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ABSTRACT

Compressive Sensing (CS) is a novel scheme, in which a
signal that is sparse in a known transform domain can be
reconstructed using fewer samples. However, the signal re-
construction techniques are computationally intensive and
power consuming, which make them impractical for em-
bedded applications. This work presents a parallel and re-
configurable architecture for Orthogonal Matching Pursuit
(OMP) algorithm, one of the most popular CS reconstruc-
tion algorithms. In this paper, we are proposing the first
reconfigurable OMP CS reconstruction architecture which
can take different image sizes with sparsity up to 32. The
aim is to minimize the hardware complexity, area and power
consumption, and improve the reconstruction latency while
meeting the reconstruction accuracy. First, the accuracy of
reconstructed images is analyzed for different sparsity values
and fixed point word length reduction. Next, efficient paral-
lelization techniques are applied to reconstruct signals with
variant signal lengths of N. The OMP algorithm is mainly
divided into three kernels, where each kernel is parallelized
to reduce execution time, and efficient reuse of the matrix
operators allows us to reduce area. The proposed architec-
ture can reconstruct images of different sizes and measure-
ments and is implemented on a Xilinx Virtex 7 FPGA. The
results indicate that, for a 128128 image reconstruction,
the proposed reconfigurable architecture is 2.67x to 1.8x
faster than the previous non-reconfigurable work which is
less complex and uses much smaller sparsity.

Categories and Subject Descriptors

B.2 [ARITHMETIC AND LOGIC STRUCTURES]:
Design StylesParallel,Pipeline; B.2.4 [High-Speed Arith-
metic]: Algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GLSVLSI’14, May 21-23, 2014, Houston, Texas, USA.

Copyright 2014 ACM 978-1-4503-2816-6/14/05 ...$15.00.
http://dx.doi.org/10.1145/2591513.2591598 .

Houman Homayoun
Department of Electrical &
Computer Engineering
George Mason University
Fairfax,USA
hhomayou@gmu.edu

299

Tinoosh Mohsenin
Department of Computer
Science & Electrical
Engineering
University of Maryland,
Baltimore County

. Baltimore,USA
tinoosh@umbc.edu

Keywords

OMP;Compressive Sensing; FPGA; High Performance and
Reconfigurable Architecture

1. INTRODUCTION

In recent years, Compressive Sensing (CS) has emerged
as a novel technique which enables reconstruction of sparse
signals sampled at sub-Nyquist rates. Reducing the num-
ber of measurements can reduce the time and cost of signal
acquisition. CS reduces the amount of data collected dur-
ing signal acquisition thereby, eliminating redundancy. Re-
ducing the number of measurements can significantly reduce
the communication power (e.g. space applications, wearable
biomedical devices), scanning time (e.g. MRI) and cost of
signal acquisition.

CS is used for radar imaging applications due to its fast
and efficient signal processing ability. Radar Signal Pro-
cessing encompasses a wide range of applications in process-
ing techniques, sensing objectives, propagation media etc.
Recently, it is mainly being used in military and civilian
applications. The signal in these applications needs to be
of high resolution. Therefore, it requires wider bandwidth
and hence necessitates large amount of data for transmis-
sion, reception and processing. Similarly, applications such
as Inverse Synthetic Aperture Radar (ISAR) imaging used
for maritime targets, and through-the-wall Radar (TWR)
imaging used to get vision into obscured areas. Therefore,
both the systems need to reconstruct the signal in real-time
to be effective.

On the other hand, in Medical Resonance Imaging (MRI),
CS reconstructs the image from sparse measurements and
reduces scan time, which is proportional to the number of
samples acquired. Long term functional MRI requires con-
tinuous high speed imaging. The continuous acquisition of
images results in high volume of data. Therefore, instead
of considering the whole image, most of the devices allow
pre-determined rectangular region of interest (ROI) to be
sampled. In medical imaging, ROI is the area of an image
which is very important for diagnosis. The ROI is variable
and is based on the stage of disease. For example, Benign
lesion has less ROI as compared to malignant lesion. Hence,
the size of image to be sampled and reconstructed is depen-
dent on ROI. Therefore, CS reconstruction is in intense need
of reconfigurable architectures.



Though CS has several advantages, reconstruction of CS
is very complex and computationally intensive. Recently,
there have been several reconstruction algorithms proposed
which show trade-off between complexity and accuracy. Two
such algorithms are ¢;—minimization and Orthogonal Match-
ing Pursuit (OMP) [11]. ¢;—minimization algorithm is bet-
ter in terms of accuracy, but its implementation is very com-
plex and time-consuming. OMP is a greedy algorithm of
less complexity that finds closely correlated values in each
iteration. The complexity of the design increases with data
length and sparsity number. OMP contains iterative inter-
dependent modules which repeat iteratively up to sparsity
count makes parallel implementation of the algorithm chal-
lenging. OMP has matrix multiplication, sort and inver-
sion, which are known to be operator consuming operations.
Therefore, the signals with large matrix lengths will require
more resources and hence larger chip area. This motivates
us to consider a semi-parallel architecture wherein operators
are reused, thereby reducing chip area.

To address these challenges, this paper present a low com-
plexity, parallel and reconfigurable architecture to accept
variable matrix image lengths and measurements as input.
In the OMP algorithm, at each iteration, matrix sizes vary.
Therefore, the main challenging blocks in making the ar-
chitecture reconfigurable are dot product calculations and
least square block. Since the iteration count is dependent
on sparsity, it is fixed to 32 based on our prior experiments
and analysis.

The structure of this paper is as follows: in Section 2, pa-
per overviews trends and related work. Section 3, goes over
the OMP algorithm. Section 4 proposes the architecture for
reconfigurable and parallel OMP reconstruction algorithm.
Finally, in Section 5 paper discusses the FPGA implemen-
tation results and analysis.

2. BACKGROUND

The basic theory behind compressive sensing lies in solv-
ing Equation 1. Let ¢ be the measurement matrix of dimen-
sion M x N, where M is the number of measurements to be
taken and N is the length of the signal and x be a m-sparse
signal of length N. Multiplying these two vectors yields y of
length M, which contains the measurements obtained by the
projection of ¢ onto .

(1)

Orthogonal Matching Pursuit (OMP) is a greedy algo-
rithm, which performs the signal recovery from random mea-
surements [20]. For the first few years, research on the CS
OMP reconstruction algorithm was focused on reducing la-
tency of operations. The focus has shifted over the past few
year to reducing energy consumption as CS is implemented
for wireless and battery operated devices [9], [10]. Most of
the OMP designs are implemented on FPGA [12] [17], [18],[5]
some implement the designs on ASIC [12] [17], [21], [9] and
others implement the architecture on ASIP [6]. Similarly,
most of the papers compare their results with previous ar-
chitectures and show improvements in terms of speed (la-
tency of operations) [18]. Some prior work also shows the
improvement in speed on software [1]. To the best of our
knowledge, this is the first implementation which targets
reconfigurability for OMP algorithm.
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The first basic implementation of OMP is presented [17],
which shows interdependence between modules. It imple-
ments OMP with sparsity up to m = 5 and input vector of
128 size on FPGA. OMP with QR decomposition is proposed
in [18], to speed up the algorithm. The paper implements
the design on CMOS 65nm and FPGA and is 2.4 times faster
than [17]. Black et.al. [5] segregates OMP algorithm in
three kernels and each kernel is parallelized to reduce latency
of operations. The paper compares the speedup with a soft-
ware implementation, and performs 38 times faster. L.Bai
et.al. [1] propose the design and implementation of OMP
and AMP algorithms on FPGA and compare hardware with
software implementations. In contrast to other VLSI imple-
mentations, this implementation can deal with less sparse
signals, which enables fast image reconstruction. The archi-
tecture works at 100MHz with a reconstruction time of 0.63
msec.

Tsai et.al. [21] present a versatile signal reconstruction
platform. It is implemented in three different blocks. Pseudo
Random Number Generator generates random numbers on
the fly to reduce memory complexity. Matrix factorization
engine contains Cholesky based linear solver and the multi-
processing core performs the other operations. The design
is implemented in TSMC 40nm CMOS process and runs at
250 MHz.

The trend to reduce latency of operations and energy con-
sumption begins with [9]. This work proposes OMP with
Matrix Inversion Bypass to reduce computational complex-
ity. The paper targets battery or renewable energy powered
cyber-physical systems. It compares with OMP Batch algo-
rithm, which is less complex and performs the operation in
one iteration. The paper implements Moore-Penrose pseudo
inverse referred to as the updated pseudo inverse solution,
that utilizes the matrix G — 1 available from the previous
operation to obtain current matrix G — 1. Specifically, this
method calculates G —1 using the Schur-Banachiewicz block
wise inversion (due to low complexity) . In other words, the
computation of G — 1 for current inversion can be bypassed.
As G—1 is only needed in the (k-1)*" iteration, it can be com-
puted in parallel with the computation of X to improve the
speed of signal reconstruction. The design is implemented on
65nm CMOS process with the clock frequency of 500MHz.

Soft thresholding OMP technique to reduce the energy
for reconstruction of the signal is implemented in [10]. This
paper targets CS to exploit renewable energy sources in au-
tonomous and distributed wireless sensor networks. The
threshold of employing the efficient reconstruction is made
dynamically adjustable according to the performance re-
quirements and energy levels. The paper takes motivation
from the fact that last iteration usually recovers less signif-
icant elements of the signal. Hardware is implemented on
65nm CMOS process with clock frequency of 500MHz. It
achieves significant reduction in computational complexity
in particular when sparsity of signal is high because the low
complexity procedure recovers more elements in such sig-
nals. The implementation of ST-OMP takes 0.16 msec to
recover a signal and consumes 0.0205 mJ energy.

OMP algorithm with a sub-V; Application Specific In-
struction set Processor (ASIP) for exploiting specific opera-
tions of CS is implemented in [6]. The paper mainly targets
battery operated devices i.e., sensing environment systems
and wireless body sensor networks (WBSNs), where portable
and autonomous devices are expected to operate for an ex-



Algorithm 1 OMP Reconstruction Algorithm
1: Initialize Ro =Y, (150: (Z), AQ:@,(I’O :Q) and t =0
2: Find Index \;= maz;=1..., subject to | < ¢; Ri—1 > |
3: Update Ay=Ai—1 U M\
4: Update ©:=[P:—1 ¢a,]
5: Solve the Least Squares Problem
2= min, || y - @, o
6: Calculate new approximation: a;= P, x¢
7: Calculate new residual: R:= y-au
8: Increment t, and repeat from step 2 if t<k
After all the iterations, we can find correct sparse signals.

tended period of time with limited energy resources. Hence,
an ultra low power (ULP) CS implementation is crucial for
these energy limited autonomous systems. The processor
has sleep mode which allows external clock gating of the en-
tire core. The processor has sub-V; latch-based memories.
The paper shows power and performance trade-off. The sim-
ulation result shows that CS processor operates at 0.37 V for
required clock frequency of 100KHz with total power 288nW
and critical path of 5.2 nsec.

3. ALGORITHM

OMP takes two inputs: the measured signal (y) and the
measurement matrix (¢). At each iteration (¢), column of
¢ is chosen which is most strongly correlated with y. Least
square algorithm is used to obtain a new signal estimate.
In the next step, the amount of contribution that column y
provides is subtracted to obtain a residue which is used for
the next iteration. Finally, after k iterations, correct set of
columns are determined [20] [11].

The variables used in the algorithm are defined below:

e Nx N = Images Size (e.g 128 x 128...768 x 768)
e M = Measurements (e.g 42...252)

e k = Sparsity (e.g 32)

e R = Residual Matrix (size : M x 1)

e ¢ = Measurement Matrix (size : M x N)

e )\ = Maximum Index after Dot Product

e t = No. of iterations (k)

4. PROPOSED WORK

Based on the algorithm description, OMP is partitioned
into three main kernels: dot product, sort and least square
(which involves matriz inversion). These blocks are shown
in Fig. 1. As shown in the figure, these three kernels are
interdependent, therefore OMP cannot be fully parallellized.
This paper implements a semi-parallel architecture for each
of the kernels to fit different data sizes of reconstruction.

4.1 Sparsity Analysis

Computational / hardware complexity is a major factor
in parallel implementation of the design on FPGA for differ-
ent sizes of a matrix. From Fig. 1,it is observed that Least
Square is the most complex kernel of the three. In OMP al-
gorithm, each column is repeated k (Sparsity) times. There-
fore, ¢T X ¢ increments in each iteration till k x k. Therefore,
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Figure 1: Basic Block Diagram for OMP Recon-

struction Algorithm

Table 1: PSNR and Sparsity Analysis numbers for
variety of Image Sizes with OMP Reconstruction Al-
gorithm

Image Sizes | Sparsity k | PSNR (dB)
256 x 256 8 27.22
256256 32 34.70
256256 48 34.89
384 x384 8 21.24
384x384 32 22.88
384x384 48 22.91
512x512 8 21.19
512512 32 25.65
512x512 48 25.71
768 <768 32 22.55
768 X768 90 22.95

complexity of Least Square algorithm is dependent on the
size of sparsity. Hence, the primary focus is to reduce the
hardware complexity by setting the sparsity to a constant
value. This reduces the size of the matrix during inversion.

In this paper, the sparsity of the matrix is set based on ex-
perimenting on the different sizes of images while observing
satisfactory range of PSNR. The random measurement ma-
trix (One of the input to the OMP) changes each time while
running the experiment and hence the result may vary from
0.09% to 0.158%. Therefore, average Peak Signal-to-Noise
Ratio (PSNR) is calculated by repeating the experiment 100
times. Setting sparsity size to 32 helps to reduce operations
of the complex Least Square algorithm. Table 1 shows differ-
ent sizes of images (N x N) with different sparsity and their
PSNR results. It clearly indicates that variation in image
sizes for a constant sparsity has minimal effect on PSNR.
However, from a hardware stand point, it is advantageous
since it reduces memory transfers, area and speed.

4.2 Fixed Point Optimization

Floating point arithmetic is complex and requires more
area. At the same time, OMP algorithm requires huge num-
ber of multiplications and additions. Hence floating point
operations increase hardware complexity. This motivates
the selection of fixed point arithmetic. As shown in fig.
3, fixed point arithmetic increases the hardware complex-
ity when accuracy reaches threshold. In this paper, we ex-
perimented output accuracy and hardware complexity with
different binary points. The quality of reconstructed image
is mainly dependent on accuracy of the fixed point output.
Hence, binary points are chosen close to their corresponding
floating point numbers (100 % accuracy) at the output. Ac-



Figure 2: (A) 256 x256 Original Image, (B) and (C)
reconstructed images with sparsity values of 8 and
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Figure 3: Hardware complexity (LUT/FF count in
Virtez-7 FPGA) and accuracy (fixed point vs float-
ing point) of OMP CS Reconstruction algorithm
when the number of input bits increases Accuracy
with 0.0005 margin of error

curacy of the output is verified at each hardware step along
the data path post truncation/saturation. Similarly, by in-
crementing bits at the input, the data path word width is
changed. This affects area of an architecture and the amount
of switching activity on wires and logic gates, consequently
affecting the power dissipation.

4.3 Reconfigurable DOT Product

At each iteration, OMP computes dot product of ¢,
which is a N x M matrix, with a residual matrix R, which
is a Mx1 vector. This has a computational complexity of
O(MN). Tree multiplier is implemented to leverage the par-
allel and pipeline architecture (Figure 4). It is implemented
for each 42x1 size array. For our implementation measure-
ments are 30% of image sizes.

Tree multiplier requires N multipliers and N — 1 adders
where, N is the number of columns. Thus total number of
operations come to be 2N — 1. As discussed earlier, this
architecture considers N columns, which are multiple of 42.
Therefore, at every cycle dot product of 42x1 and 1x42 is
available. For the image size of 128x128, column size of ¢*
is 42. Therefore, the dot product of 128x42 and 42x1 is
computed in 128 clock cycles.

4.4 Sort Algorithm

The operation of the second kernel is to locate the maxi-
mum of | < ¢R > | (Nx1 vector). This has a computational
complexity of O(N). Sort algorithm is implemented by using
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a binary tree structure [15]. N/2° trees are implemented,
where S is variable and dependent on size of an image. Con-
current sorting is applied to N, /25 to efficiently use paral-
lelism as shown in Fig. 5. In this architecture, since the
algorithm needs only the highest number, we could reduce
the memory usage as compared to [15], by pruning the left
sub-tree. Each concurrent binary tree gives highest number,
thereby generating N/2° highest numbers which are fed to
another binary tree. Reconfigurability is achieved by chang-
ing the number of trees in parallel, dependent on the size
of an image. Since the architecture is two staged, for every
two cycles, a maximum of 128 elements is obtained.

4.5 Least Square Method

This is the most important kernel of the algorithm. As
mentioned, (¢? #)~! has the highest hardware implemen-
tation complexity. At each iteration ¢, ¢ has ¢t columns of
size M. Hence, the new matrix, ¢, is of size txM. Com-
puting (¢7 ¢) gives a txt resulting matrix. Least square
(z=(¢" ¢)~' ¢T y) has three sub-blocks. Matrix trans-
pose is achieved by calling matrix index in transpose order,
which reduces the hardware complexity and utilizes minimal
resources. Matrix multiplication is based on tree architec-
ture mentioned previously in section 4.3. Whereas, matrix
inversion is obtained by LU decomposition leveraging the
symmetric matrix. As shown in Fig. 6, blocked algorithm
for LU decomposition is used for efficient parallel implemen-
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Figure 6: Blocked LU Algorithm for Parallel Imple-
mentation of Matrix Inversion

Table 2: Virtex-7 post layout implementation re-
sults of DOT product for different image sizes

<6R> Parallel Serial
Implementation Implementation
Time | Dynamic Time | Dynamic
(ns) | Power(W) | (ns) | Power(W)
42x128 | 3.67 | 0.032 0.76 | 0.012
84x256 | 7.34 | 0.032 1.52 | 0.012
168x512 | 14.72 | 0.034 3.04 | 0.013

tation [14]. Finally, the resources are reused to reduce the
area, of the architecture.

S. IMPLEMENTATION RESULTS

The proposed reconfigurable architecture is implemented
on a Xilint XC7VX485T Virtex-7 FPGA, which uses the
sparsity of k = 32 for different size of images.

Parallel dot product implementation, gives one results
each cycle. Therefore, after n cycles, the dot product for
the whole image will be obtained, where n is the row size
of an image. Table 2, shows the implementation results for
serial and parallel architecture for different sizes of matrix.

As discussed in section 4.4, sort algorithm is implemented
in parallel. Each binary tree sorts 32 elements. Therefore,
for 128 x 1 array , the architecture has four concurrent
binary trees in first stage. Second stage has a simple com-
parator tree to segregate the last four elements from each
binary sub-tree.

For the sparsity of k = 32 (i.e 32 iterations), OMP takes
6208 cycles to reconstruct each column of image and hence
8.97uS for a 128 x 128 image, 9.32 uS for a 256 x 256 image
and 10.12 S for a 512 x 512 image size. The 256 x 256
reconstructed image has the PSNR of 35 dB , and 512 x
512 image achieves the PSNR of 26 dB in both fixedpoint
hardware and floating point software. Post place and route
timing results show that the proposed architecture is 62.62 %
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Table 3: Virtex-7 post layout implementation re-
sults of Sort algorithm for different image sizes
A Parallel Serial
j=1..n Implementation Implementation
Time | Dynamic Time | Dynamic
(ns) | Power(W) | (ns) | Power(W)
128 3.85 | 0.041 9.47 | 0.010
256 8.7 0.083 19.25 | 0.010
512 10.48 | 0.16 23.1 0.010

(2.67 x) faster than the previous implementation [17], which
takes 24 pS to reconstruct a 128 x 128 image, whereas 43.93
% (1.8 x) faster as compared to [5]. Both previos work use
a fixed image with much smaller sparsity (i.e. k=5).

6. CONCLUSION

The paper presents the first reconfigurable architecture
for the OMP compressive sensing reconstruction algorithm.
The hardware can take different image sizes with sparsity
up to 32. The accuracy of reconstructed image is analyzed
for different sparsity values and fixedpoint wordlength reduc-
tion. The results indicate that OMP peforms well with fixing
the sparsity to be 32 for different image sizes of 128x128 to
768x 768. This reduces the hardware complexity in terms
of the number of iterations as well as matrix inversion size.
Datapath wordlength is optimized such that the hardware
has minimum area with a highly accuracy reconstructed im-
age. Different parallelization techniques are used for imple-
menting the main three kernels of OMP algorithm which are
dot product, sort and matrix inversion. The reconfigurable
architecture is implemented on a Xilinx Virtex 7 FPGA. The
results indicate that, for a 128128 image reconstruction,
the proposed architecture is 2.67x to 1.8 faster than the
previous non-reconfigurable works which use much smaller
sparsity.
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