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I. INTRODUCTION

Emerging big data analytics applications require a significant

amount of server computational power. As chips are hitting power

limits, computing systems are moving away from general-purpose

designs and toward greater specialization. Hardware acceleration

through specialization has received renewed interest in recent years,

mainly due to the dark silicon challenge. To address the computing

requirements of big data, and based on the benchmarking and

characterization results, we envision a data-driven heterogeneous

architecture for next generation big data server platforms that

leverage the power of field-programmable gate array (FPGA) to

build custom accelerators in a Hadoop MapReduce framework.

Unlike a full and dedicated implementation of Hadoop MapReduce

algorithm on FPGA, we propose the hardware/software (HW/SW)

co-design of the algorithm, which trades some speedup at a benefit

of less hardware. Considering communication overhead with FPGA

and other overheads involved in Hadoop MapReduce environment

such as compression and decompression, shuffling and sorting,

our experimental results show significant potential for accelerating

Hadoop MapReduce machine learning kernels using HW/SW co-

design methodology.

II. SYSTEM ARCHITECTURE AND METHODOLOGY

Most recent works on big data acceleration focus on the im-

plementation of an entire particular machine learning application

or offloading phases of its MapReduce to the FPGA hardware,

which results in excessive hardware and extensive design effort.

Alternatively, we propose a HW/SW co-design of the machine

learning algorithm implemented in Hadoop MapReduce, which

trades some speedup at a benefit of less hardware. Fig. 1 shows the

heterogeneous architecture, which consists of a high-performance

CPU as the master node connected to several Zynq devices as

slave nodes. Various communication overheads between master and

slaves have been marked with “OV” in Fig.1.

The master node runs the HDFS and is responsible for the job

scheduling between all the slave nodes. Intel Atom C2758 and

Xeon E5 were used as the master node. Xeon cores are mostly

designed for high-performance servers, and Atom cores advocate

the use of a low-power core to address the dark silicon challenge

facing servers. The slave nodes are Zynq SoCs, which consist of

ARM processors coupled with programmable logic.

We study four widely used data mining and machine learning

algorithms, K-means, KNN, SVM and Naive Bayes, to find the

CPU-intensive and time-consuming kernels (hotspot functions) to

offload to FPGA and calculate the kernel speedup through HW/SW

co-design. It is important to notice that, in an end-to-end Hadoop

platform, not all the execution time is dedicated to the kernel.

Hadoop file system management, compression and decompression,

Figure 1. System architecture.

shuffling and sorting, and standard Java library access are per-

formed at GHz clock frequency on CPU server. Based on Intel

Vtune profiling results, we find the ratio of execution time that

corresponds to the kernel. Consequently, Amdahl’s law is utilized to

understand how the speedup of the kernel contributes to its overall

execution in an end-to-end Hadoop MapReduce environment.

III. IMPLEMENTATION RESULTS

Fig. 2 shows the best speedup results for the applications in a

MapReduce framework with one mapper slot. Fig. 2 shows how

the speedup of each application through HW/SW acceleration is

translated into a lower speedup on the an end-to-end Hadoop

system, considering all communication overhead between master

and slaves and all the tasks involved in MapReduce environment.

For instance, while the acceleration of the K-means yields a

speedup of 312× with zero overhead, the speedup is reduced to

146× with the HW/SW data transfer overhead, and 2.72× and

2.78× on Hadoop platform with Atom and Xeon, respectively.

It should be noted that various design aspects including the size

of input data, size of splits to the mapper functions, number of

mapper and reducer slots, type of master core, memory configura-

tion, etc., influence the performance, power and energy efficiency.

These aspects have to be evaluated in order to find the optimal

design for each application.

Figure 2. Acceleration on a full-blown Hadoop platform.
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