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ABSTRACT 
We study lazy instructions. We define lazy instructions 
as those spending long periods in the issue queue. 
Moreover, we investigate lazy instruction 
predictability and show how their behavior could be 
exploited to reduce activity and power dissipation in 
modern processors. We show that a simple and small 
64-entry table can identify up to a maximum of 50% 
of lazy instructions by storing their past behavior. We 
exploit this to a) reduce wakeup activity and power 
dissipation in the issue queue and b) reduce the 
number of in-flight instructions and the average 
instruction issue delay in the processor.  

We also introduce two power optimization 
techniques that use lazy instruction behavior to 
improve energy efficiency in the processor. Our study 
shows that, by using these optimizations, it is possible 
to reduce wakeup activity and power dissipation by up 
to 34% and 29% respectively. This comes with a 
performance cost of 1.5%. In addition, we reduce 
average instruction issue delay and the number of in-
flight instructions by up to 8.5% and 7% respectively 
with no performance cost. 
 
1. INTRODUCTION 
Modern high-performance processors execute 
instructions aggressively, processing them in each 
pipeline stage as soon as possible. This requires 
fetching as many instructions as possible and 
processing them as fast as we can. A typical processor 
fetches several instructions from the memory, decodes 
them and dispatches them to the issue queue. 

Instructions wait in the issue queue for their 
operands to become available. The processor 
associates tags with each source operand and 
broadcasts operand tags to all instructions in the issue 
queue every cycle. Instructions compare the tags 
broadcasted with the operand tags they are waiting for 
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 (referred to as instruction wakeup). Once a match is 
detected, instructions are executed subject to resource 
availability (referred to as instruction select).  These 
are energy demanding tasks making the issue queue 
one of the major energy consumers in the processor  
(the issue queue is estimated to consume about 27% 
of the overall processor power [16]). 

This aggressive approach appears to be inefficient 
due to the following:  

1- In order to improve ILP, high-performance 
processors fetch as many instructions as possible to 
maximize the number of in-flight instructions. High-
performance processors continue fetching instructions 
even when there are already many in-flight 
instructions waiting for their operands. A negative 
consequence of this approach is that some instructions 
enter the pipeline too early and long before they can 
contribute to performance. Nevertheless, they 
consume resources and energy. 

2- Many instructions tend to wait in the issue 
window for long periods. An example of such 
instructions is an instruction waiting for data being 
fetched from the memory. Under such circumstances, 
the waiting instruction and consequently those 
depending on its outcome have to wait in the issue 
queue for several cycles. During this long period, 
however, the processor attempts to wakeup such 
instructions every cycle. 

We exploit the two inefficiencies discussed above 
and use instruction behavior to address them. We 
study instruction issue delay (also referred to as IID). 
In particular, we study lazy instructions, i.e., those 
instructions that spend long periods in the issue 
queue. 

In this work we identify/predict lazy instructions. 
By identifying lazy instructions we achieve the 
following: First, by estimating the number of in-flight 
lazy instructions, we identify occasions when the 
front-end can be reconfigured to fetch fewer 
instructions without compromising performance. 



Second, once lazy instructions are identified 
speculatively, we reduce wakeup activity by avoiding 
to wakeup lazy instructions every cycle.  

By using the above approaches we reduce 
instruction wakeup activity, instruction wakeup power 
dissipation, the number of in-flight instructions and 
average issue delay by up to 34%, 29%, 7% and 8.5% 
respectively while maintaining performance. 

The rest of the paper is organized as follows. In 
Section 2 we study issue delay prediction in more 
detail. In Section 3 we explain our optimization 
techniques. In Section 4 we present our experimental 
evaluation. In Section 5 we review related work. 
Finally, in Section 6 we summarize our findings. 
 
2. ISSUE DELAY PREDICTION 
In this work we adjust processor parameters 
dynamically to reduce processor activity and 
consequently power dissipation. We rely on 
instruction behavior to identify occasions where we 
can reduce the number of processed instructions while 
maintaining performance.  

Many studies show that the behavior of an 
instruction in the issue queue is predictable [e.g., 5-8]. 
In this paper we focus on predicting lazy instructions 
and the possible applications. Through this study we 
define lazy instructions as those spending more than 
10 cycles in the issue queue. We picked this threshold 
after testing many alternatives. 

There are many factors influencing IID 
(instruction issue delay) including instruction 
dependency and resource availability. Figure 1(a) 
shows IID distribution for a subset of SPEC�2K 
benchmarks. On average, about 18% of the 
instructions are lazy instructions, i.e., they spend at 
least 10 cycles in the issue queue (maximum: 32%).  

We refer to the number of times an instruction 
receives operand tags and compares them to its 
operand tags as the instruction wakeup activity. Lazy 
instructions, while accounting for about 18% of the 
total number of instructions, impact wakeup activity 
considerably. This is due to the fact that they receive 
and compare the operands tags very frequently and 
during long periods. To explain this better in Figure 
1(b) we report the relative share of total wakeup 
activity for each group of instructions presented in 
Figure 1(a). On average, lazy instructions, despite 
their relatively low frequency, account for more than 
85% of the total wakeup activity. 

Our study shows that lazy instructions tend to 
repeat their behavior. This provides an opportunity to 

identify them before they arrive in the issue queue. 
We use this opportunity to avoid the extra wakeup 
activity and to identify lazy instructions early enough. 
We use a small 64-entry, PC-indexed table to predict 
lazy instructions before they arrive in the issue queue. 
We refer to this table as the LI-table. While exploiting 
larger and more complex structures may improve 
prediction accuracy, we avoid such structures to 
maintain power and latency overhead at a low level.  

To store lazy instructions we do the following: If 
IID is more than 10, we store the instruction PC in the 
LI-table (more on this later). We also associate each 
table entry with a 2-bit saturating counter. If the lazy 
instruction is already in the table we increment the 
corresponding saturating counter. For the non-lazy 
instructions with an entry in the table, we remove the 
corresponding entry. To predict whether an 
instruction is lazy, we probe the LI-table. The 
instruction is marked as lazy, if the corresponding 
counter is more than two. Note that the LI-table can 
be accessed in parallel to fetch/decode and therefore 
would not result in a deeper pipeline front-end.  

We evaluate the proposed prediction scheme using 
two criteria, i.e., prediction accuracy and prediction 
effectiveness.  
 

a) 
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Figure 1: (a) Instruction issue delay distribution (b) 
Instruction wakeup activity distribution. 
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Lazy instruction prediction accuracy reports how 
often instructions predicted to have an issue delay 
more than 10 turn out to stay in the issue queue for 
more than 10 cycles. This, while important, does not 
provide enough information as it is silent regarding 
the percentage of lazy instructions identified. 
Therefore, we also report prediction effectiveness, 
i.e., the percentage of lazy instructions identified. 

While lazy instructions are identified by probing 
the LI-table at dispatch, the table can be updated at 
different stages. Two obvious update scenarios are 
commit-update and issue-update. We report prediction 
accuracy and effectiveness for both update scenarios. 

In the first scenario, commit-update, lazy 
instructions are allowed to update the LI-table only 
after they have committed. Under this scenario wrong 
path instructions will not update the table. 

Note that lazy instructions spend a long period in 
the pipeline and therefore update the LI-table long 
after they have entered the pipeline. As such, by the 
time a lazy instruction has committed, many lazy 
instructions have entered the pipeline without being 
identified. Also, it is quite possible that during this 
long period, the instruction behavior may change and 
therefore the stored information may not be valid by 
the time it becomes available. The second scenario, 
issue-update, allows lazy instructions to update the 
LI-table as soon as they issue. This, while making 
faster update possible, allows wrong path instructions 
to interfere. 

 
2.1. Prediction Accuracy 
In Figure 2(a) we report prediction accuracy. Bars 
from left to right report for commit and issue update 
for the subset of SPEC�2K benchmarks studied here. 
On average, prediction accuracy is 52% and 54% for 
commit-update and issue-update respectively. Ammp 
has the highest accuracy (97%) while bzip2 and vpr 
fall behind other benchmarks. Our study shows that 
lazy instructions change their behavior frequently for 
these two benchmarks. This is consistent with the fact 
that bzip2 and vpr have lower number of lazy 
instructions and lazy instruction activity compared to 
other benchmarks (see Figure 1). Note that the 50% 
average accuracy should be viewed in the light of the 
fact that only 18% of instructions are lazy 
instructions. 
 
2.2. Prediction Effectiveness 
In Figure 2(b) we report prediction effectiveness. On 
average, effectiveness is a bout 30%. Maximum 

effectiveness is achieved for gcc where we accurately 
identify more than half of the lazy instructions. 
Minimum effectiveness is achieved for vpr, where 
about 10% of lazy instructions are identified. 
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Figure 2: a) Lazy instruction prediction accuracy b) 
Lazy instruction prediction effectiveness. 
 
3. OPTIMIZATIONS 
In this section we introduce two optimization 
techniques which use information available by using 
an issue-update lazy instruction predictor. The two 
techniques are selective instruction wakeup and 
selective fetch slowdown. Selective instruction 
wakeup avoids waking up all instructions every cycle. 
Selective fetch slowdown reduces fetch speed if the 
number of lazy instructions in the pipeline exceeds a 
threshold. While the first technique impacts wakeup 
activity, the second one impacts more than one 
pipeline stage. 
 
3.1. Selective Instruction Wakeup 
As explained earlier, modern processors attempt to 
wakeup all instructions in the issue queue every cycle. 
As a result, instructions receive their source operands 
at the earliest possible. This consequently improves 
performance. However, it is unnecessary to wakeup 
lazy instructions as aggressively as other instructions. 
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Ideally, if we had an oracle and knew in advance 
when an instruction will issue, then a heuristic for 
selectively waking up lazy instructions would require 
waking up the lazy instruction only at the time it is 
supposed to issue. Of course, we cannot have such an 
oracle. An alternative is to predict instruction latency 
and consequently issue time [7] and restrict 
instruction wakeup to the predicted time. However, 
this will impose inherent limitations on performance 
by inaccuracies [2]. To avoid such complexities, we 
take a more conservative approach: Once we have 
predicted an instruction as a lazy instruction, instead 
of attempting to wake it up every cycle, we wake it up 
every two cycles. 

The hardware structure for selective wakeup is 
shown in Figure 3. We add a multiplexer per issue 
queue entry to power gate the comparators every two 
cycle. As we wakeup lazy instruction in even cycle, 
we need to save the result tags produced in the odd 
cycle. This requires using registers to keep the result 
tags and broadcast them to lazy instructions when and 
if free broadcast slots are available. Our study of 
application behavior shows that broadcast results are 
often available. In fact, on average, only one 
broadcast slot is full every cycle.  

 In our broadcast policy we assign higher priority 
to result tags produced in the previous cycle. In the 
rare case that all broadcast slots are full we stall 
issuing instruction until an empty broadcast slot 
becomes available.  As presented in Figure 3, the 
hardware overhead is negligible. 

 
 

 
 

Figure 3: Hardware structure for selective wakeup. 
 

3.2. Selective Fetch Slowdown 

Modern processors rely on aggressive instruction 
fetch to maintain ILP. Instruction fetch is responsible 
for supplying the rest of the processor pipeline with 
instructions.  Instruction fetch rate should at least 
match the instruction decode and execution rate 
otherwise the processor resources will be 
underutilized. Note that, if the instruction flow in the 
pipeline is too slow, it will be inefficient to fetch too 
many instructions. For example, if there are already 
many instructions waiting for their operands in the 
pipeline, we may be able to delay adding more 
instructions to the already high number of in-flight 
instructions without losing performance. This will 
reduce the number of in-flight instructions which in 
turn will result in less pressure on reservation stations 
and pipeline activity. 

In this section we use our estimation of the 
number of in-flight lazy instructions to decide 
whether fetching instructions at the maximum rate is 
worthwhile. If the number of lazy instructions exceeds 
a dynamically decided threshold we assume that it is 
safe to slowdown instruction fetch. Accordingly, we 
reduce the maximum cache lines fetched from two to 
one. 

To decide the dynamic threshold we record the 
number of instructions predicted to be lazy every 
1024 cycles. If the number of lazy instructions 
exceeds one third of total number of in-flight 
instructions we reduce the threshold by five. If the 
number of lazy instructions drops below 5% of the 
total number of in-flight instructions we increase the 
threshold by five. Initially, we set this threshold to 15. 
Note that the design parameters picked here are 
selected to optimize energy efficiency for the 
configuration used. Alternative processor 
configurations may require different parameters to 
achieve best results.  

Selective fetch slowdown needs minimal hardware 
modification as it only requires two counters and a 
register to keep the number of lazy instructions, all 
instructions and the dynamic lazy threshold 
respectively. 

 
 

4. METHODOLOGY AND RESULTS 
In this section, we report our analysis framework. To 
evaluate our techniques we report performance, 
wakeup activity, average issue delay, average number 
of in-flight instructions, power dissipation and how 
often we slowdown fetch. We compare our processor 
with a conventional processor that attempts to wakeup 
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all instructions every cycle and does not reduce the 
fetch rate. 
Note that activity measurements are less technology- 
and implementation-dependent compared to power 
measurements. Nonetheless, we also report power 
analysis for the processor studied here. We detail the 
base processor model in Table 1. We used both 
floating point (equake and ammp) and integer (vpr, 
gcc, mcf, bzip2, parser and twlf) programs from the 
SPEC CPU2000 suite compiled for the MIPS-like 
PISA architecture used by the Simplescalar v3.0 
simulation toolset [1]. We used WATTCH [15] for 
energy estimation. We modeled an aggressive 2GHz 
superscalar microarchitecture manufactured under a 
0.1 micron technology. We used GNU�s gcc compiler. 
We simulated 200M instructions after skipping 200M 
instructions. 
 

Table 1: Base processor configuration. 
 
Integer ALU # 8 Scheduler 128 entries, 

RUU-like 
FP ALU # 8 OOO Core any 8 

instructions / 
cycle 
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4.1. Results 
In this section we report our simulation results. In 
4.1.1 we report performance. In 4.1.2 we report 
activity and power measurements. In 4.1.3 we report 
average issue delay reduction and fetch slowdown 
frequency. 
 
4.1.1. Performance 

In Figure 4 we report how selective wakeup and 
selective fetch slowdown impact performance. To 
provide better insight we also report performance for 
a processor that never fetches more than one cache 
line (referred to as the single line processor). In 
Figure 4, bars from left to right report performance for 
selective wakeup, selective fetch slowdown and the 
single line processor. Across all benchmarks 
performance cost is below 1.5% for selective wakeup. 
Selective fetch slowdown, however, does not impact 
performance. On the other hand, the single line 
processor comes with a maximum performance cost 
of 5.5%. 
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Figure 4: Bars from left to right report performance for 
selective instruction wakeup, selective fetch slowdown 
and single line processor respectively. 

 
4.1.2. Activity and Power 
In Figure 5 we report activity and power 
measurements. In Figure 5(a) we report how selective 
instruction wakeup impacts wakeup activity. On 
average, we reduce wakeup activity by 12% reaching 
a maximum of 34% for ammp. 

In Figure 5(b) we report average reduction in the 
number of in-flight instructions for selective fetch 
slowdown and the single line processor. Selective 
fetch slowdown reduces the average number of in-
flight instructions by 4% (maximum 7%) without 
compromising performance (see Figure 4). The single 
line machine reduces average number of in-flight 
instructions by 8.5% (maximum 16%); however, this 
can be as costly as 5.5% performance loss as 
presented earlier. In Figure 5(c) we report wakeup 
power reduction as measured by wattch. Bars from 
left to right report power reduction for selective 
wakeup, selective fetch slowdown and the 
combination of both techniques. 

Selective wakeup reduces wakeup power 
dissipation up to a maximum of 27% (for ammp). 
Note that this is consistent with Figure 5(a) where 



ammp has the highest activity reduction. Minimum 
wakeup energy reduction is about 2% for bzip2. 
Again this is consistent with Figure 5(a) where bzip2 
has the lowest activity reduction. 

Selective fetch slowdown reduces wakeup power 
up to a maximum of 12% (for equake) and a 
minimum of 1% (for bzip2 and ammp). This is 
consistent with Figure 5(b) where equake has the 
highest reduction in the number of in-flight 
instructions and bzip2 and ammp have the lowest. 

Using both techniques simultaneously, on average, 
we reduce wakeup power by about 14%. Average 
wakeup power reduction is 8.3% and 6.7% for 
selective wakeup and selective fetch slowdown 
respectively. 
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Figure 5: Selective wakeup: activity reduction b) 
Selective fetch slowdown: average in-flight instruction 
reduction c) Wakeup power reduction. 

 
Note that, compared to other processor structures, the 
LI-table is a small structure and therefore comes 
negligible power overhead.    

 
4.1.3. Issue Delay and Slowdown Rate 
In Figure 6(a) we report average reduction in IID 
achieved by selective fetch slowdown. On average, 
we reduce IID by 4% (maximum 8%). 

Finally, in Figure 6(b) we report how often 
selective fetch slowdown reduces fetch rate. On 
average we reduce fetch rate about 50% of the time. 
Note that for ammp we rarely reduce the fetch rate. 
This explains why we do not witness any reduction in 
average number of in-flight instructions or IID for 
ammp as reported in Figure 5(b). 
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Figure 6: a) Selective fetch slowdown: average issue 
delay reduction b) Selective fetch slowdown: slowdown 
rate. 

 
5. RELATED WORK 
Many studies have used instruction behavior to 
optimize processor design. Such studies either 
redesign different processor parts, such as the issue 
queue, or reconfigure the processor dynamically.  

Raasch et al. suggested adapting the issue queue 
size and exploiting partitioned issue queues to reduce 
the wakeup activity [11]. Our work is orthogonal to 



and could be used on top of their approach to increase 
savings. 

Many studies use dependency chain information to 
reduce issue queue complexity [5,6,8-10]. Our work is 
different from these studies as it relies on issue delay 
estimation without considering data dependency.  

Brown et al., introduced methods to remove the 
select logic from the critical path [4]. Brekelbaum et 
al.,  introduced  a   new  scheduler,  which  exploits 
latency  tolerant   instructions  in  order  to  reduce 
implementation  complexity  [3].  Stark  et al., used 
�grandparent� availability time to speculate wakeup 
[12]. Ernst et al., suggested a wakeup free scheduler 
which relied on   predicting  the  instruction  issue 
latency [7].  Hu et al., studied wakeup-free schedulers 
such as that proposed in [7] and explored how design 
constrains result in performance loss and suggested a 
model to eliminate some of those constrains [2]. Our 
technique is different from all these studies as it takes 
a more conservative approach and uses a less complex 
scheme.  

Huang et al., [13] showed that a large fraction of 
instructions wake up no more than a single instruct-
ion.  They proposed an indexing scheme which only 
enables the comparator for a single dependent 
instruction. Our technique is different as it uses 
prediction to decide which comparators to disable. 

Previous study has introduced front-end gating 
techniques to stop fetching instructions when there is 
not enough confidence in the in-flight instructions 
[14]. Our work is different as it relies on lazy 
instruction prediction. 
 
6. CONCLUSION AND FUTURE WORK 
In this work we studied lazy instructions and 
introduced two related optimization techniques. We 
showed that it is possible to identify a considerable 
fraction of lazy instructions by using a small and 
simple 64-entry predictor. By predicting and 
estimating the number of lazy instructions we reduced 
wakeup activity, wakeup power dissipation, average 
instruction issue delay and the average number of in-
flight instructions while maintaining performance. We 
relied on limiting instruction wakeup for lazy 
instructions to even cycles and reducing the processor 
fetch rate when the number of lazy instructions in the 
pipeline exceeds a dynamically decided threshold. 
Our study covered a subset of SPEC�2k benchmarks. 

As mentioned, several approaches have been 
proposed to reduce power dissipation of the issue 
queue. One possible future avenue is to study the 

possibility of their combination with our proposed 
techniques. 

While throughout this work we only focused on 
lazy instructions it is possible to study fast 
instructions; i.e., instructions which are issued 
quickly. In addition we can use the information of 
lazy/fast instruction prediction to reduce power 
dissipation in other structure of a superscalar 
processor.  
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