
Temperature Aware Thread Migration in 3D Architecture with Stacked DRAM

Abstract—A 3D architecture with DRAM memory stacked
on a multi-core processor has many benefits for the embedded
system. Compared with a conventional 2D design, it reduces
memory access latency, increases memory bandwidth and reduces
energy consumption. However it poses a thermal challenge as
the heat generated by the processor cannot dissipate efficiently
through the DRAM memory layer. Due to the fact that DRAM
is very sensitive to high temperature as well as temperature
variance, 3D stacking causes more failures to occur because
DRAM thermal variance is higher than the conventional 2D
architecture. To address this thermal challenge we propose to
reduce temperature variance and peak temperature of a 3D
multi-core processor and stacked DRAM by thermally aware
thread migration among processor cores. This method has very
limited impact on processor performance. Using migration-based
policy we reduce peak steady-state temperature in the processor
by up to 8.3 degrees Celsius, with the average of 4.7 degrees.

Index Terms—Thermal Management, 3D architecture

I. INTRODUCTION

The 3D stacked architecture with DRAM memory on top of
a processor provides a number of benefits for system perfor-
mance, energy consumption, and packaging density compared
to a conventional 2D design. This has been advocated for
high-performance as well as embedded processor designs. In
the latter case, in particular, the higher packaging density is
a major advantage, in which a limited amount of DRAM
in such systems allows a complete 3D SoC solution. It has
already appeared in systems in the package-on-package form.
For instance, the Apple’s iPhone 4S is supposed to use the A5
processor, an SoC with two LPDDR2 SDRAM chips on top
as a package-on-package type of design[1].

However, this type of DRAM stacking also creates new
challenges. First, with one or more layers of memory stacked
on top of a processor layer, the direct path of heat dissipation
from the processor to the heat sink is interrupted, thus causing
higher peak and steady-state temperatures in both the memory
and the processor layer. High peak temperature complicates
the packaging of the chip and increases costs [2]. It also
reduces the reliability and wear out of both the processor and
the DRAM [3], [4], [5], [6]. Second, the energy consumption
of each processor core could vary widely due to different
workloads. Also, different components within a processor core
consume different amount of energy (e.g. a register file and an
L2 cache). The resulting thermal variation, i.e. the difference in
temperature among different locations in a processor, impacts
the reliability of the DRAM and the processor. [3], [6]. We
define the thermal variance between two components inside
a processor as the difference in temperature between these

two components. If the temperature within a component is not
uniform, we define thermal variance as the difference in peak
temperatures between these components, as peak temperature
is more significant in thermal-aware designs.

This paper focuses on stacking one or more DRAM layers
on top of a multi-core processor die. This type of design
is more suited to the embedded domain where area and
packaging are major constraints. The processor contains an
L2 cache shared by all cores. A TSV stripe similar to [7] is
assumed to connect the multiple layers. It is easy to see how
this type of 3D stack will have higher temperatures at the
processor layer as well as the DRAM layer.

The problem addressed by this paper is how to reduce
both peak and steady-state temperatures in a 3D stacked
DRAM/processor architecture. It proposes to use thread migra-
tion to address the above-mentioned power and thermal prob-
lems. The thread migration policy is shown to achieve a signif-
icant temperature reduction with little impact on performance.
To be equally effective, other approaches such as DVFS or
sleep modes cause a significant performance degradation, as
temperature changes are quite slow. This paper examines a
number of migration algorithms and their performance impact.
It shows that a migration policy integrated with the OS context
switching mechanism can reduce the peak and steady-state
temperatures significantly. If thermal sensors on the processor
cores are available, the migration algorithm can be improved
to generate fewer OS context switches.

This paper aims to migrate a thread running on processor
core Ci to another core Cj when Ci gets too hot. This is
done periodically (10ms, which is equivalent to processor
context switching time). This low migration frequency is
chosen for the following reasons: a) the temperature rises or
falls slowly, long after the power was increased or decreased.
A fast migration frequency is therefore not necessary. b) thread
migration negatively affects the performance due to context
switch and cache state migration overheads. However the
effect is relatively small.

The first migration algorithm rotates the threads in a round-
robin fashion across all processor cores. It works well when
the workloads and power dissipation are significantly different.
This algorithm averages the power consumption of all proces-
sor cores and results in the least thermal variance. A major
advantage of this algorithm is that it doesn’t require thermal
sensors to monitor core temperatures. However, this algorithm
migrates all the threads across the cores all the time and thus
has the highest performance overhead. Our evaluation shows
that this algorithm reduces the peak temperature, on average,

Dali Zhao1, Houman Homayoun2 and Alex V. Veidenbaum1
1University of California, Irvine

2George Mason University
daliz@uci.edu

978-1-4673-4953-6/13/$31.00 ©2013 IEEE 80 14th Int'l Symposium on Quality Electronic Design

by 4.16 °C and the thermal variance by 4.48 °C.
With thermal sensors, we can use an algorithm to only

swap the hottest and the coldest cores. This algorithm reduces
peak temperature by 3.86 °C. To further reduce the number
of migrations, we migrate only when the thermal variance
between two processor cores is larger than a threshold. Our
experiment suggests that 2 °Cis a good choice for threshold.
Using this threshold, we reduce the number of migrations
by 43.3% on average, and reduces the peak temperature and
variance by 3.72 °C and 1.39 °C, respectively.

The rest of the paper is organized as follows. Section II
compares our approach with other related work. In section
III, we present three migration algorithms and a method to
dynamically reduce migrations that are unnecessary. Section
IV describes our 3D architecture and the power and thermal
model. It then explains the experiment methodology. V eval-
uates the algorithms with simulation results. Section VI and
VII presents our future work and conclusion remarks.

II. RELATED WORK

There is a large body of research regarding 3D architec-
ture design. In the realm of processor design, thermal-aware
floorplaning [8] tries to optimize the design of the processor to
spread heat more easily. Thermal Herding [9] tries to move the
circuitry that consumes more energy closer to the heat sink.
Our approach is a software solution that adapts to different
applications at run time, which is very difficult to achieve at
the hardware design phase.

Single-thread activity migration [10] allocates a duplicate
set of processor components so that when some components
get hot, execution is shifted to the duplicate unit. This ap-
proach requires extra logic components that are on “stand by”.

In the realm of run-time thermal management, for both
2D and 3D designs, researchers have proposed thermal aware
job scheduling to reduce peak temperature [11], voltage and
frequency scaling [12]. Coskun et al. has proposed a dy-
namic thermal management scheme for 3D multi-core pro-
cessors [13]. They target a complicated 3D architecture where
processors are stacked on top of each other. They proposed
technique always assigns the new job to the coolest core to
achieve thermal balancing across the 3D chip. [14] claims
that the temperature of vertically adjacent cores has very
strong correlation. Leveraging this observation, the authors
proposed to wrapped up vertically stacked cores into super
cores. Accordingly, tasks are also wrapped into super tasks.
Then the hottest super job is assigned to the coolest super
core in order to achieve the thermal balance. Thermal aware
migration focuses on a less complicated architecture, which
shows good potential in the embedded domain. Our approach
offers a simple yet effective solution to the thermal challenge
in 3D stacked DRAM architecture.

III. THREAD MIGRATION ALGORITHMS

A. Motivation

Figure 2a shows the steady-state thermal map of a four-core
processor running SPEC2000 benchmarks. On each processor

core, the functional units in the center are much hotter than
the private L2 cache surrounding it, with a thermal variance
of at least 10 °C. The hottest functional unit in the bottom-
left core, which is the floating point adder, is 30 °C hotter
than the L2 cache. The peak temperatures for each core in
degrees Celsius are 74.10, 64.22, 67.43 and 55.81 respectively,
starting from the bottom-left and going clockwise. The thermal
variance between these cores can be as high as 18.29 °C. If
we could migrate the threads between these different processor
cores, we could fill the temperature gap with the temperature
peak, thus reducing the thermal variance.

Figure 2b shows the thermal map of a 4Gb DRAM with
16 banks. Because the temperature is much lower, as well
as the variance, we use a different thermal scale here. We
can clearly see that the activity on the 2nd bank of the 1st
row is higher than the others. However, the thermal variation
among the banks is within 0.6 °C. From this, we can draw
the conclusion that DRAM access pattern in the multi-core
processor is uniformly distributed among different banks and
the thermal variation within the memory is small. This kind
of uniformly distributed access pattern is observed because
the memory hierarchy is working well, which is the case for
the majority of workloads. If we stack memory on top of
the processor in a 3D architecture, the underlying processor
itself and the interaction between layers will be the major
causes of thermal problems for the DRAM. Therefore, it’s
important to reduce the peak temperature and variance in
the logic layer. Prior proposals to reduce peak temperature
usually involved aggressive action such as shutting down a
processor core completely. This has undesirable effects on
performance. Thread migration is a better way to control
peak temperature and thermal variation as well because the
effect on performance is small. Since the operating system
constantly schedules threads, thermal-aware thread migration
can be incorporated into the OS with little effort.

We propose four thread migration algorithms: rotation, pair-
wise, dynamic14 and dynamic23. Rotation and pair-wise are
static algorithms, which means they always migrate threads
even the thermal variance is small. The other two dynamic
algorithms attempt to reduce the number of unnecessary mi-
grations by migrating only when the variance is large enough.

B. Rotation Algorithm

The first migration algorithm rotates the threads clockwise.
We investigate this algorithm because of its simplicity. One
biggest advantage of this algorithm is the fact that it does
not require temperature sensors. As we observed in Figure 2a,
sometimes the peak temperature only exists in a small area.
Due to the limited placement of thermal sensors, we cannot
always acquire the accurate reading of the peak temperature.
Therefore, algorithms requiring thermal sensor is limited by
thermal sensor range of error. Figure 1 (a) shows an example
of the rotation algorithm. As time progresses, the threads
running on each core are rotated clockwise. In this way every
thread has an equal chance to execute on each processor core,

1 2

3 4 2

3 1

4 12

34

1

2

3

4 1 2

3 4

1 2

3 4

(a) Rotation

(b) Pair-wise 1-4 Migration

1
1
1

cold

hot

2 1

3 4

12

3 4 1

2 3

4

1 2

3 4 1
1
1

hot

4 2

3 11

2

3

4

4

3 1

2

(c) Pair-wise 1-3 Migration

cold

Time

Fig. 1. Illustration of how threads migrate in the 4 core processor.

therefore the thermal variance and the peak temperature will
be reduced.

The disadvantage of the rotation algorithm is its relatively
high cost. Rotating all four threads is more costly than
swapping pairs of threads because it forms a dependency chain
and must be done in series. Swapping 2 pairs can be done in
parallel.

C. Pair-wise Algorithm

Unlike the rotation algorithm, the pair-wise algorithm re-
quires temperature sensors. At each time of migration, we sort
the threads based on the temperature of the processor core that
they run on, and name them thread 1, 2, 3 and 4. We then swap
the two hot-cold pairs. There are 2 ways of selecting the pairs:
(1, 4), (2, 3) and (1, 3), (2, 4). Figure 1 (b) and (c) show these
two types of migrations. The number represents each running
thread and the background color represents the processor core
temperature. The second and fourth column shows the thread
position right after the migration, with a white background.

For 1-4 migration, as described in algorithm 1 and figure 1
(b), the hottest and the coldest threads switch places and the
other two threads also switch. As we can see in the figure,
1 is the hottest thread and 2 is the coldest. Therefore 1 and
2 switch places, also do 3 and 4. In the second round, 1 is
still the hottest thread, but 3 become the coldest. So 1 and 3
switch, and so do 2 and 4. For 1-3 migration, the hottest and
the second coldest switch places, and the second hottest and
the coldest switch. As we see in figure 1 (c), 1 is the hottest
thread and 4 is the second coldest, so they switch places. The
other pair, which is the second hottest and the coldest, also
switch.

Algorithm 1 PAIR-WISE 1-4 MIGRATION ALGORITHM

loop
sleep for Intthermal

Sort Core ID by temperature as array T [i]
Swap threads on CoreT [0] and CoreT [3]

Swap threads on CoreT [1] and CoreT [2]

end loop

D. Dynamic Migration

We have observed that even with the most rigorous algo-
rithm, rotation, thermal variance still exists, which raises the
question whether all migrations are necessary. It turns out, not
all migrations are necessary. Since there will be a limit on how
much variation could be reduced, we don’t have to migrate if
the variance between the 2 treads is below a certain threshold
Tth. As described in algorithm 2, at each migration interval,
the decision whether or not to migrate is made dynamically
and based on the thermal variation at that time. Using this
dynamic method the unnecessary migrations could be reduced
which in turn could reduce the impact on performance.

Algorithm 2 DYNAMIC MIGRATION ALGORITHM

1: loop
2: Sleep for Intthermal

3: Sort Core ID by temperature as array T [i]
4: if CoreTempT [0] − CoreTempT [3] ≥ Tth then
5: Swap threads on CoreT [0] and CoreT [3]

6: end if
7: if CoreTempT [1] − CoreTempT [2] ≥ Tth then
8: Swap threads on CoreT [1] and CoreT [2]

9: end if
10: end loop

E. Cost of Migration

Since the change in temperature happens slowly, thread
migration due to thermal concerns does not have to occur
frequently. Also, the most convenient time to use this al-
gorithm would be OS context switch. The OS only does
little extra work, and the negative impact on performance is
overlapped with the regular context switching. Therefore we
choose the interval of 10ms, which is the same as OS context
switching time. Due to the similarity of context switch and
tread migration, we use context switch cost to estimate the
cost of thread migration.

Craeynest et al. studied the cost of context switching in [15].
In their model, two SPEC CPU2006 workloads are running on
a dual-core processor with shared last level cache (LLC). They
simulated all possible two-workload mixes of the benchmark
suite with various context switching intervals. Their result
shows that with the switching interval of 2.5ms, the context
switch overhead is within %0.4. The low overhead can be
explained by the coherence mechanism and the shared LLC.
A migrating thread looses its L1 cache state and increases L1

351.61

346.83

342.06

337.28

332.51

327.73

322.96
319.78

(a) 4-core Processor

314.50

314.41

314.32

314.23

314.14

314.05

313.96
313.90

(b) DRAM

Fig. 2. Thermal map of processor core and DRAM without stacking. Temperature is in Kelvin. Different temperature scales are used due to high temperature
difference.

DRAM

Core 0

Core 1

Core 2

Core 3

DRAM

Fig. 3. SRAM-stacked 3D architecture. Multiple layers of DRAM can be
stacked on top of the logic, which contains 4 processor cores.

cache misses. However, the L1 cache misses can be serviced
either by the coherence mechanism from the other private L1
cache, or from the shared LLC. In both cases, the cost is low.
The TLB state is also lost due to thread migration. The TLB
misses may be more costly without a shared TLB structure at
the LLC level.

Researchers has also proposed ”affinity scheduling” for par-
allel programs [16]. If we revisit this problem from the thermal
perspective, we may decide against it because threads that
are sharing resources tends to have similar thermal behavior.
Scheduling them on the same processor core will cause heat
to accumulate more quickly. Also because the shared LLC
reduces the cost to re-create the contents of L1 cache, the
benefit is getting smaller.

IV. METHODOLOGY

In order to evaluate the thermal behavior, we use the McPAT
power model with the SMTSim [17] simulator to collect the
power trace from the processor cores. We also add the DRAM
power model derived from Micron data sheet[18] to the Gem5
[19] simulator. We combine the processor core power trace
and the DRAM power trace to make the complete power trace
for the 3D processor. Then we use the HotSpot [20] tool to

L2 L2

L2

I Cache D Cache

B Pred DTB

FP Add

FP Reg

FP Mul

FP Map

FP Q

I M
ap

Int Q

LSQ

ITB

Int Reg

Int Exec

Functional
Units

Fig. 4. The floorplan of Alpha 21264 processor

calculate temperatures. We also add the migration algorithms
to HotSpot to evaluate peak temperature and thermal variance
reduction.

A. 3D multicore architecture

The 3D multicore architecture with the DRAM on top of
the processor cores can provide higher memory bandwidth,
shorter memory bus delay, and smaller energy consumption
in the interconnection. To take advantage of these benefits,
we have to face the thermal challenge. To investigate the
thermal problem, we propose a simple 3D architecture, as is
shown in figure 3. This architecture has been proposed in [21].
We could stack several layers of DRAM in this architecture.
The DRAMs communicate with the processor with TSVs,
which aren’t shown in the graph. To simplify the problem, we
model one layer of DRAM only. Note that additional layers
of DRAM stacked on top of the processor increases the power
density significantly which is not desirable. But our model is
built to support multiple DRAM layers.

We use the Alpha 21264 floorplan for the processor core,
which is shown in figure 4. We scale the original floorplan to
45nm with linear scaling. The floorplan is 6.4mm x 6.4mm.
We constructed the 16-bank floorplan for the DRAM by evenly
dividing the chip area into 16 squares. Hynix has demonstrated
a 4Gb DDR3 SDRAM with the die area of 30.9mm2 using
23nm technology[22]. Therefore it is reasonable to choose 4Gb
as the size of this stacked DRAM.

To make our discussion easier, we name the bottom layer

TABLE I
ARCHITECTURAL PARAMETERS OF SMTSIM SIMULATION

Item Parameter
Processor configuration 4-core out of order,

Issue,Commit width 4
INT instruction queue 32 entries
FP instruction queue 32 entries
Reorder Buffer size 64 entries

INT registers 64
FP registers 64

Functional units 4 int/ldst 2 fp
L1 cache 32KB, 4-way, 2 cyc

L2 cache (private) 2MB, 16-way, 15 cyc
L3 cache (shared) 8MB, 8-way, 30 cyc
L3 miss penalty 250 cyc

Frequency 2GHz
Vdd 1.0V

TABLE II
SIMULATION WORKLOADS

ID Benchmark Mix
1 soplex, swim, vortex, vpr
2 bzip2, cactusADM, facerec, galgel
3 omnetpp, perlbench, checkspam povray
4 lbm, leslie3d, libuantum, lucas
5 mcf, mesa, mgrid, milc
6 gcc , gromacs, h264ref, hmmer
7 applu, apsi, art, bwaves

”logic layer” and the top layer ”DRAM layer”.

B. Power Model

To calculate temperature, we need to first calculate the
power consumed by each circuit unit on the floorplan. Power
trace of processor cores are collected with SMTSim simulator
integrated with McPAT power model. Table I shows the
architectural parameters used in SMTSim simulation. Table II
shows the 7 4-thread workloads we simulate. The workloads
consists of benchmarks with both high and low memory
bandwidth requirement. To collect the DRAM power, we used
the timing memory modeled in Gem5 simulator. We used
the default architecture parameters for Gem5 because we are
only interested in the memory trace. We use the DRAM
power model proposed by Lin et al. [23]. We assume that
the static power is constant with respect to accesses and
evenly distributed across all banks. The dynamic power is
proportional to the read and write bandwidth. We used the
access counts at each bank to estimate per bank power. We
did our own calculation based on Micron data sheet [18] and
derived the following formula for DRAM power at bank i:

Pi(mW) = 5.85 + 753×BWr + 671×BWw. (1)

Where, BWr and BWw represents the read and write band-
width in GB/s. Compared with numbers in [23], these con-
stants are smaller, which should be attributed to the 5 years of

TABLE III
HOTSPOT PARAMETERS

Item Parameter
Die thickness 30µm

Ambient temperature 40 °C
Convection capacitance 40 J/K
Convection resistance 50 K/W

Heat sink side 70 mm
Heat spreader side 50 mm

Interlayer material thickness 0.05 mm
Interlayer material conductivity 5.0 W/(m-K)

advancement in DRAM technology. We generated 10 different
memory power traces, and 70 combined power traces to study
the interaction between the logic and DRAM layers.

The sampling period for both the processor core and the
memory is set at 100µs.

C. Thermal Model

We use HotSpot to calculate the temperature from the power
trace. HotSpot has been widely used in research publications
and it has become a standard thermal model. Based on the
processor core floorplan and the DRAM floorplan, we are
able to model the temperature at each logical component in
the logic layer and each bank in the DRAM layer. The tool
provides us with both a transient temperature trace and a
steady-state temperature for a given simulation.

The transient temperature is calculated based on an R-C
thermal network and it is updated at each sampling point. Our
dynamic algorithms make migration decisions based on the
instantaneous temperature at the time, therefore it uses the
transient temperature. However, since the temperature changes
slowly with respect to power changes, the effect of power at
the current moment won’t be seen until a long time later.
That is why the steady state temperature is calculated by
averaging the power and using R network only. The steady-
state temperature reflects the temperature in the infinitely far
future by keeping the current average power level.

Table III lists the HotSpot parameters.

D. Migration Algorithm Implementation

Migration algorithms are integrated into the HotSpot sim-
ulator. In the beginning of HotSpot calculation cycle, power
trace is read from the trace file and stored in an array. We
migrate the power numbers inside the array before calculation
starts. The temperature of the previous iteration is used to
make migration decisions.

V. SIMULATION RESULTS

We have simulated 70 workloads with 5 different algo-
rithms. Results show that thread migration is effective in
reducing peak temperature and thermal variance in the 3D
stacked architecture.

(c) dyn-14

330.03

328.60

327.17

325.74

324.31

322.89

321.46
320.51

330.03

328.60

327.17

325.74

324.31

322.89

321.46
320.51

330.03

328.60

327.17

325.74

324.31

322.89

321.46
320.51

331.68

329.97

328.27

326.57

324.87

323.16

321.46
320.33

331.68

329.97

328.27

326.57

324.87

323.16

321.46
320.33

331.68

329.97

328.27

326.57

324.87

323.16

321.46
320.33

336.01

333.83

331.66

329.48

327.31

325.13

322.96
321.51

336.01

333.83

331.66

329.48

327.31

325.13

322.96
321.51

336.01

333.83

331.66

329.48

327.31

325.13

322.96
321.51

326.7

325.63

324.56

323.49

322.42

321.36

320.29
319.58

326.7

325.63

324.56

323.49

322.42

321.36

320.29
319.58

326.7

325.63

324.56

323.49

322.42

321.36

320.29
319.58

330.67

329.17

327.67

326.18

324.68

323.19

321.69
320.70

330.67

329.17

327.67

326.18

324.68

323.19

321.69
320.70

330.67

329.17

327.67

326.18

324.68

323.19

321.69
320.70

339.54

336.89

334.25

331.61

328.96

326.32

323.68
321.92

339.54

336.89

334.25

331.61

328.96

326.32

323.68
321.92

339.54

336.89

334.25

331.61

328.96

326.32

323.68
321.92

328.54

327.31

326.09

324.86

323.64

322.42

321.19
320.38

328.54

327.31

326.09

324.86

323.64

322.42

321.19
320.38

328.54

327.31

326.09

324.86

323.64

322.42

321.19
320.38

(a) base line (b) always

Fig. 5. Thermal map of steady state logic layer. 7 workloads x 3 algorithms.

A. Interaction between Layers

Table IV shows the average total power of the ten DRAM
power traces and the seven processor core traces. We can
see that the power consumption of the logic layer is more
than 10 times larger than the DRAM. Not only is the DRAM

TABLE IV
POWER OF DRAM AND PROCESSOR (W)

ID Logic DRAM
1 68.61 7.41
2 68.98 5.54
3 79.66 5.68
4 56.75 7.38
5 72.02 5.78
6 86.29 4.52
7 64.46 8.72
8 7.21
9 5.78

10 5.96

power relatively small, as we have shown before in figure
2b, but its distribution is also uniform. Therefore, the peak
temperature and thermal variance on the DRAM layer is
mainly the result of the underlying logic layer rather than
its own power dissipation. Figure 6 shows the steady state
temperature of a 3D stacked design. The similar pattern in
the DRAM and the logic layer confirms our earlier reasoning.
Also, for the 10 different memory traces that is combined with
the core power trace, the thermal map shows similar pattern
with the logic layer. Therefore, we only presents the thermal
map of our first 7 combined traces.

B. DRAM Variance

Figure 7 shows the reduction in peak temperature in the
DRAM layer by rotation and pairwise-14 with no dynamic
optimization. The x-axis of the histogram represents differ-
ence in temperature (°C). We can see the peak temperature
distribution gathering towards the lower side with both rotate
and pair-wise algorithms.

C. Logic Layer Peak Temperature

Figure 5 is the thermal map of the processor logic layer in
the steady state. It shows all seven workloads with the three
algorithms: baseline (no migration), rotation, and pairwise-
14. We can clearly see that for all seven power traces, the
logic layer has small hot spots that appear red. We can also
observe that with thread migration algorithms, the red spots
all disappear.

D. Logic layer Thermal Variance

Figure 8 summarizes the steady state thermal variance in the
logic layer. Each one of the sevenworkloads are aligned on the
x-axis. Y-axis represents the difference in the temperature (°C).
The baseline variation ranges from 9 to 17 °C. The rotation
algorithm does the best in reducing the variance. It achieves
the most variance reduction except workload 2 with Pair-14
algorithm. The pair-14 algorithm performs slightly worse than
rotation algorithm.

For dynamic algorithms, we need to choose the threshold for
migration. According to figure 7, the rotation algorithm is able
to reduce the variance to 2.0 degrees. Since dynamic algorithm

(a) Processor Cores (b) DRAM

Fig. 6. Thermal map of core and DRAM in 3D setting. Temperature is in Kelvin. Similar pattern confirms that the temperature of the DRAM layer is heavily
influenced by the logic layer.

0

2

4

6

8

10

12

14

16

18

20

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

none

rotate

pair

Fig. 7. Histogram of Variance in DRAM layer with baseline, rotation, and
pair-14.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 average

Baseline

Rotate

Pair14

Dyn14

Dyn13

Fig. 8. Logic layer steady-state thermal variance

does not have to do better than the rotation algorithm, we
choose 2.0 degrees as our threshold. The dynamic algorithm
only migrates threads when the temperature difference be-
tween them is larger than 2.0 °C.

Our simulation show that using the threshold of 2.0 °C,
Dynamic pair-14 algorithm on average reduces the number
of migrations by 43%. Dynamic pair-13 algorithm generates
23% fewer migrations. Dynamic pair-13 is more aggressive
than pair-14. This is consistent with figure 8 where the pair-
14 has slightly higher variance than pair-13.

VI. FUTURE WORK

We have implemented a thermal-aware algorithm to migrate
threads between processor cores to reduce steady state tem-
perature and thermal variation in the DRAM and processor
layer. Since the basic unit of movement is processor core that
contains many functional units, of which some are hot and
some are cold, In future we plan to study the migrate algorithm
for memory activity to achieve a finer granularity of control.

The first approach is to put more memory banks than
needed. Then there will always be some free banks, which
should be cooler than others. So if somewhere becomes really
hot, we could migrate the activity to the free cold bank. The
second approach is to take advantage of cache replacement
policy. The associativity of shared LLC is large enough so
that we can pick victims that will be written back to the cold
DRAM banks.

VII. CONCLUSION

Our study shows that in a 3D multi-core processor, the
logic layer generates much more heat than the DRAM layer.
The temperature of the DRAM layer is decided by the logic
layer. Therefore we observed similar thermal variation in the
DRAM layer, as the logic processor layer. To reduce peak
temperature and thermal variance in DRAM layer, we propose
various algorithms to migrate threads between processor cores.
The overhead of our algorithm is small, with little/no impact
on system performance. Yet we are able to reduce peak
temperature by up to 8 degrees and reduce thermal variation
in DRAM and processor layer significantly.

ACKNOWLEDGMENT

This work is supported by NSF grant CISE-SHF 1118047.
The authors would also like to thank the anonymous reviewers
for their useful feedback.

REFERENCES

[1] A. L. Shimpi and B. Klug. (2011, Oct.) Apple iphone 4s: Thoroughly
reviewed. [Online]. Available: http://www.anandtech.com/show/4971/
apple-iphone-4s-review-att-verizon/5

[2] T. Liu, M. Li, and C. J. Xue, “Minimizing wcet for real-time embedded
systems via static instruction cache locking,” in Proceedings of the 2009
15th IEEE Symposium on Real-Time and Embedded Technology and
Applications, 2009, pp. 35–44.

[3] I. Micron Technology. (2008, May) Technical note uprating
semiconductors for high-temperature applications. [Online]. Available:
http://download.micron.com/pdf/technotes/TN0018.pdf

[4] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving
dram refresh-power through critical data partitioning,” in Proceedings
of the sixteenth international conference on Architectural support for
programming languages and operating systems, 2011, pp. 213–224.

[5] V. Bhalodia, “Scale dram sybsystem power analysis,” Master’s thesis,
Massachusetts Institute of Technology, 2005.

[6] J. Lin, A. Oates, H. Tseng, Y. Liao, T. Chung, K. Huang, P. Tong, S. Yau,
and Y. Wang, “Prediction and control of nbti – induced sram vccmin
drift,” in Electron Devices Meeting, 2006. IEDM ’06. International, dec.
2006, pp. 1 –4.

[7] U. Kang, H.-J. Chung, S. Heo, D.-H. Park, H. Lee, J. H. Kim, S.-H.
Ahn, S.-H. Cha, J. Ahn, D. Kwon, J.-W. Lee, H.-S. Joo, W.-S. Kim,
D. H. Jang, N. S. Kim, J.-H. Choi, T.-G. Chung, J.-H. Yoo, J. S. Choi,
C. Kim, and Y.-H. Jun, “8 gb 3-d ddr3 dram using through-silicon-via
technology,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 1, pp.
111 –119, jan. 2010.

[8] M. S. Karthik Sankaranarayanan, Sivakumar Velusamy and K. Skadron,
“A case for thermal-aware floorplanning at the microarchitectural level,”
The Journal of Instruction-level Parallelism, vol. 7, October 2005.

[9] K. Puttaswamy and G. Loh, “Thermal herding: Microarchitecture
techniques for controlling hotspots in high-performance 3d-integrated
processors,” in High Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on, feb. 2007, pp. 193 –204.

[10] S. Heo, K. Barr, and K. Asanovic, “Reducing power density through ac-
tivity migration,” in Low Power Electronics and Design, 2003. ISLPED
’03. Proceedings of the 2003 International Symposium on, aug. 2003,
pp. 217 – 222.

[11] S. Liu, J. Zhang, Q. Wu, and Q. Qiu, “Thermal-aware job allocation
and scheduling for three dimensional chip multiprocessor,” in Quality
Electronic Design (ISQED), 2010 11th International Symposium on,
march 2010, pp. 390 –398.

[12] J. S. Lee, K. Skadron, and S. W. Chung, “Predictive temperature-aware
dvfs,” Computers, IEEE Transactions on, vol. 59, no. 1, pp. 127 –133,
jan. 2010.

[13] A. Coskun, J. Ayala, D. Atienza, T. Rosing, and Y. Leblebici, “Dynamic
thermal management in 3d multicore architectures,” in Design, Automa-
tion Test in Europe Conference Exhibition, 2009. DATE ’09., april 2009,
pp. 1410 –1415.

[14] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang, “Thermal management
for 3d processors via task scheduling,” in Proceedings of the 2008 37th
International Conference on Parallel Processing, 2008, pp. 115–122.

[15] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Computer Architecture (ISCA), 2012 39th Annual
International Symposium on, june 2012, pp. 213 –224.

[16] J. Torrellas, A. Tucker, and A. Gupta, “Evaluating the performance of
cache-affinity scheduling in shared-memory multiprocessors,” Journal
of Parallel and Distributed Computing, vol. 24, 1995.

[17] D. M. Tullsen, “Fellowship - simulation and modeling of a simultaneous
multithreading processor,” in Int. CMG Conference, 1996, pp. 819–828.

[18] I. Micron Technology. (2012, June) Micron
mt41j256m16 ddr3 sdram datasheet. [Online]. Avail-
able: http://www.micron.com/∼/media/Documents/Products/Data$%
20$Sheet/DRAM/4Gb DDR3 SDRAM.pdf

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[20] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp.
94–125, Mar. 2004.

[21] D. H. Woo, N. H. Seong, D. Lewis, and H.-H. Lee, “An optimized 3d-
stacked memory architecture by exploiting excessive, high-density tsv
bandwidth,” in High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, jan. 2010, pp. 1 –12.

[22] K.-N. Lim, W.-J. Jang, H.-S. Won, K.-Y. Lee, H. Kim, D.-W. Kim,
M.-H. Cho, S.-L. Kim, J.-H. Kang, K.-W. Park, and B.-T. Jeong, “A
1.2v 23nm 6f2 4gb ddr3 sdram with local-bitline sense amplifier, hybrid
lio sense amplifier and dummy-less array architecture,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE
International, feb. 2012, pp. 42 –44.

[23] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang, “Thermal modeling
and management of dram memory systems,” in Proceedings of the 34th
annual international symposium on Computer architecture, 2007, pp.
312–322.

