700 490000
1000x1000 1000000
1600x1200 2560000

Image Size and corresponding total pixels

Figure 1: Methodology

560

when comparing algorithm results using a pixel processing per
time unit. The methodology on which experiments are
conducted is presented in the Figure 1.

To investigate the effect of optimization at the hardware and
software levels (application software tuning), several different
hardware optimization and software tuning sceneries were
implemented. For instance, the CPU results for different
compiler optimization levels from O0 (no optimization) to O3
(most optimized one) on single core and multi-core were
compared with the results of the other two hardware platforms
(GPU and FPGA), which considered to be a better optimized
platforms (performance and EDP wise). Image tiling were also
implemented as a program tuning to optimize the process in
parallel manner. Next we will discuss in more details the
implementation details of the studied OpenCV applications on
each platform.
A. GPU implementation

The GPU implementation uses an NVIDIA Jetson TK1
developer kit which is built around the Tegra K1 processor.
The processor is composed of a GPU and multicore CPU. The
GPU has 192 NVIDIA CUDA cores while the CPU is a "4-
Plus-1" 2.32 GHz ARM quad-core Cortex-A15. A single core
of the ARM processor speed was fixed at 1.224 GHz with the
other cores turned off. The GPU speed was fixed at 852 MHz.
We run each code module as a standalone program by a script
file that accepts the program configuration information as
command line arguments. Each program had an internal loop
to run the OpenCV code multiple iterations which provided the
execution time per iteration for the study. The image load time
was excluded from each run. Timing was performed using the
C API clock() function to be consistent with the ARM timing.
B. FPGA implementation

For FPGA implementation, we use Xilinx ZEDBOARD
with a Zynq-7020 SoC containing of dual-core ARM and a
FPGA. The hardware design consists of 3 major parts shown
in Figure 2:

a) Processing system (PS): ARM processor inside Zynq
Platform.

b) Interconnects: The high performance (HP) ports are
used for transactions between PS and Programmable logic
(PL). The data (image) is transferred to/from the accelerator in
PL using ARM core. AXI Interconnects IPs generated
automatically using Vivado design suit take care of data trans-
action between ARM PS and PL in memory mapped mode.

c) Programmable logic (PL) which has 3 major IPs:
i. Accelerators: These are the main IPs which are

generated using Vivado HLS. We developed HLS (High Level
Synthesis)_ready C++ code by the Vivado HLS OpenCV
library which is provided by Xilinx, specifically for each
application. The HLS_ready C++ code contains different
pragmas and tweaks in comparison with regular C++ code. We
have implemented the C++ code because all C++ coding
capabilities are not supported by HLS process (e.g., Dynamic
memory allocation, structures and etc.). In the next step
HLS_ready C++ code is translated to VHDL and the
corresponding IP is generated using Vivado HLS. Two
different interfaces are used for each accelerator IP, AXI4_Lite
interface for sending control data such as image size and

AXI4_Stream video interface for sending and receiving input
and output image respectively. The reason for this selection is
that AXI4_Lite doesn’t have burst transaction capability and it
is suitable for sending small amount of data with specific
address. However, AXI_Stream let you send and receive data
in burst mode, so it will give you much better performance for
transferring large amount of data without addresses. Coding
Hierarchy: At first we convert the input image from
AXI4_Stream format to HLS Mat format using
hls::AXIvideo2Mat. We then process the corresponding image
in Mat format and at the end the output image is converted
from Mat format to AXI4_Stream format using
hls::Mat2AXIvideo. Therefore we can transfer the output
result using AXI DMA.

ii. AXI Direct Memory Access (DMA): This IP is added
to block design from Xilinx IP catalog and it converts the
stream transaction to memory map and let the user to write and
read to and from DDR memory.

iii. AXI Timer: Added from Xilinx IP catalog which
measure the execution time of hardware implementation.

Our implementation consists of four DMA blocks, each of
them connected to one of the HP ports in the PS. Each of these
DMAs connected to one accelerator IP and take care of data
transfer between accelerator and processor. As a result, we can
process four images in parallel at the same time. Therefore, the
idea is to split the image into four smaller chunks and transfer
each of them separately using one of the four HP ports to
accelerator IPs. The received data are then merged to build the
complete image. With this method we can reduce the execution
time by a factor of four. All execution time results include the
data transfer time and they are based on the maximum
frequency i.e. 84.9MHz, 68.7MHz, 76.3MHz, 64.1MHz and
51.3MHz for Image threshold, Image scaling, Average
Subtraction, Sobel and Gaussian, respectively.
C. CPU implementation:

We conducted our study using both Intel Atom and ARM
CPU. The Intel ATOM C2758 has four active processing cores
and two levels of cache hierarchy. The processor hosted the
Ubuntu 13.10 operating system with a Linux 3.11 kernel. The
ARM architecture is NVIDIA’s "4-Plus-1" 2.32GHz ARM
quad-core Cortex-A15 CPU. Both platforms have four active
processing cores, therefore application multithreading up to
four parallel threads is enabled. The NVIDIA version also uses
Ubuntu Linux as its OS. Table 1 summarizes the key
architectural parameters of the microservers. We use Perf to
capture the performance characteristics of the studied

Table 1: Architectural Parameters

Processor Intel ATOM C2758 ARM Cortex-A15

Max. Operating Frequency 2.40 GHz 2.32 GHz

Micro-architecture Silvermont ARMv6

L1I Cache 32 KB 32 KB

L1D Cache 24 KB 32 KB

L2 Cache 4×1 MB 2 MB

System Main Memory 8 GB 2 GB

In-order/Out-of-order Out-of-order Out-of-order

Word Width 64 bits 32 bits

561

applications on ATOM. Perf exploits Performance Monitoring
Unit (PMU) in the processor to measure performance as well
as other hardware events accurately. Because this tool is not
available for monitoring the ARM on the Tegra processor, the
clock() function of the C API was used. This function factors
in if multicore processing is used to execute the code. For
measuring power dissipation of the microserver, Wattsup PRO
power meter is used. Wattsup power meter measures and
records power consumption at one second granularity. The
power reading is for the entire system, including core, cache,
main memory, hard disks and on-chip communication buses.
We have collected the average power consumption of the
studied applications and subtracted the system idle power to
calculate the dynamic power dissipation of the entire system.

III. RESULTS
To compare different platform, we have presented the

performance and EDP results in this section. Additionally, the
average performance and EDP results over all applications
were calculated to investigate the optimal platform based on
best performance and maximum energy efficiency for all
applications. To compare the results in the best case scenario
with GPU and FPGA, the CPU frequencies of 2.4 and 1.2 were
used for execution time and EDP respectively. Also the
compiler software optimization was set to -O3 (the most
optimized case).
A. Single core and Multi-core CPU implementation

The results of the single-core and multi-core
implementation of all studied applications on CPU platform
(ATOM and ARM) with the biggest image size are compared
in Table 2. Both ATOM and ARM demonstrate that for all the
applications multi-core provides better performance compared
to the single core but they clearly needs more power.
Interestingly, for energy-efficiency (EDP), multicore results
outperform single core in both CPU platforms. Comparing
ATOM and ARM results, ATOM provides better performance
than ARM and in terms of energy-efficiency, in most cases it
results in the lowest energy-efficiency. Considering multicore,
as compared to the single core, provides better performance
and EDP, the rest of the paper compares the multi-core CPU
implementation with FPGA and GPU.
B. Performance Analysis

Figure 3 illustrates the speedup achieved on FPGA, GPU
and ATOM architecture compared to the ARM (considered as
a baseline) for all the studied applications. Image threshold and
Image scaling results illustrate that FPGA has the highest
speedup for small images (60x60 and 120x120) and GPU

provides maximum speedup for larger images (250x250-
1600x1200). Image average subtraction shows that FPGA
shows the largest speedup for image size up to 500x500 and
GPU has dominated at the larger image sizes (700x700-
1600x1200). The result for Sobel filtering illustrates that
FPGA has attained the highest speedup on all the image sizes
except for the largest image size where GPU has better
performance. In Gaussian blur, FPGA has achieved the highest
speedup only at the smallest image size. ATOM shows highest
speedup for image sizes ranges from 120x120 to 500x500 and
GPU provides the maximum speedup for the larger image
sizes. In sum, with image sizes larger than 500x500, GPU is
the winner in terms of speedup. Comparing the ATOM and
ARM results, ATOM outperforms ARM for all the image sizes
expect at the smaller image size.
C. Energy Efficiency Analysis

In order to characterize the energy efficiency, we evaluate
Energy Product Delay (EDP) metric to investigate trade-off
between power and performance when running image
processing applications on FPGA, GPU and multicore CPU
(ATOM and ARM). Figure 4 shows the EDP of the studied
architectures (A = FPGA, GPU, ATOM) compared to ARM.
The power is almost constant for FPGA with values ranging
1.735-1.755 for studied applications. However, power varies
significantly: 0.86-6.06, 0.5-3.512, and 0.20-2.4 for GPU,
ATOM, and ARM, respectively for the applications across
different image sizes.

For non-computationally intensive vision applications;
image scaling, threshold and averaging, for small image size
of below 250x250, FPGA is a more efficient implementation
than GPU and multicore CPU. However as the size of image
increases the trend quickly moves to GPU. The gap between
GPU and FPGA increases as the size of image increases.

Table 2: Single core and Multi core CPU Results

Single Multi Single Multi
Exe(msec) 2.01 1.25 0.901 0.708
EDP(Jsec) 1.29E-05 3.68E-06 2.27E-06 1.95E-06
Exe(msec) 40.47 23.65 29.09 14.56
EDP(Jsec) 3.60E-03 9.54E-05 4.13E-04 2.12E-04
Exe(msec) 8.48 6.38 16.6 8.35
EDP(Jsec) 1.80E-04 1.20E-04 1.20E-03 6.60E-04
Exe(msec) 23.93 11.43 19.01 9.67
EDP(Jsec) 1.45E-03 1.35E-03 2.44E-03 9.70E-04
Exe(msec) 150 75.3 131.079 66.81
EDP(Jsec) 4.90E-02 3.10E-04 5.21E-04 2.86E-04Sobel Filter

ARM ATOM

Image Thresholding

Image Scaling

Average Subtraction

Gaussian Blur Filter

Figure 3. Speedup on studied architectures (A = FPGA/GPU/ATOM) compared to ARM of various image processing applications over several image sizes

0
1
2
3
4
5
6
7

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

Threshold Scaling Average Sobel Gaussian

Sp
ee

du
p

Image Size

FPGA GPU ATOM(Multicore) ARM (Multicore)

6.64 7.05

8.42
12.98

26.97
58.26

102.74
165.97

27.98
61.16

106.08
173.25

562

However, for computationally intensive vision applications a
different trend is observed. While for small image size of
below 500X500 FPGA is clearly a winner in terms of energy-
efficiency, for larger image sizes GPU becomes competitive
with FPGA. For Gaussian filter, FPGA is always the efficient
platform compared to other platforms across all studied image
sizes. Comparing ATOM and ARM, while in some cases
ATOM is competitive with ARM and other platforms in terms
of energy-efficiency, in most cases it results in the higher
energy efficiency. This is due to the fact that ATOM ISA (X86)
and machine width (64 bits) mainly designed in response to
high performance demand and not necessarily low power
concerns [21].
D. Average per Pixel Analysis

Figure 5a shows the results for performance and EDP over
each pixel across different platforms. Figure 5b demonstrates
the performance and EDP over each pixel across different
applications. EDP results demonstrates that FPGA has the best
result in case of small images for both computational intensive
and non-intensive applications. However, GPU is the best
platform for processing large images. As we can observe, a
similar trend is seen for application execution time.

IV. DISCUSSION
The GPU results show that its EDP value is almost

insensitive to image size by showing only a small increasing
trend. This is due to the overhead for processing small images

and the speedup advantage at large image sizes. Further the
power consumption was nearly constant during the code
execution. These factors lead to a near constant EDP value. It
is expected that if the image size continues to increase then the
EDP would continue its slow increase and its overall advantage
compared to other platforms would grow since the EDP slope
rates differ.

Additionally, for the GPU its EDP advantage over the
other processing technologies was much greater for image
thresholding, image scaling, and average subtraction as
compared to Sobel or Gaussian filtering for image sizes greater
than 250 by 250. It is only at the smaller image sizes that the
FPGA outperforms the GPU in terms of EDP. This is due to
the image thresholding, image scaling, and average subtraction
exploiting the GPUs shared memory layout and SIMD design.
Because these are scalar operations on an array of values each
GPU thread can process the values in parallel. The FPGA must
synthesize this hardware which is not as efficient as the bare
metal GPU design. Additionally, the Sobel and Gaussian filters
had additional processing steps or a combination of multiple
gather/scatters which can be directly synthesized in the FPGA.
Further, the Sobel filter requires a square root operator which
is not as efficiently performed in the GPU. All of these factors
lead to the GPU’s performance difference.

The ARM processor performed consistently well, especially
at small image sizes. Its performance often exceeded the

Figure 4. EDP on studied architectures (A = FPGA/GPU/ATOM) vs ARM of various image processing applications over several image sizes

0.00E+00
2.00E+00
4.00E+00
6.00E+00
8.00E+00
1.00E+01
1.20E+01
1.40E+01

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

Threshold Scaling Average Sobel Gaussian

ED
P_

ar
m

/E
DP

_A

Image Size

FPGA GPU ATOM(Multicore) ARM(Multicore)

79.66

92.6
1101.4

4740.1
3431.9 9.26

47.5
113.21042.7

3339.5 5330.9
10415.8

220.91
9740.6

15.63
17.25

9.08

Figure 5(a). Per pixel performance and EDP across different platforms

 Figure 5(b). Per pixel performance and EDP across different applications (Non-intensive – NI- and intensive – I-)

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

FPGA GPU ATOM(Multicore) ARM (Multicore)

Ex
ec

ut
in

 T
im

e
(m

se
c)

Small imgs_NI Large imgs_NI Small imgs_ I Large imgs_ I

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

Small imgs_NI Large imgs_NI Small imgs_ I Large imgs_ I

Ex
ec

ut
io

n
Ti

m
e

(m
se

c)

FPGA GPU ATOM(Multicore) ARM (Multicore)

1E-13

1E-12

1E-11

1E-10

1E-09

Small imgs_NI Large imgs_NI Small imgs_ I Large imgs_ I

ED
P

(J
se

c)

FPGA GPU ATOM(Multicore) ARM(Multicore)

563

performance of the GPU and ATOM, while just trailing the
FPGA. This in part is due to the ARM’s efficient instruction
set, however at higher image sizes the GPU is able to more
efficiently process the larger images.

The results for the FPGA show that its overall EDP
performance is dependent on the image size being processed.
This is due to its varying execution time with nearly constant
power consumption. As can be seen in the execution time
figure the overall trend is that at very low image sizes the
FPGA performs the best and then as the image size increases
its execution time is become comparable with the ARM
multicore. In case of ARM and ATOM multicore
implementation, execution time and EDP result increases
almost exponentially for bigger size images, due to sequential
execution characteristic of CPU in compared with GPU and
FPGA. Figure 6 shows the speedup and EDP results averaged
across over all the studied applications on various architectures
(A = FPGA/GPU/ATOM) compared to ARM. We can
observe, on average across all studied applications FPGA has
the best results for image sizes smaller than 700x700 in case of
execution time. In case of EDP, GPU is the most efficient
platform for image sizes larger than 500x500 while FPGA
yields the best EDP for smaller image sizes.

V. CONCLUSIONS
Low power yet high performance image processing on

embedded vision platform has many application in various
domains including healthcare, security, telecomm and IoT, just
to name a few. Heterogeneous architectures combining on chip
accelerator such as FPGA and GPUs with multicore general
purpose CPUs are emerging as promising solutions to
significantly improve the energy-efficiency of this class of
applications. Therefore, the question of which of these
architectures provide the best power and performance results
for computer vision applications becomes important. Our
experimental results across a number of OpenCV applications
demonstrate that for compute-intensive applications such as
Gaussian blur and Sobel filter, FPGA achieves highest

performance for image sizes smaller than 500X500 while GPU
is the winner for larger images, compared to other platforms.
The similar trend is observed for energy efficiency, the results
demonstrate that FPGA has the lowest EDP for small image
sizes and GPU for the bigger images as EDP remains almost
unchanged for GPU across various image sizes. Overall, the
large performance and EDP gap is observed between hardware
implementation on FPGA and software implementation on
GPU and multicore CPU across various OpenCV applications
and different image sizes.

VI. ACKNOWLEDGMENTS
This work was supported in parts by the National Science

Foundation under grant CSR-1526913 and CPS-1329829.
REFERENCES

[1] B. Gillette, “Hospital tests Google Glass with dermatology patients,”
Dermatology Times E-News, 19-Mar-2014. [Online].

[2] O. J. Muensterer, et al., “Google Glass in pediatric surgery: An
exploratory study,” Int. J. Surg., vol. 12, no. 4, Apr. 2014.

[3] H. Zhou et al.“Human motion tracking for rehabilitation-A survey,”
Biomed. Signal Process. Control, Jan. 2008.

[4] B. Pierre-Jean, “The Navigation and Control Technology Inside the
AR.Drone Micro UAV,” 2011, pp. 1477–1484.

[5] F. de B. Martins, et al., “Visual-Inertial Based Autonomous
Navigation,” in Robot 2015:

[6] S. Fleck, et al., “Adaptive Probabilistic Tracking Embedded in Smart
Cameras for Distributed Surveillance in a 3D Model,” EURASIP JES
2007.

[7] Z. Li, et al., “Adaptive nonlocal means filtering based on local noise
level for CT denoising,” Med. Phys., vol. 41, p. 011908, Jan. 2014.

[8] E. S. L. Gastal, “Efficient high-dimensional filtering for image and
video processing,” 2015.

[9] Q. Gao, Y. Zou, J. Zhang, S. Liu, Z. Xie, and S. Chen, “Missile vision
guidance based-on adaptive image filtering,” in IEEE ICIA 2015.

[10] P.I. India, et al.,“Crack Detection of Medical Bone Image Using
Contrast Stretching Algorithm with the Help of Edge Detection,”
IJSET 2015.

[11] M. K. Tavana, et al., “Energy-efficient mapping of biomedical
applications on domain-specific accelerator under process variation”,
in proc. of ISLPED 2014

[12] F. A. Hussin, et al.,“Optimization of Processor Architecture for Sobel
Real-Time Edge Detection Using FPGA,” in. IRECOS 2013.

[13] F. Qin, et al., “Blind Single-Image Super Resolution Reconstruction
with Gaussian Blur and Pepper & Salt Noise,” J. Comput., 2014.

[14] B. Cope, “Implementation of 2D Convolution on FPGA, GPU and
CPU,” Dept. of EEE, Imperial College London.

[15] M. Malik, et.al.,"Big data on low power cores: Are low power
embedded processors a good fit for the big data workloads?." in proc.
of ICCD 2015

[16] Page et al.,"Low-Power ManyCore Accelerator for Personalized
Biomedical Applications", in proc. of GLSVLSI 2016

[17] S. Asano, et al., “Performance comparison of FPGA, GPU and CPU
in image processing,” in FPL 2009.

[18] M. Chouchene, et al., “Efficient implementation of Sobel edge
detection algorithm on CPU, GPU and FPGA,” IJAMC, Jan. 2014.

 [19] M. Malik, et. al., “System and Architecture Level Characterization of
Big Data Applications on Big and Little Core Server Architectures,”
presented at IEEE Big Data 2015

[20] Gutierrez, A. etal. "Integrated 3D-stacked server designs for increasing
physical density of key-value stores." Proc. of ASPLOS, 2014

[21] Blem, Emily, et. al. "Power struggles: Revisiting the RISC vs. CISC
debate on contemporary ARM and x86 architecures" HPCA 2013

[22] P. Otto, et al. "Power and Performance Characterization, Analysis and
Tuning for Energy-efficient Edge Detection on Atom and ARM based
Platforms.", In proc. of ICCD 2015

[23] L. M. Russo, et al., “Image convolution processing: A GPU versus
FPGA comparison,” in SPL 2012.

[24] J. Bisasky et al., "A Many-core Platform for Biomedical Signal and
Image Processing" in proc. of ISQED 2013

[25] T. Saegusa, T. Maruyama, and Y. Yamaguchi, “How fast is an FPGA
in image processing?,” in FPL 2008

Figure 6. Speedup and EDP of studied architectures (A = FPGA/GPU/ATOM)

compared to ARM averaged across applications over several image sizes

0.01

0.1

1

10
Sp

ee
du

p

Image Size

FPGA GPU ATOM(Multicore) ARM (Multicore)

0.0001
0.001

0.01
0.1

1
10

100

ED
P_

ar
m

 /
ED

P_
A

Image Size

FPGA GPU ATOM(Multicore) ARM(Multicore)

564

