
Adaptive Bandwidth Management for Performance-
Temperature Trade-offs in Heterogeneous HMC+DDRx

Memory

Mohammad Hossein Hajkazemi, Michael Chorney, Reyhaneh Jabbarvand Behrouz,
Mohammad Khavari Tavana, Houman Homayoun

George Mason University, Fairfax, VA, USA
Email: {mhajkaze, mchorney, rjabbarv, mkhavari, hhomayou}@gmu.edu

ABSTRACT
High fabrication cost per bit and thermal issues are the main
reasons that prevent architects from using 3D-DRAM alone as the
main memory. In this paper, we address this issue by proposing a
heterogeneous memory system that combines a DDRx DRAM with
an emerging 3D hybrid memory cube (HMC) technology.
Bandwidth and temperature management are the challenging issues
for such a memory architecture. To address these challenges, first
we introduce a memory page allocation policy for the
heterogeneous memory system to maximize performance. Then,
using the proposed policy, we introduce a temperature-aware
algorithm that adaptively distributes the requested bandwidth
between HMC and DDRx DRAM to reduce the thermal hotspot
while maintaining high performance. The results show that the
proposed memory page allocation policy can utilize the memory
bandwidth close to 99% of the ideal bandwidth utilization.
Moreover our temperate-aware bandwidth adaptation reduces the
average steady-state temperature of the HMC hotspot across
various workloads by 4.5oK while incurring 2.5% performance
overhead.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories–Dynamic
memory (DRAM).

Keywords
Heterogeneous Memories, Bandwidth, HMC, Temperature

1. INTRODUCTION
3D-integration is a recent technology that addresses the memory
wall problem [13][14]. With 3D-integration, different layers of dies
are stacked using fast through-silicon TSV interconnects (TSV)
with a latency as low as few picoseconds. Therefore, by exploiting
3D-integration, we are able to stack multiple layers of DRAM
resulting in shorter memory access latency to potentially address
the memory wall problem. Moreover, stacking DRAM gives us the
opportunity to have parallel accesses to DRAM banks, which
results in higher maximum achievable bandwidth.

Compared to the conventional DRAM architecture (2D), 3D-
DRAM results in better performance. Hybrid memory cube (HMC)
is an emerging 3D memory interface and design introduced by
Micron to address the inefficiency of DDRx DRAMs [14]. HMC

stacks up to eight layers of standard DRAM building blocks on a
memory controller. However, 3D-integration used in HMC imposes
a drastic power density as highlighted in 2013 report by Rambus
[20]. Higher power density causes many temperature-related
problems including extra cooling costs, reliability, wear-out, and
leakage power issues [7]. For example, more stacked layers
increases the heat resistivity of the entire chip package that results
in higher peak and steady-state temperature. It also complicates the
chip packaging process which makes the design more vulnerable to
various failure mechanisms [21].

Beside the thermal issues, fabrication cost is another challenge,
which could limit the application of HMC. As the capacity of each
HMC cube is limited to 2~4GB [9], several cubes need to be
chained together to build a larger capacity required. In terms of cost
and design feasibility this may not be a practical option. Therefore,
conventional 2D, DDRx DRAM, is indispensable in order to
maintain high capacity requirement of DRAM to achieve high
performance and avoid the thermal and cost challenges associated
with the new 3D technology.

A heterogeneous memory system that combines 2D- and 3D-
DRAM can exploit the high capacity, low cost and low thermal
footprint of 2D, and high bandwidth and low access latency of 3D,
simultaneously. However the challenge is how to manage the two
substantially different designs effectively to exploit their benefits.
[10] attempts to address this issue, however it does not model
HMC, and instead, it studies a generic 3D-stacked DRAM.
Moreover, despite proposing a policy to achieve higher QoS, the
thermal challenge of 3D memory is not addressed in [10].

In this paper we introduce a heterogeneous HMC+DDRx memory
system. The focus of this paper is to address both performance and
temperature challenges associated with the proposed memory
architecture, simultaneously, by introducing performance-
temperature aware memory management mechanisms. Over-
utilization of either HMC or DDRx DRAM results in bandwidth
congestion and incurs a large performance loss. Furthermore,
utilizing the HMC to maximize the performance benefits can lead
to thermal hotspots, which in turn can severely affects performance,
due to thermal emergency response such as throttling. In order to
utilize both HMC and DDRx DRAM efficiently, our memory
management mechanism allocates the memory pages in an
interleaving manner considering the system temperature and
performance. To the best of our knowledge this is the first paper to
simultaneously address the performance and temperature
challenges in a heterogeneous HMC+DDRx DRAM memory
subsystem.The main contributions of this work are as follows:

 We show that a heterogeneous HMC+DDRx, is an alternative for
conventional DDRx and plain HMC memory system, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
GLSVLSI '15, May 20 - 22, 2015, Pittsburgh, PA, USA.
Copyright 2015 ACM 978-1-4503-3474-7/15/05…$15.00.
http://dx.doi.org/10.1145/2742060.2742070

391

Core0 Core1

Core2 Core3

Common bus

M
em

or
y

re
q

u
es

t
d

is
tr

ib
u

to
r Address

mapping

Refresh
Controller

Vault
Controller

Ordering
Engine

Write Queue

Read Queue

HMC Controller

DDRx Controller

HMC

DDRx

Address
mapping

Refresh
Controller

Channel
Controller

Ordering
Engine

Write Queue

Read Queue

Address
mapping

Refresh
Controller

Vault
Controller

Ordering
Engine

Write Queue

Read Queue

HMC Controllers

Figure 1. Studied architecture employing heterogeneous DRAM.

Figure 2. Memory access latency of (a) HMC and (b) DDRx DRAM as
a function of memory request allocation.

 0

 50

 100

 150

 200

 250

300

10/90
20/80

30/70
40/60

50/50
60/40

70/30
80/20

90/10
100/0

H
M

C
 m

e
m

o
ry

 la
te

n
cy

 (
n

s)

(a) HMC/DDRx memory request distribution (%)

MI
Mix

MNI

 30

 40

 50

 60

 70

 80

 90

 100

10/90
20/80

30/70
40/60

50/50
60/40

70/30

D
D

R
x

m
e

m
o

ry
 la

te
n

cy
 (

n
s)

(b) DDRx/HMC memory request distribution (%)

MI
Mix

MNI

addresses the performance challenge and thermal issues of 3D-
integartion, while maintaining high performance.

 We show that in heterogeneous DDRx+HMC, the average
memory access latency changes substantially across various
bandwidth allocation, therefore suggests the need for a
bandwidth allocation policy to minimize the latency. We propose
a run-time memory page allocation policy to efficiently utilize
the bandwidth.

 We introduce a dynamic temperature-aware policy that utilizes
our proposed heterogeneous DRAM based on the operating
temperature of the HMC and the current phase of the workload.
As a result, by allocating bandwidth to HMC and DDRx DRAM
dynamically, we reduce the steady-state temperature.

The rest of this paper is organized as follows. Section 2 describes
our heterogeneous memory system. Section 3 introduces our
heterogeneous memory management. Section 4 presents the
framework and Section 5 shows the results. Section 6 introduces
some related works. Finally, Section 7 concludes the paper.

2. HETEROGENEOUS HMC+DDRx
Prior research [15][16] has shown that 3D-DRAM provides
significant advantages in terms of performance while enabling
energy-efficient computing. 3D-DRAMs including HMC offer
much higher bandwidth compared to DDRx technologies. They are
also more power efficient [22][14][12]. This is achieved by having
more parallel accesses to the DRAM enabled by short and fast
interconnect. However, in terms of cost per pit and relative power
density (and temperature footprint) DDRx is a better technology
[22][14]. While the HMC cost might even go further down in
future, as DRAM is a very cost-sensitive market DDRx will not
going away any time soon [12]. Therefore, a memory system
consisting of both HMC and DDRx interfaces can address power,
performance, temperature, and cost challenges.

Our studied architecture in this work is shown in Fig.1. In our
heterogeneous memory system, HMC is combined with a
conventional DDRx DRAM to exploit the high memory bandwidth
and the low memory latency of the HMC as well as the high
capacity and the low cost of the DDRx DRAM. The memory
management we employ for the proposed heterogeneous DRAM
integrates the OS virtual to physical address translation so that the
heterogeneous memory is transparent to the CMP (chip multi-
processor) and the cores see a unified address space.

As Fig. 1 illustrates, the cores’ memory requests are pushed to the
memory request distributer (MRD). Decoding the coming request,
MRD transfers the request to the corresponding memory controller
(i.e., either HMC or DDRx memory controller). Each controller has
its own queue for memory requests. By generating appropriate
DRAM commands, the memory controller services the requests in
the queue and accesses the DRAM cells. Then, depending on the
request type (i.e., read/write) the data is either written to or read

from the memory and sent back to the core through the memory
controller’s read queue. As shown in Fig. 1, our proposed
heterogeneous DRAM has two distinct memory channels: one
connecting to HMC using two high-speed links, and the other
connecting to DDRx DRAM. Without loss of generality, similar to
[1][10], we assume in this paper that The HMC and DDRx DRAM
employ two and one memory controllers, respectively.

The main question for our proposed heterogeneous memory system
is how to manage each memory component including the HMC and
the DDRx DRAM to gain the best performance while addressing
the bandwidth, capacity, and temperature challenges. The key to
answer this question is to understand the application's behavior in
terms of memory access pattern and utilization. For instance, the
more requests the HMC receives in burst, the more its bandwidth is
utilized. However, utilizing the HMC aggressively, results in longer
memory latency if the application has a large number of memory
requests that are coming in burst. On the other hand, applications
with a large number of memory requests cause more dynamic
power dissipation and thus, higher average temperature. Therefore,
a dynamic bandwidth and temperature adaptation is required.

3. HMC+DDRX MANAGEMENT
 In this section, we explain how to allocate the application
requested memory bandwidth between the HMC and the DDRx
DRAM.

3.1 Bandwidth Allocation Policy
Memory access latency is a function of memory bandwidth
utilization [1] [10]. As the bandwidth utilization increases, the
memory access latency becomes longer, mainly due to congestion
in the memory controller and links. While there are several
solutions to mitigate this problem [17], above certain bandwidth
utilization, due to queuing effect the memory access latency
increases significantly [1][10]. In Fig. 2 we investigate this
phenomenon for both the DDRx DRAM and the HMC
independently. As shown in Fig. 2 we increase the bandwidth
utilization of HMC and DDRx DRAM by allocating more number
of memory requests for each type of workloads. The x-axis
illustrates the memory request portion that each DRAM receives
form the entire accesses. For example, in Fig. 2(a) 10/90 means that
while 10% of requests are serviced by HMC, 90% of requests are
serviced by DDRx DRAM. It is important to note that in Fig. 2(a)
and 2(b), we show the average memory latency from HMC and
DDRx DRAM perspective, respectively. We categorize application
into three groups; the memory-intensive applications, the memory-
non-intensive applications and a mixture of them. The workloads
are classified based on their LLC misses per 1K instructions
(MPKI) which varies from 0.0005 to 24 for our studied
benchmarks. We refer to a benchmark as memory-intensive if its
MPKI is greater than twelve and non-intensive if MPKI is less than

392

Figure 4. Memory access pattern for different workloads.

 40

 50

 60

 70

 80

 90

100

 0 100 200 300 400 500

M
e

m
o

ry
 A

cc
e

ss
 (

th
o

u
sa

n
d

)

Time(ms)

MI-Workload

 0

 5

 10

 15

 20

 0 100 200 300 400 500
Time(ms)

MNI-Workload

HMC Turn? DDRx Full?

HMC Full?

Core0 Core1

Core2 Core3

Common bus

TLB TLB

TLB TLB

Page table
hit

HMC DDRx

Memory Access
Profiler

HMC Full?

Heterogeneous Memory
System

Distribution
factor

To HMCTo DDRx

Te
m

pe
ra

tu
re

-a
w

ar
e

di
st

ri
bu

ti
on

fa

ct
or

 r
eg

u
la

to
r

Temperature
sensor

P
ag

e
re

pl
ac

em
en

et

HMC Turn?

Page
Table

To HMC

Update

Bandwidth Manager
(Integrated in OS)

TBU
OBU

HDD

Update
TLB

Page table
access

Figure 3. Bandwidth- and temperature-aware memory management.

one. For simplicity, we refer to memory-intensive, memory-non-
intensive and mixture applications throughout the paper as MI,
MNI and Mix applications. Workloads used in Fig. 2 are
representatives of their categories.

As Fig. 2(b) shows, for the DDRx DRAM, the MI workload has the
highest rise in memory access latency when request allocation
increases from 10% to 60% for DDRx DRAM. For bandwidth
above 70%, due to queuing effect the memory access latency for
MI workload becomes so large that we could not show it in the
figure (for instance with 90% utilization this is 8891ns). In Mix and
MNI workloads the memory latency is affected much less as the
bandwidth utilization increases. The results show that for MNI
workloads, the memory access latency is somewhat linear while for
Mix applications it grows exponentially, but at much slower rate
compared to MI workloads. We show the results for HMC in Fig.
2(a). As shown, when the memory request allocation is between
10% and 80%, the latency is almost linear across all groups of
workloads. For larger bandwidth utilizations, except for MNI, in
Mix and MI workloads, HMC latency increases exponentially,
however at much slower rate compared to DDRx DRAM (Fig.
2(b)). It is notable that, generally, the memory latency increases in
DDRx DRAM more quickly compared to HMC, since HMC has a
higher memory bandwidth and faster interconnects, TSVs.

Motivated by the observation from Fig. 2, we introduce a
bandwidth allocation policy to effectively utilize both HMC and
DDRx DRAM, so that we gain the minimum average memory

access latency for any given workload. In this technique, we
allocate new memory pages in an interleaving scheme between
HMC and the DDRx DRAM, to achieve the minimum average
access latency for the entire system. The minimum access latency is
achieved at a specific bandwidth utilization of each DRAM which
is different across various workloads. We refer to this point as
Optimum Bandwidth Utilization or OBU in brief. For instance, for
a given workload OBU of 70% means that to achieve the minimum
access latency we need to allocate the requests to HMC and DDRx
DRAM by 70% and 30% respectively. To satisfy this goal, out of
each ten new consecutive writes (page faults), we assign the first
seven access (pages) to the first seven free blocks of HMC and the
remaining to the three free blocks of the DDRx DRAM. This
necessitate a mechanism (using a simple counter) to determine the
DRAMs’ turn. This helps meeting the OBU for the new incoming
write accesses. Nonetheless, since not all the accesses are new
writes (i.e., the requested data already resides in the DRAM), and
the access pattern to the previously allocated memory blocks may
not be uniform, the target bandwidth allocation might not be
satisfied. However, our experimental results show that our memory
allocation policy can satisfy the target bandwidth, indicating that
the access pattern is somewhat uniform. Table 1 reports the average
inaccuracy of our allocation technique from the OBU for all other
target bandwidths (0 to 100 in step of 10), which indicates how
accurate it meets the target bandwidth. As reported in Table 1, the
average inaccuracy of the proposed allocation policy is 1.32%, i.e.,
close to 99% of the ideal bandwidth utilization.

The proposed interleaving memory page allocation policy is shown
in Fig. 3. As it shows, upon generating a new request by the CMP,
the corresponding core accesses its own TLB and then page table to
check whether the address is available in the main memory or not.
If so, using MRD, the correspondent DRAM is accessed to
read/write the data. Otherwise a page fault occurs, and bandwidth
manager transfers the page which contains the data from the hard
disk to the proper DRAM (i.e., HMC or DDRx). In order to do so,
with the help of OS, the bandwidth manager checks whether any of
the DRAMs (i.e., HMC and DDRx) has a free page. If any of the
DRAMs is full, bandwidth manager accesses the other one that is
not full, otherwise it employs page replacement policies to bring
the new page to the heterogeneous DRAM. Moreover, bandwidth
manager needs to know about DRAM’s turn to accommodate the
new page in the proper DRAM. This is done with the help of the
distribution factor variable that stores the OBU. We will discuss
Temperature-aware distribution factor regulator in section 3.2.

As discussed, every workload type have different OBU and the
interleaving policy results in the minimum memory latency only if
the proper bandwidth utilization is set. Therefore, it is important to
detect the type of workload, whether it is an intensive, mix or non-
intensive, to set the proper OBU. Our studies on workload memory
access pattern show that, although the memory access pattern may
change through different phases of a program, consistent with prior

Table 1. Inaccuracy of proposed bandwidth allocation policy.

Workload (+/-) inaccuracy % Workload (+/-) inaccuracy %
MI1 1.53 Mix3 5.53
MI2 0.33 Mix4 0.74
MI3 0.33 MNI1 2.23
MI4 0.23 MNI2 0.51
Mix1 1.99 MNI3 1.02
Mix2 0.99 MNI4 0.38

Average 1.32

393

Figure 5. Total memory access latency in the heterogeneous memory
system, as a function of HMC/DDRx bandwidth allocation for (a)

MI and (b) MNI workloads.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

30/70
40/60

50/50
60/40

70/30
80/20

90/10
100/0

T
o

ta
l M

e
m

o
ry

 la
te

n
cy

(u
s)

(a) HMC/DDRx bandwidth allocation
 for memory Intensive workloads

Workload1
Workload2

 32

 33

 34

 35

 36

 37

 38

 39

 40

10/90
20/80

30/70
40/60

50/50
60/40

70/30
80/20

90/10
100/0

T
o

ta
l M

e
m

o
ry

 la
te

n
cy

(n
s)

(b) HMC/DDRx bandwidth allocation
 for memory non-Intensive workloads

Workload1
Workload2

Figure 6. HMC steady state temperature of hot spot for various
bandwidth allocations across different workloads.

 335

 340

 345
 350

 355

 360

 365

 370
 375

 380

 385

390

10/90 20/80 30/70 40/60 50/50 60/40 70/30 80/20 90/10 100/0

T
e

m
p

e
ra

tu
re

(K
e

lv
in

)

HMC/DDRx bandwidth allocation

MI
Mix
MNI

work [17], the average intensity of memory requests in a given
phase is deterministic and highly predictable. Fig. 4 illustrates the
memory access pattern for two representatives of MI and MNI
workloads. The samples are collected every 1 million cycles.

As shown in Fig. 4, MNI applications can be clearly distinct from
MI workloads, as the number of memory requests in this class of
workload remains almost consistently small throughout the 500M
cycles studied intervals. Therefore by profiling memory access
pattern we can decide the workload type and the relevant OBU
accordingly. As Fig. 3 depicts, the memory access profiler provides
the proper OBU for the bandwidth manager. This can be done
every 10 milliseconds, as most operating systems performs context
switching at this rate and therefore the memory access pattern will
change. After all, as soon as the new page resides in the memory,
the corresponding TLB and the page table need to be updated.

Since bandwidth allocation policy brings the memory blocks in
page granularity, and given that we use the same page size as
homogeneous memory system does, our memory management does
not affect the data locality. Applying our memory allocation policy,
we estimate the average memory access latency of the proposed
heterogeneous memory system when running different workloads
using equation 1:

்ܮ ൌ ሺܲ ∗ ுெሻܮ 	ሺሺ1 െ ܲሻ ∗ ோ௫ሻ (1)ܮ

where ்ܮ is the total latency, ܲ is the HMC desired allocated
bandwidth, ܮுெis the HMC latency and ܮோ௫ is the DDRx
DRAM latency.

Fig. 5 presents the total memory access latency for two groups of
workloads and for various target bandwidths. It is noteworthy that
memory access latency (Y axis) for MI and MNI is in the range of
microseconds and nanoseconds, respectively. We observe such a
high difference in memory latency (us vs. ns) only when the
queuing effect occurs in MI workloads. Moreover, as Mix
workload behavior is somewhat close to MI workload behavior,
due to space limitation, in Fig. 5 we only report the results for the
first two studied workloads in MI and MNI categories.

As Fig. 5 shows, different types of workloads have different OBU
to achieve minimum average memory access latency. In MI
workloads the average memory latency is more sensitive to the
bandwidth allocation than the other workload. In Fig. 5(a), for MI
workloads, miss utilization of the heterogeneous memory system
results in a large performance loss. For example, for the first
workload, if the HMC bandwidth allocation is less than 50% or
more than 80%, the memory access latency is becoming large in a
microsecond range (note that 50% and 80% of HMC allocation
means 50% and 20% of DDRx bandwidth allocation). This occurs
for the second workload as well, if the HMC bandwidth allocation

is less than 30% or equal to 100%. This large penalty is due to the
queuing effect. It is important to note that as the simulations for
both workloads took so long, we were not able to report the
memory access latency for 10% and 20% of HMC bandwidth
allocation, in Fig. 5 (a). This shows that the performance loss is
even more, compared to 30% of HMC bandwidth allocation. Our
observation shows that allocating 60% of the entire bandwidth to
HMC gives the best performance for all MI workloads. Therefore,
the OBU is set to 60% for this class of workloads. Since Mix
workloads show the same behavior as MI workloads do, we set
OBU to 60% as well for this class of workloads.

As Fig. 5 (b) presents, in MNI workload, the performance penalty
due to DRAMs miss utilization is very small compared to MI
workload. Unlike MI and Mix workloads in which we observed the
queuing effect, in memory-non-intensive workloads, as we allocate
higher bandwidth to HMC we gain a better performance up to the
point where we reach to 90% of the entire bandwidth. If we allocate
the entire bandwidth to HMC we lose a small performance.
Therefore, we can set the OBU at 90% for this class of workloads.
Our observation shows that the average memory access latency of
our heterogeneous memory system at the OBU for MI, Mix and
MNI applications are 64ns, 44ns and 33ns respectively. It is worth
mentioning that the workloads that are not presented in these
figures have somewhat similar behavior and the illustrated
workloads can be representative of its corresponding workload
category.

3.2 Temperature-aware Policy
In this section, we propose our algorithm that reduces the steady
sate temperature while maintaining the high-performance benefit of
bandwidth allocation policy presented earlier. Fig. 6 shows the
steady state temperature in HMC as a function of bandwidth
allocation, for different types of workloads. As Fig. 6 shows, for
the MI and the Mix workloads allocating higher bandwidth to
HMC from 10% to 100% results in 25oK and 43oK steady state
temperature increase. For workloads with high memory requests
(MI) a sharp rise in temperature is observed when higher
bandwidth is allocated. As shown, for MNI workload higher
bandwidth allocation does not affect the temperature, mainly due to
the fact that these workloads do not generate significant memory
accesses and therefore they have small power dissipation.

While higher DRAM bandwidth allocation is desired, it comes with
a large temperature rise. Such a large thermal rise is not tolerable as
it can affect the performance, reliability and the cooling cost of the
design [7][21]. Therefore, we need a smart mechanism to
dynamically adapt DRAM bandwidth allocation to manage the
temperature.
3.2.1 Temperature-aware Bandwidth Allocation
Bandwidth allocation of the heterogeneous DRAM affects DRAM

394

 (a) (b) (c)

Figure 7. (a) Steady-state temperature of HMC, (b) Average latency of the entire DRAM and (c) Performance degradation for different
workloads when different TBU is applied.

 340

 345

 350

 355

 360

 365

 370

MI1 MI2 MI3 MI4 Mix1
Mix2

Mix3
Mix4

S
te

a
d
y

st
a
te

 te
m

p
e
ra

tu
re

 (
K

e
lv

in
)

TBU-30
TBU-40
TBU-50

Baseline

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

MI1 MI2 MI3 MI4 Mix1
Mix2

Mix3
Mix4

Avg

A
ve

ra
g
e
 m

e
m

o
ry

 la
te

n
cy

(n
s) TBU-30

TBU-40
TBU-50

Baseline

 0

 1

 2

 3

 4

 5

 6

MI1 MI2 MI3 MI4 Mix1
Mix2

Mix3
Mix4

Avg

P
e
rf
o
rm

a
n
ce

 d
e
g
ra

d
a
tio

n
(%

) TBU-30
TBU-40
TBU-50

power dissipation. The power and therefore the temperature of
HMC are highly decided by its bandwidth allocation. As indicated
in Fig. 6, for MI and Mix workloads there is a large gap in steady
state temperature. Motivated by this observation, we propose our
dynamic temperature-aware bandwidth allocation technique
(DTBA in brief) to reduce the steady-state temperature of HMC
while maintaining high performance benefit.

In DTBA, first we define two operating temperature regions,
namely normal and hot. As long as the HMC operates in the normal
region it can be utilized to gain the highest performance using the
bandwidth allocation policy. However, whenever HMC enters the
hot region we allocate lower bandwidth to it while dedicating
higher bandwidth to the DDRx DRAM at the same time to
compensate for possible performance loss. This results in lowering
HMC power consumption and therefore reduces steady state
temperature. We implement DTBA using the proposed memory
allocation technique explained in Section 3.1 (see Fig. 3).

As presented in Fig. 6, MNI workloads’ temperatures are almost
bandwidth insensitive. Therefore these workloads do not require a
thermal-aware adaptation and we can simply use the bandwidth
allocation technique to manage their bandwidth utilization.

As Fig. 3 shows, our temperature-aware algorithm works as
follows. We profile the memory accesses to detect the running
workload type. Then, based on the workload type, we set the OBU
using bandwidth allocation policy. The temperature sensor on
HMC monitors the temperature periodically. If the HMC
temperature rises into the hot region, the distribution factor variable
is over-written with the new bandwidth referred to as Temperature-
aware Bandwidth Utilization (TBU). This is done by temperature-
aware distributer factor regulator. Otherwise, we continue with the
previous bandwidth allocation based on the OBU provided by the
memory access profiler. Our temperature-sampling interval is set at
1 millisecond [5][8].

Note that bandwidth allocation policy and DTBA work
cooperatively to find the target bandwidth that delivers the highest
performance while maintaining the HMC operation below the hot
region. As shown in Fig. 5, although allocating 90% of the entire
bandwidth to HMC gives the highest performance for MNI
workloads, it hurts performance significantly for MI and Mix
workloads. Therefore, starting with 60% of bandwidth allocation is
an optimal choice as it provides a good performance across all
workloads.

4. METHODOLOGY
We use a quad-core CMP architecture with a total of 3GBs of
DRAM including 1 GB HMC and 2 GB of DDRx as our target
system. For the DDRx DRAM we model a Micron DDR3 SDRAM
[3]. Table 2 summarizes the detailed parameters of CMP

architecture and heterogeneous memory system modeled in this
work.

We integrate SMTSIM simulator [2] and DRAMsim2 [3] for
architecture simulation. We use SPEC2000, SPEC2006, NAS [18]
and Olden [19] benchmarks to create the 12 studied workloads. We
modify DRAMSim2 memory simulator extensively to model the
proposed heterogeneous memory. Moreover, DRAMsim2 is
extended with a profiler that periodically monitors workload to
predict whether it is memory-intensive in the current program
phase. It is also equipped with a power profiler to generate the
memory system power trace.

To calculate the memory controller power consumption, we use the
results reported in [14]. As [14] presents, in an HMC the average
power dissipation of the memory controller is 1.8 of the DRAM
layers. We employ HotSpot [5] to measure the HMC temperature.
DRAMSim2 receives the transient temperature (running
temperature) from HotSpot [5] periodically, i.e., every 1
millisecond. We assume that the power dissipation is distributed
evenly across all eight DRAM layers, as well as within each layers.
We assume the area of the HMC layers including DRAM and
controller layers to be 68 mm2 which is adopted from [6]. We
consider the thickness of HMC dies and heat-sink to be 0.05 mm
and 0.01 mm, respectively. Other thermal specifications are
borrowed from [5]. Similar to [6], since the HMC and CMP are
integrated using a PCB, we consider an inexpensive heat-sink for
the HMC.

5. DTBA RESULTS
This section evaluates DTBA when applied in the proposed
heterogeneous DRAM. To find how effective DTBA can optimize
temperature and performance simultaneously, we compare it with a
performance-optimized (bandwidth allocation) baseline where the
bandwidth adaptation is performed to minimize average DRAM
access latency and therefore maximize performance. Hence, the
OBU is set to 60%, based on the results discussed in Section 3.1. In
order to have a better understating of DTBA impact on
temperature, we consider different TBU for the hot region

Table 2. CMP and heterogeneous memory system parameters.
Core

Core Clock 3GHz
Issue, Commit width 4
INT & FP Instruction queue 32 entries
ROB size, INT Reg, FP Reg 128
L1 cache 64KB, 8-way, 2 cycle
L2 cache 512KB, 20 cycle

HMC and DDRx DRAM
DRAM Clock 800MHz
Column Access Strobe (tCAS) 10 (DDRx), 6 (HMC)
Row Access Strobe (tRAS) 24 (DDRx), 24 (HMC)
Row Buffer Policy Close page
Page Size 4 KB

395

discussed in Section 3.2. Fig. 7(a) shows the steady state
temperature of DTBA. Note that since MNI workloads are not
temperature sensitive as discussed earlier, only results for MI and
Mix workload are presented.

As shown in Fig. 7(a), TBU=30% configuration achieves the
highest temperature reduction. The largest thermal reduction is
5.5oK which is observed in MI4 workload. TBU=40% and
TBU=50% results have slightly lower thermal reduction. Moreover,
it is important to note that as memory-intensive workloads are more
temperature sensitive, temperature results are more sensitive to the
TBU compared to Mix workloads. Since DTBA trade-offs
temperature with performance, it comes with a small performance
penalty compared to the bandwidth allocation policy, which is only
optimized for performance. This performance loss is due to the
longer memory latency. Fig. 7(b) and 7(c) show the DTBA
performance loss for different workloads in terms of memory
latency and IPC.

As shown in Fig. 7(b), the average memory access latency
increases when DTBA is applied, compared to bandwidth
allocation policy. Similar to Fig. 7(a), since there is a negligible
performance loss for memory-non-intensive workloads, we do not
report the results. As Fig. 7(b) depicts, for all workloads,
configurations with more temperature reduction, result in larger
memory latency. The largest increase in average memory latency is
observed in MI3 workload. Note that, this is the same workload
with highest temperature reduction benefit.

As Fig. 7(c) reports, the average performance loss is around 2.5%
in the worst case (TBU=30%). The loss in performance is more
noticeable in MI workloads. This is consistent with the thermal
improvement we show in Fig. 7(a) in which we achieve higher
temperature reduction for MI workloads.

6. RELATED WORK
3D stacking can be used in many ways including logic on logic
stacking [4], memory on logic stacking [13] and memory on
memory stacking [14] to address some of the major challenges
microprocessor industry is facing. 3D-DRAM stacking can
potentially resolves the memory wall problem and delivers lower
power consumption for the memory subsystem.

Although thermal management in 2D deigns for both core and
DRAM has been a challenge for architects, introducing 3D stacking
even exacerbates the problem. Therefore, many studies have
focused to address this issue, especially for stacked memory. These
studies either propose static methods at design level [11] or
dynamic techniques at runtime [7][13] to reduce the transient or
steady state temperature. For instance, [7] proposes a dynamic
power and temperature management for a 3D design with stacked
cache. Monitoring the runtime application behavior, [13] attempts
to choose the best voltage-frequency setting to achieve the
maximum throughput while maintaining the power and temperature
constraints in 3D multicore system with a stacked DRAM. In a
recent work Zhao [8] proposes a migration technique to reduce
temperature in a multicore architecture with stacked DRAM.
Migrating threads between cores according to their temperature, is
the key of their work to reduce the steady state temperature of the
system.

[10] proposes a heterogeneous memory management which
exploits a stacked DRAM alongside a 2D DRAM. However, unlike
to our work, their research does not investigate the thermal
characteristics of the design and onl focuses on the quality of
service of applications, which also needs the programmer
intervention. Another recent work has been on thermal mitigation

in hybrid memory cubes (HMC) [6] that tries to reduce the number
of read/write burst by compressing data in the logic layer (memory
controller). This scheme is orthogonal to ours when used in HMC.

7. CONCLUSION
This paper proposes an adaptive bandwidth allocation and a
temperature-aware memory management to exploit the high
bandwidth and low latency of 3D hybrid memory cube (HMC) and
high capacity and low temperature of the DDRx DRAM. The
bandwidth allocation memory management policy profiles
workload at run-time and based on memory access pattern allocates
DRAM and HMC bandwidth accordingly, to reduce memory
bandwidth congestion. While this ensures high performance, it
causes significant thermal rise in HMC. To address this challenge,
the temperature-aware policy monitors run-time temperature of
HMC to adapt the bandwidth. Temperature-aware policy reduces
the temperature while maintaining the high-performance benefit of
bandwidth allocation technique. This is all done based on
application memory access patterns and at run-time. Simulation
results show that the bandwidth allocation memory management
can utilize the memory bandwidth close to 99% of the ideal
bandwidth utilization. Combined with the thermal-aware policy,
our proposed memory management reduces steady-state
temperature by 4.5oK, on average, across different workloads while
maintaining the performance benefits of bandwidth-adaptive
technique.

8. REFERENCES
[1] Dong, X., et al. "Simple but effective heterogeneous main memory with on-chip

memory controller support" IEEE/ACM SC’2010.
[2] Tullsen, D. M. “Simulation and Modeling of a Simultaneous Multithreading

Processor” CMG, Part 2(of 2), pp. 819-828, 1996.
[3] Rosenfeld, P., et al. "DRAMSim2: A Cycle Accurate Memory System

Simulator" Computer Architecture Letters, 2011.
[4] Vasileios K., et al. "Enabling Dynamic Heterogeneity Through Core-on-Core

Stacking" Proceedings of the 51st Annual Design Automation Conference on
Design Automation Conference. ACM, 2014.

[5] Skadron, K., et al. "Temperature-aware microarchitecture," ISCA 2003.
[6] Khurshid, et al. "Data compression for thermal mitigation in the Hybrid Memory

Cube," ICCD 2013.
[7] Kang, K., et al. "Temperature-Aware Runtime Power Management for Chip-

Multiprocessors with 3-D Stacked Cache" ISQED 2014.
[8] Zhao, D., et al. "Temperature aware thread migration in 3D architecture with

stacked DRAM" ISQED 2013.
[9] Hybrid Memory Cube Specification 1.1.

2014.http://hybridmemorycube.org/files/SiteDownloads/HMC%20Rev%201_
%20Specification.pdf

[10] Tran L., et al. "Heterogeneous memory management for 3D-DRAM and
external DRAM with QoS" ASP-DAC, 2013.

[11] Puttaswamy, K., et al. "Thermal Herding: Microarchitecture Techniques for
Controlling Hotspots in 3D-Integrated Processors" HPCA 2007.

[12] Elsasser, W., 5 Emerging DRAM Interfaces You Should Know for Your Next
Design, Cadence white paper, 2013.

[13] Meng, J., et al. "Optimizing energy efficiency of 3-D multicore systems with
stacked DRAM under power and thermal constraints”, DAC 2012.

[14] Jeddeloh, J., et al. “Hybrid Memory Cube – New DRAM Architecture Increases
Density and Performance”, VLSIT 2012.

[15] Wu, Q., et al., "Impacts of though-DRAM vias in 3D processor-DRAM
integrated systems" IEEE 3DIC 2009.

[16] Kang, U., et al. "8 Gb 3-D DDR3 DRAM using through-silicon-via technology"
Solid-State Circuits, IEEE Journal of 45, 2010.

[17] Kim, Y., et al. "ATLAS: A scalable and high-performance scheduling algorithm
for multiple memory controllers" HPCA 2010.

[18] Bailey, D. H., et al. "The NAS parallel benchmarks" International Journal of
High Performance Computing Applications 5.3 (1991): 63-73.

[19] Rogers, A., et al. "Supporting dynamic data structures on distributed-memory
machines" ACM TOPLAS 17.2 (1995): 233-263.

[20] Li M., 3D Packaging for Memory Application, Rambus, 2013.
http://www.avsusergroups.org/joint_pdfs/2013_6Li.pdf

[21] Srinivasan, J., et al. "Lifetime reliability: Toward an architectural solution"
Micro, IEEE 25.3 (2005): 70-80.

[22] Pawlowski, J. T. “Hybrid Memory Cube: Breakthrough DRAM Performance
with a Fundamentally Re-Architected DRAM Subsystem” In Proceedings of the
23rd Hot Chips Symposium, 2011.

396

