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ABSTRACT 
High fabrication cost per bit and thermal issues are the main 
reasons that prevent architects from using 3D-DRAM alone as the 
main memory. In this paper, we address this issue by proposing a 
heterogeneous memory system that combines a DDRx DRAM with 
an emerging 3D hybrid memory cube (HMC) technology. 
Bandwidth and temperature management are the challenging issues 
for such a memory architecture. To address these challenges, first 
we introduce a memory page allocation policy for the 
heterogeneous memory system to maximize performance. Then, 
using the proposed policy, we introduce a temperature-aware 
algorithm that adaptively distributes the requested bandwidth 
between HMC and DDRx DRAM to reduce the thermal hotspot 
while maintaining high performance. The results show that the 
proposed memory page allocation policy can utilize the memory 
bandwidth close to 99% of the ideal bandwidth utilization. 
Moreover our temperate-aware bandwidth adaptation reduces the 
average steady-state temperature of the HMC hotspot across 
various workloads by 4.5oK while incurring 2.5% performance 
overhead.  
  

Categories and Subject Descriptors 
B.3.1 [Memory Structures]: Semiconductor Memories–Dynamic 
memory (DRAM). 
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1. INTRODUCTION 
3D-integration is a recent technology that addresses the memory 
wall problem [13][14]. With 3D-integration, different layers of dies 
are stacked using fast through-silicon TSV interconnects (TSV) 
with a latency as low as few picoseconds. Therefore, by exploiting 
3D-integration, we are able to stack multiple layers of DRAM 
resulting in shorter memory access latency to potentially address 
the memory wall problem. Moreover, stacking DRAM gives us the 
opportunity to have parallel accesses to DRAM banks, which 
results in higher maximum achievable bandwidth.  

Compared to the conventional DRAM architecture (2D), 3D-
DRAM results in better performance. Hybrid memory cube (HMC) 
is an emerging 3D memory interface and design introduced by 
Micron to address the inefficiency of DDRx DRAMs [14]. HMC 

stacks up to eight layers of standard DRAM building blocks on a 
memory controller. However, 3D-integration used in HMC imposes 
a drastic power density as highlighted in 2013 report by Rambus 
[20]. Higher power density causes many temperature-related 
problems including extra cooling costs, reliability, wear-out, and 
leakage power issues [7]. For example, more stacked layers 
increases the heat resistivity of the entire chip package that results 
in higher peak and steady-state temperature. It also complicates the 
chip packaging process which makes the design more vulnerable to 
various failure mechanisms [21]. 

Beside the thermal issues, fabrication cost is another challenge, 
which could limit the application of HMC. As the capacity of each 
HMC cube is limited to 2~4GB [9], several cubes need to be 
chained together to build a larger capacity required. In terms of cost 
and design feasibility this may not be a practical option. Therefore, 
conventional 2D, DDRx DRAM, is indispensable in order to 
maintain high capacity requirement of DRAM to achieve high 
performance and avoid the thermal and cost challenges associated 
with the new 3D technology.  

A heterogeneous memory system that combines 2D- and 3D-
DRAM can exploit the high capacity, low cost and low thermal 
footprint of 2D, and high bandwidth and low access latency of 3D, 
simultaneously. However the challenge is how to manage the two 
substantially different designs effectively to exploit their benefits. 
[10] attempts to address this issue, however it does not model 
HMC, and instead, it studies a generic 3D-stacked DRAM. 
Moreover, despite proposing a policy to achieve higher QoS, the 
thermal challenge of 3D memory is not addressed in [10].  

In this paper we introduce a heterogeneous HMC+DDRx memory 
system. The focus of this paper is to address both performance and 
temperature challenges associated with the proposed memory 
architecture, simultaneously, by introducing performance-
temperature aware memory management mechanisms. Over-
utilization of either HMC or DDRx DRAM results in bandwidth 
congestion and incurs a large performance loss. Furthermore, 
utilizing the HMC to maximize the performance benefits can lead 
to thermal hotspots, which in turn can severely affects performance, 
due to thermal emergency response such as throttling. In order to 
utilize both HMC and DDRx DRAM efficiently, our memory 
management mechanism allocates the memory pages in an 
interleaving manner considering the system temperature and 
performance. To the best of our knowledge this is the first paper to 
simultaneously address the performance and temperature 
challenges in a heterogeneous HMC+DDRx DRAM memory 
subsystem.The main contributions of this work are as follows: 

 We show that a heterogeneous HMC+DDRx, is an alternative for 
conventional DDRx and plain HMC memory system, which 
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Figure 1.  Studied architecture employing heterogeneous DRAM.  
 

Figure 2. Memory access latency of (a) HMC and (b) DDRx DRAM as 
a function of memory request allocation. 
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addresses the performance challenge and thermal issues of 3D-
integartion, while maintaining high performance. 

 We show that in heterogeneous DDRx+HMC, the average 
memory access latency changes substantially across various 
bandwidth allocation, therefore suggests the need for a 
bandwidth allocation policy to minimize the latency. We propose 
a run-time memory page allocation policy to efficiently utilize 
the bandwidth. 

 We introduce a dynamic temperature-aware policy that utilizes 
our proposed heterogeneous DRAM based on the operating 
temperature of the HMC and the current phase of the workload. 
As a result, by allocating bandwidth to HMC and DDRx DRAM 
dynamically, we reduce the steady-state temperature. 

The rest of this paper is organized as follows. Section 2 describes 
our heterogeneous memory system. Section 3 introduces our 
heterogeneous memory management. Section 4 presents the 
framework and Section 5 shows the results. Section 6 introduces 
some related works. Finally, Section 7 concludes the paper. 

2. HETEROGENEOUS HMC+DDRx 
Prior research [15][16] has shown that 3D-DRAM provides 
significant advantages in terms of performance while enabling 
energy-efficient computing. 3D-DRAMs including HMC offer 
much higher bandwidth compared to DDRx technologies. They are 
also more power efficient [22][14][12]. This is achieved by having 
more parallel accesses to the DRAM enabled by short and fast 
interconnect. However, in terms of cost per pit and relative power 
density (and temperature footprint) DDRx is a better technology 
[22][14]. While the HMC cost might even go further down in 
future, as DRAM is a very cost-sensitive market DDRx will not 
going away any time soon [12]. Therefore, a memory system 
consisting of both HMC and DDRx interfaces can address power, 
performance, temperature, and cost challenges.  

Our studied architecture in this work is shown in Fig.1. In our 
heterogeneous memory system, HMC is combined with a 
conventional DDRx DRAM to exploit the high memory bandwidth 
and the low memory latency of the HMC as well as the high 
capacity and the low cost of the DDRx DRAM. The memory 
management we employ for the proposed heterogeneous DRAM 
integrates the OS virtual to physical address translation so that the 
heterogeneous memory is transparent to the CMP (chip multi-
processor) and the cores see a unified address space. 

As Fig. 1 illustrates, the cores’ memory requests are pushed to the 
memory request distributer (MRD).  Decoding the coming request, 
MRD transfers the request to the corresponding memory controller 
(i.e., either HMC or DDRx memory controller). Each controller has 
its own queue for memory requests. By generating appropriate 
DRAM commands, the memory controller services the requests in 
the queue and accesses the DRAM cells. Then, depending on the 
request type (i.e., read/write) the data is either written to or read 

from the memory and sent back to the core through the memory 
controller’s read queue. As shown in Fig. 1, our proposed 
heterogeneous DRAM has two distinct memory channels: one 
connecting to HMC using two high-speed links, and the other 
connecting to DDRx DRAM. Without loss of generality, similar to 
[1][10], we assume in this paper that The HMC and DDRx DRAM 
employ two and one memory controllers, respectively.  

The main question for our proposed heterogeneous memory system 
is how to manage each memory component including the HMC and 
the DDRx DRAM to gain the best performance while addressing 
the bandwidth, capacity, and temperature challenges. The key to 
answer this question is to understand the application's behavior in 
terms of memory access pattern and utilization. For instance, the 
more requests the HMC receives in burst, the more its bandwidth is 
utilized. However, utilizing the HMC aggressively, results in longer 
memory latency if the application has a large number of memory 
requests that are coming in burst. On the other hand, applications 
with a large number of memory requests cause more dynamic 
power dissipation and thus, higher average temperature. Therefore, 
a dynamic bandwidth and temperature adaptation is required.   

3. HMC+DDRX MANAGEMENT 
 In this section, we explain how to allocate the application 
requested memory bandwidth between the HMC and the DDRx 
DRAM. 

3.1 Bandwidth Allocation Policy 
Memory access latency is a function of memory bandwidth 
utilization [1] [10]. As the bandwidth utilization increases, the 
memory access latency becomes longer, mainly due to congestion 
in the memory controller and links. While there are several 
solutions to mitigate this problem [17], above certain bandwidth 
utilization, due to queuing effect the memory access latency 
increases significantly [1][10]. In Fig. 2 we investigate this 
phenomenon for both the DDRx DRAM and the HMC 
independently. As shown in Fig. 2 we increase the bandwidth 
utilization of HMC and DDRx DRAM by allocating more number 
of memory requests for each type of workloads. The x-axis 
illustrates the memory request portion that each DRAM receives 
form the entire accesses. For example, in Fig. 2(a) 10/90 means that 
while 10% of requests are serviced by HMC, 90% of requests are 
serviced by DDRx DRAM. It is important to note that in Fig. 2(a) 
and 2(b), we show the average memory latency from HMC and 
DDRx DRAM perspective, respectively. We categorize application 
into three groups; the memory-intensive applications, the memory-
non-intensive applications and a mixture of them. The workloads 
are classified based on their LLC misses per 1K instructions 
(MPKI) which varies from 0.0005 to 24 for our studied 
benchmarks. We refer to a benchmark as memory-intensive if its 
MPKI is greater than twelve and non-intensive if MPKI is less than 
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Figure 4. Memory access pattern for different workloads. 
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Figure 3. Bandwidth- and temperature-aware memory management. 

one. For simplicity, we refer to memory-intensive, memory-non-
intensive and mixture applications throughout the paper as MI, 
MNI and Mix applications. Workloads used in Fig. 2 are 
representatives of their categories.  

As Fig. 2(b) shows, for the DDRx DRAM, the MI workload has the 
highest rise in memory access latency when request allocation 
increases from 10% to 60% for DDRx DRAM. For bandwidth 
above 70%, due to queuing effect the memory access latency for 
MI workload becomes so large that we could not show it in the 
figure (for instance with 90% utilization this is 8891ns). In Mix and 
MNI workloads the memory latency is affected much less as the 
bandwidth utilization increases. The results show that for MNI 
workloads, the memory access latency is somewhat linear while for 
Mix applications it grows exponentially, but at much slower rate 
compared to MI workloads. We show the results for HMC in Fig. 
2(a). As shown, when the memory request allocation is between 
10% and 80%, the latency is almost linear across all groups of 
workloads. For larger bandwidth utilizations, except for MNI, in 
Mix and MI workloads, HMC latency increases exponentially, 
however at much slower rate compared to DDRx DRAM (Fig. 
2(b)). It is notable that, generally, the memory latency increases in 
DDRx DRAM more quickly compared to HMC, since HMC has a 
higher memory bandwidth and faster interconnects, TSVs. 

Motivated by the observation from Fig. 2, we introduce a 
bandwidth allocation policy to effectively utilize both HMC and 
DDRx DRAM, so that we gain the minimum average memory 

access latency for any given workload. In this technique, we 
allocate new memory pages in an interleaving scheme between 
HMC and the DDRx DRAM, to achieve the minimum average 
access latency for the entire system. The minimum access latency is 
achieved at a specific bandwidth utilization of each DRAM which 
is different across various workloads. We refer to this point as 
Optimum Bandwidth Utilization or OBU in brief. For instance, for 
a given workload OBU of 70% means that to achieve the minimum 
access latency we need to allocate the requests to HMC and DDRx 
DRAM by 70% and 30% respectively. To satisfy this goal, out of 
each ten new consecutive writes (page faults), we assign the first 
seven access (pages) to the first seven free blocks of HMC and the 
remaining to the three free blocks of the DDRx DRAM. This 
necessitate a mechanism (using a simple counter) to determine the 
DRAMs’ turn. This helps meeting the OBU for the new incoming 
write accesses. Nonetheless, since not all the accesses are new 
writes (i.e., the requested data already resides in the DRAM), and 
the access pattern to the previously allocated memory blocks may 
not be uniform, the target bandwidth allocation might not be 
satisfied. However, our experimental results show that our memory 
allocation policy can satisfy the target bandwidth, indicating that 
the access pattern is somewhat uniform. Table 1 reports the average 
inaccuracy of our allocation technique from the OBU for all other 
target bandwidths (0 to 100 in step of 10), which indicates how 
accurate it meets the target bandwidth. As reported in Table 1, the 
average inaccuracy of the proposed allocation policy is 1.32%, i.e., 
close to 99% of the ideal bandwidth utilization.  

The proposed interleaving memory page allocation policy is shown 
in Fig. 3. As it shows, upon generating a new request by the CMP, 
the corresponding core accesses its own TLB and then page table to 
check whether the address is available in the main memory or not. 
If so, using MRD, the correspondent DRAM is accessed to 
read/write the data. Otherwise a page fault occurs, and bandwidth 
manager transfers the page which contains the data from the hard 
disk to the proper DRAM (i.e., HMC or DDRx). In order to do so, 
with the help of OS, the bandwidth manager checks whether any of 
the DRAMs (i.e., HMC and DDRx) has a free page. If any of the 
DRAMs is full, bandwidth manager accesses the other one that is 
not full, otherwise it employs page replacement policies to bring 
the new page to the heterogeneous DRAM. Moreover, bandwidth 
manager needs to know about DRAM’s turn to accommodate the 
new page in the proper DRAM. This is done with the help of the 
distribution factor variable that stores the OBU.  We will discuss 
Temperature-aware distribution factor regulator in section 3.2.  

As discussed, every workload type have different OBU and the 
interleaving policy results in the minimum memory latency only if 
the proper bandwidth utilization is set. Therefore, it is important to 
detect the type of workload, whether it is an intensive, mix or non-
intensive, to set the proper OBU. Our studies on workload memory 
access pattern show that, although the memory access pattern may 
change through different phases of a program, consistent with prior 

Table 1. Inaccuracy of proposed bandwidth allocation policy. 

Workload (+/-) inaccuracy % Workload (+/-) inaccuracy % 
MI1 1.53 Mix3 5.53 
MI2 0.33 Mix4 0.74 
MI3 0.33 MNI1 2.23 
MI4 0.23 MNI2 0.51 
Mix1 1.99 MNI3 1.02 
Mix2 0.99 MNI4 0.38 

Average 1.32 
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Figure 5. Total memory access latency in the heterogeneous memory 
system, as a function of HMC/DDRx bandwidth allocation for (a) 

MI and (b) MNI workloads. 
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work [17], the average intensity of memory requests in a given 
phase is deterministic and highly predictable. Fig. 4 illustrates the 
memory access pattern for two representatives of MI and MNI 
workloads. The samples are collected every 1 million cycles. 

As shown in Fig. 4, MNI applications can be clearly distinct from 
MI workloads, as the number of memory requests in this class of 
workload remains almost consistently small throughout the 500M 
cycles studied intervals. Therefore by profiling memory access 
pattern we can decide the workload type and the relevant OBU 
accordingly. As Fig. 3 depicts, the memory access profiler provides 
the proper OBU for the bandwidth manager. This can be done 
every 10 milliseconds, as most operating systems performs context 
switching at this rate and therefore the memory access pattern will 
change. After all, as soon as the new page resides in the memory, 
the corresponding TLB and the page table need to be updated.  

Since bandwidth allocation policy brings the memory blocks in 
page granularity, and given that we use the same page size as 
homogeneous memory system does, our memory management does 
not affect the data locality. Applying our memory allocation policy, 
we estimate the average memory access latency of the proposed 
heterogeneous memory system when running different workloads 
using equation 1: 

்ܮ ൌ ሺܲ ∗ ுெሻܮ 	ሺሺ1 െ ܲሻ ∗  ோ௫ሻ (1)ܮ

where ்ܮ is the total latency, ܲ is the HMC desired allocated  
bandwidth, ܮுெis the HMC latency and ܮோ௫ is the DDRx 
DRAM latency. 

Fig. 5 presents the total memory access latency for two groups of 
workloads and for various target bandwidths. It is noteworthy that 
memory access latency (Y axis) for MI and MNI is in the range of 
microseconds and nanoseconds, respectively. We observe such a 
high difference in memory latency (us vs. ns) only when the 
queuing effect occurs in MI workloads. Moreover, as Mix 
workload behavior is somewhat close to MI workload behavior, 
due to space limitation, in Fig. 5 we only report the results for the 
first two studied workloads in MI and MNI categories. 

As Fig. 5 shows, different types of workloads have different OBU 
to achieve minimum average memory access latency. In MI 
workloads the average memory latency is more sensitive to the 
bandwidth allocation than the other workload. In Fig. 5(a), for MI 
workloads, miss utilization of the heterogeneous memory system 
results in a large performance loss. For example, for the first 
workload, if the HMC bandwidth allocation is less than 50% or 
more than 80%, the memory access latency is becoming large in a 
microsecond range (note that 50% and 80% of HMC allocation 
means 50% and 20% of DDRx bandwidth allocation). This occurs 
for the second workload as well, if the HMC bandwidth allocation 

is less than 30% or equal to 100%. This large penalty is due to the 
queuing effect. It is important to note that as the simulations for 
both workloads took so long, we were not able to report the 
memory access latency for 10% and 20% of HMC bandwidth 
allocation, in Fig. 5 (a). This shows that the performance loss is 
even more, compared to 30% of HMC bandwidth allocation. Our 
observation shows that allocating 60% of the entire bandwidth to 
HMC gives the best performance for all MI workloads. Therefore, 
the OBU is set to 60% for this class of workloads. Since Mix 
workloads show the same behavior as MI workloads do, we set 
OBU to 60% as well for this class of workloads. 

As Fig. 5 (b) presents, in MNI workload, the performance penalty 
due to DRAMs miss utilization is very small compared to MI 
workload. Unlike MI and Mix workloads in which we observed the 
queuing effect, in memory-non-intensive workloads, as we allocate 
higher bandwidth to HMC we gain a better performance up to the 
point where we reach to 90% of the entire bandwidth. If we allocate 
the entire bandwidth to HMC we lose a small performance. 
Therefore, we can set the OBU at 90% for this class of workloads. 
Our observation shows that the average memory access latency of 
our heterogeneous memory system at the OBU for MI, Mix and 
MNI applications are 64ns, 44ns and 33ns respectively. It is worth 
mentioning that the workloads that are not presented in these 
figures have somewhat similar behavior and the illustrated 
workloads can be representative of its corresponding workload 
category. 

3.2 Temperature-aware Policy 
In this section, we propose our algorithm that reduces the steady 
sate temperature while maintaining the high-performance benefit of 
bandwidth allocation policy presented earlier. Fig. 6 shows the 
steady state temperature in HMC as a function of bandwidth 
allocation, for different types of workloads. As Fig. 6 shows, for 
the MI and the Mix workloads allocating higher bandwidth to 
HMC from 10% to 100% results in 25oK and 43oK steady state 
temperature increase. For workloads with high memory requests 
(MI) a sharp rise in temperature is observed when higher 
bandwidth is allocated. As shown, for MNI workload higher 
bandwidth allocation does not affect the temperature, mainly due to 
the fact that these workloads do not generate significant memory 
accesses and therefore they have small power dissipation. 

While higher DRAM bandwidth allocation is desired, it comes with 
a large temperature rise. Such a large thermal rise is not tolerable as 
it can affect the performance, reliability and the cooling cost of the 
design [7][21]. Therefore, we need a smart mechanism to 
dynamically adapt DRAM bandwidth allocation to manage the 
temperature. 
3.2.1 Temperature-aware Bandwidth Allocation 
Bandwidth allocation of the heterogeneous DRAM affects DRAM 
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Figure 7. (a) Steady-state temperature of HMC, (b) Average latency of the entire DRAM  and (c) Performance degradation for different 
workloads when different TBU is applied.

 340

 345

 350

 355

 360

 365

 370

MI1 MI2 MI3 MI4 Mix1
Mix2

Mix3
Mix4

S
te

a
d
y 

st
a
te

 te
m

p
e
ra

tu
re

 (
K

e
lv

in
)

TBU-30
TBU-40
TBU-50

Baseline

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

MI1 MI2 MI3 MI4 Mix1
Mix2

Mix3
Mix4

Avg

A
ve

ra
g
e
 m

e
m

o
ry

 la
te

n
cy

(n
s) TBU-30

TBU-40
TBU-50

Baseline

 0

 1

 2

 3

 4

 5

 6

MI1 MI2 MI3 MI4 Mix1
Mix2

Mix3
Mix4

Avg

P
e
rf
o
rm

a
n
ce

 d
e
g
ra

d
a
tio

n
(%

) TBU-30
TBU-40
TBU-50

power dissipation. The power and therefore the temperature of 
HMC are highly decided by its bandwidth allocation. As indicated 
in Fig. 6, for MI and Mix workloads there is a large gap in steady 
state temperature. Motivated by this observation, we propose our 
dynamic temperature-aware bandwidth allocation technique 
(DTBA in brief) to reduce the steady-state temperature of HMC 
while maintaining high performance benefit. 

In DTBA, first we define two operating temperature regions, 
namely normal and hot. As long as the HMC operates in the normal 
region it can be utilized to gain the highest performance using the 
bandwidth allocation policy. However, whenever HMC enters the 
hot region we allocate lower bandwidth to it while dedicating 
higher bandwidth to the DDRx DRAM at the same time to 
compensate for possible performance loss. This results in lowering 
HMC power consumption and therefore reduces steady state 
temperature. We implement DTBA using the proposed memory 
allocation technique explained in Section 3.1 (see Fig. 3). 

As presented in Fig. 6, MNI workloads’ temperatures are almost 
bandwidth insensitive. Therefore these workloads do not require a 
thermal-aware adaptation and we can simply use the bandwidth 
allocation technique to manage their bandwidth utilization. 

As Fig. 3 shows, our temperature-aware algorithm works as 
follows. We profile the memory accesses to detect the running 
workload type. Then, based on the workload type, we set the OBU 
using bandwidth allocation policy. The temperature sensor on 
HMC monitors the temperature periodically. If the HMC 
temperature rises into the hot region, the distribution factor variable 
is over-written with the new bandwidth referred to as Temperature-
aware Bandwidth Utilization (TBU). This is done by temperature-
aware distributer factor regulator. Otherwise, we continue with the 
previous bandwidth allocation based on the OBU provided by the 
memory access profiler. Our temperature-sampling interval is set at 
1 millisecond [5][8].   

Note that bandwidth allocation policy and DTBA work 
cooperatively to find the target bandwidth that delivers the highest 
performance while maintaining the HMC operation below the hot 
region. As shown in Fig. 5, although allocating 90% of the entire 
bandwidth to HMC gives the highest performance for MNI 
workloads, it hurts performance significantly for MI and Mix 
workloads. Therefore, starting with 60% of bandwidth allocation is 
an optimal choice as it provides a good performance across all 
workloads. 

4. METHODOLOGY 
We use a quad-core CMP architecture with a total of 3GBs of 
DRAM including 1 GB HMC and 2 GB of DDRx as our target 
system. For the DDRx DRAM we model a Micron DDR3 SDRAM 
[3]. Table 2 summarizes the detailed parameters of CMP 

architecture and heterogeneous memory system modeled in this 
work. 

We integrate SMTSIM simulator [2] and DRAMsim2 [3] for 
architecture simulation. We use SPEC2000, SPEC2006, NAS [18] 
and Olden [19] benchmarks to create the 12 studied workloads. We 
modify DRAMSim2 memory simulator extensively to model the 
proposed heterogeneous memory. Moreover, DRAMsim2 is 
extended with a profiler that periodically monitors workload to 
predict whether it is memory-intensive in the current program 
phase. It is also equipped with a power profiler to generate the 
memory system power trace.  

To calculate the memory controller power consumption, we use the 
results reported in [14]. As [14] presents, in an HMC the average 
power dissipation of the memory controller is 1.8 of the DRAM 
layers. We employ HotSpot [5] to measure the HMC temperature. 
DRAMSim2 receives the transient temperature (running 
temperature) from HotSpot [5] periodically, i.e., every 1 
millisecond. We assume that the power dissipation is distributed 
evenly across all eight DRAM layers, as well as within each layers. 
We assume the area of the HMC layers including DRAM and 
controller layers to be 68 mm2 which is adopted from [6]. We 
consider the thickness of HMC dies and heat-sink to be 0.05 mm 
and 0.01 mm, respectively. Other thermal specifications are 
borrowed from [5]. Similar to [6], since the HMC and CMP are 
integrated using a PCB, we consider an inexpensive heat-sink for 
the HMC. 

5. DTBA RESULTS 
This section evaluates DTBA when applied in the proposed 
heterogeneous DRAM. To find how effective DTBA can optimize 
temperature and performance simultaneously, we compare it with a 
performance-optimized (bandwidth allocation) baseline where the 
bandwidth adaptation is performed to minimize average DRAM 
access latency and therefore maximize performance. Hence, the 
OBU is set to 60%, based on the results discussed in Section 3.1. In 
order to have a better understating of DTBA impact on 
temperature, we consider different TBU for the hot region 

Table 2. CMP and heterogeneous memory system parameters. 
Core 

Core Clock 3GHz 
Issue, Commit width 4 
INT & FP Instruction queue 32 entries 
ROB size, INT Reg, FP Reg 128 
L1 cache 64KB, 8-way, 2 cycle 
L2 cache 512KB, 20 cycle 

HMC and DDRx DRAM 
DRAM Clock 800MHz 
Column Access Strobe (tCAS) 10 (DDRx), 6  (HMC) 
Row Access Strobe (tRAS) 24 (DDRx), 24 (HMC) 
Row Buffer Policy Close page 
Page Size 4 KB 
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discussed in Section 3.2. Fig. 7(a) shows the steady state 
temperature of DTBA. Note that since MNI workloads are not 
temperature sensitive as discussed earlier, only results for MI and 
Mix workload are presented. 

As shown in Fig. 7(a), TBU=30% configuration achieves the 
highest temperature reduction. The largest thermal reduction is 
5.5oK which is observed in MI4 workload. TBU=40% and 
TBU=50% results have slightly lower thermal reduction. Moreover, 
it is important to note that as memory-intensive workloads are more 
temperature sensitive, temperature results are more sensitive to the 
TBU compared to Mix workloads. Since DTBA trade-offs 
temperature with performance, it comes with a small performance 
penalty compared to the bandwidth allocation policy, which is only 
optimized for performance. This performance loss is due to the 
longer memory latency. Fig. 7(b) and 7(c) show the DTBA  
performance loss for different workloads in terms of memory 
latency and IPC.  

As shown in Fig. 7(b), the average memory access latency 
increases when DTBA is applied, compared to bandwidth 
allocation policy. Similar to Fig. 7(a), since there is a negligible 
performance loss for memory-non-intensive workloads, we do not 
report the results. As Fig. 7(b) depicts, for all workloads, 
configurations with more temperature reduction, result in larger 
memory latency. The largest increase in average memory latency is 
observed in MI3 workload. Note that, this is the same workload 
with highest temperature reduction benefit. 

As Fig. 7(c) reports, the average performance loss is around 2.5% 
in the worst case (TBU=30%). The loss in performance is more 
noticeable in MI workloads. This is consistent with the thermal 
improvement we show in Fig. 7(a) in which we achieve higher 
temperature reduction for MI workloads. 

6. RELATED WORK 
3D stacking can be used in many ways including logic on logic 
stacking [4], memory on logic stacking [13] and memory on 
memory stacking [14] to address some of the major challenges 
microprocessor industry is facing. 3D-DRAM stacking can 
potentially resolves the memory wall problem and delivers lower 
power consumption for the memory subsystem.  

Although thermal management in 2D deigns for both core and 
DRAM has been a challenge for architects, introducing 3D stacking 
even exacerbates the problem. Therefore, many studies have 
focused to address this issue, especially for stacked memory. These 
studies either propose static methods at design level [11] or 
dynamic techniques at runtime [7][13] to reduce the transient or 
steady state temperature. For instance, [7] proposes a dynamic 
power and temperature management for a 3D design with stacked 
cache. Monitoring the runtime application behavior, [13] attempts 
to choose the best voltage-frequency setting to achieve the 
maximum throughput while maintaining the power and temperature 
constraints in 3D multicore system with a stacked DRAM. In a 
recent work Zhao [8] proposes a migration technique to reduce 
temperature in a multicore architecture with stacked DRAM. 
Migrating threads between cores according to their temperature, is 
the key of their work to reduce the steady state temperature of the 
system. 

[10] proposes a heterogeneous memory management which 
exploits a stacked DRAM alongside a 2D DRAM. However, unlike 
to our work, their research does not investigate the thermal 
characteristics of the design and onl focuses on the quality of 
service of applications, which also needs the programmer 
intervention. Another recent work has been on thermal mitigation 

in hybrid memory cubes (HMC) [6] that tries to reduce the number 
of read/write burst by compressing data in the logic layer (memory 
controller). This scheme is orthogonal to ours when used in HMC.  

7. CONCLUSION 
This paper proposes an adaptive bandwidth allocation and a 
temperature-aware memory management to exploit the high 
bandwidth and low latency of 3D hybrid memory cube (HMC) and 
high capacity and low temperature of the DDRx DRAM. The 
bandwidth allocation memory management policy profiles 
workload at run-time and based on memory access pattern allocates 
DRAM and HMC bandwidth accordingly, to reduce memory 
bandwidth congestion. While this ensures high performance, it 
causes significant thermal rise in HMC. To address this challenge, 
the temperature-aware policy monitors run-time temperature of 
HMC to adapt the bandwidth. Temperature-aware policy reduces 
the temperature while maintaining the high-performance benefit of 
bandwidth allocation technique. This is all done based on 
application memory access patterns and at run-time. Simulation 
results show that the bandwidth allocation memory management 
can utilize the memory bandwidth close to 99% of the ideal 
bandwidth utilization. Combined with the thermal-aware policy, 
our proposed memory management reduces steady-state 
temperature by 4.5oK, on average, across different workloads while 
maintaining the performance benefits of bandwidth-adaptive 
technique. 
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