
Lightweight Node-level Malware Detection and Network-level
Malware Confinement in IoT Networks

Sai Manoj Pudukotai Dinakarrao1, Hossein Sayadi1, Hosein Mohammadi Makrani1,
Cameron Nowzari2, Setareh Rafatirad2 and Houman Homayoun1

1Department of Electrical and Computer Engineering
2Department of Information Sciences and Technology

George Mason University, Fairfax VA, USA 22030

Abstract—The sheer size of IoT networks being deployed today
presents an “attack surface” and poses significant security risks
at a scale never before encountered. In other words, a single
device/node in a network that becomes infected with malware has
the potential to spread malware across the network, eventually
ceasing the network functionality. Simply detecting and quaran-
tining the malware in IoT networks does not guarantee to prevent
malware propagation. On the other hand, use of traditional
control theory for malware confinement is not effective, as most
of the existing works do not consider real-time malware control
strategies that can be implemented using uncertain infection
information of the nodes in the network or have the containment
problem decoupled from network performance. In this work,
we propose a two-pronged approach, where a runtime malware
detector (HaRM) that employs Hardware Performance Counter
(HPC) values to detect the malware and benign applications is
devised. This information is fed during runtime to a stochastic
model predictive controller to confine the malware propagation
without hampering the network performance. With the proposed
solution, a runtime malware detection accuracy of 92.21% with
a runtime of 10ns is achieved, which is an order of magnitude
faster than existing malware detection solutions. Synthesizing this
output with the model predictive containment strategy lead to
achieving an average network throughput of nearly 200% of
that of IoT networks without any embedded defense.

Index Terms—Malware detection, IoT networks, Malware
confinement, Network security

I. INTRODUCTION

Amelioration of miniature computing devices into the con-
sumer and industrial markets with enabled connectivity to
the Internet towards smart and intelligent features lead to
an upsurge in the size of networks through which they are
linked and communicate [1]. It is predicted that by the year
2020, there will be nearly 50 billion devices connected to
the Internet-of-Things (IoT) [2]. Different features including
the communication using heterogeneous protocols, low-power,
miniature footprint, and the mobility features offered by many
of these IoT devices make them an attractive choice for
numerous applications ranging from fitness tracking and health
monitoring, to defense and security purposes. Along with the
legion of benefits offered by IoT devices comes an equal
amount of potential vulnerabilities and security risks that have
never been experienced [3], [4].

Along with the primary functionality of communication, IoT
devices also share underpinning security risks of the Cyber-
Physical Systems (CPS), but are more vulnerable for such
attacks as the security is often neglected in IoT device design.
Consequently, as the IoT devices are online with very minimal
protection measures [5], even if any, exposes them to potential

cyber-attacks. This makes them vulnerable for security attacks,
and it is not feasible to deploy existing software-based mal-
ware detection due to the resource limitation. Furthermore,
from the adversaries’ perspective, the feasibility for malware
propagation via connected network with none/weakly built
defense measures, and a vast connectivity makes the IoT
devices a potential target for attacks [3], [4]. These attacks can
be targeted at various devices such as routers and CCTVs.

Another potential security risk in IoT networks is the feasi-
bility for malware to spread across the network as soon as one
of the devices/nodes is infected, resulting in the whole network
being compromised. Unfortunately, given the multitude of
IoT networks that are being deployed, it is impractical to
quarantine the malware in the infected systems as they would
have propagated to other devices already. More specifically,
the accentuating size and popularity of these networks further
exacerbates the challenge of securing IoT devices and restrict-
ing the malware propagation, as we no longer have the option
to just ‘restart’ the entire system as it is too large and the cost
of restarting a massive network may easily exceed the cost of
potential malware existing in the network. This propagation
of malware through the IoT network can hobble the network
performance such as throughput.

Coalescing the above discussed malware detection on an
IoT node, and propagation of malware in the network reveals
significant issues that have to be addressed before large-
scale global deployments of IoT networks can be realized. To
address this, we propose a unified solution that addresses both
the challenges: a) develop and deploy lightweight malware
detection on IoT devices without incurring large overheads,
and b) confine the propagation of malware in the IoT network
even with the imperfect infection information while preserving
network integrity and overall performance.

For malware detection in IoT nodes, we deploy a hardware
performance counter (HPC) based runtime malware detec-
tor (HaRM) that utilizes lightweight machine learning (ML)
classifiers for detecting malware. To confine the malware
propagation through the network during its detection, we
utilize a low complex heuristics based approach to determine
the connectivity between nodes to minimize the malware
spreading without hobbling the overall network throughput. In
contrast to employing the speculative information of malware
propagation, we combine the malware propagation model
information with imperfect information from HaRMfor con-
fining the malware in the network.

Contributions: The main contributions of this work can be
outlined in a three-fold manner as follows:
• The proposed HaRMemploys low computational over-

head ML classifier (OneR) to circumvent high resource
utilization and suit the needs of IoT devices, also achieves
good malware detection accuracy.

• We develop a framework for combining the models
of malware spreading processes on networks explicitly
with their direct adverse effects on network performance
and formulate a optimal control problem for malware
confinement while maintaining network integrity.

• We show how the output of the HaRMdetector can be
used to generate imperfect estimates of infection state
information as an input to control the malware spread.

II. NETWORK DESCRIPTION AND PROBLEM FORMULATION
Here, we introduce the malware propagation model, and the

malware confinement problem. The overall network architec-
ture with node-level malware detector and the network-level
malware epidemic controller is depicted in Figure 1.

A. Modeling Malware
To emulate the real-world malware spreading where the

malware performs the devised activity such as unauthorized
data transfer and gets deactivated [6] , we use the Susceptible-
Infected-Susceptible (SIS) model. Some of the real-world
malware that follows this kind of model are ‘badBios’
[7], ‘Yankee Doodle’ [8], and ‘Magneto’ [9]. Susceptible-
Infected-Susceptible (SIS) model is a well-established model
for epidemics on networks [10], [11]. Here, the network is
represented as a weighted directed graph G = (V, E ,W)
with |V| = n nodes, E ⊂ V × V as the directed edges,
and W ∈ Rn×n is the weighted adjacency matrix. The
edge (i, j) ∈ E means that node j is sending data to node i
at a rate proportional to wij . Note that wij > 0 if and only
if (i, j) ∈ E , and wij = 0 otherwise. We denote the set
of neighbors of i as Ni = {j ∈ V|(i, j) ∈ E}. At any
given time, the set of nodes are split into two compartments:
Susceptible (S) and Infected (I), that represents the infection
state of each node. The state of node i at time t is given by
the binary random variable Xi(t) ∈ {0, 1}, where Xi(t) = 1
indicates that the node i is infected with malware at time t,
and similarly, Xi(t) = 0 indicates that the node i is currently
free of malware, but susceptible. The infection state of the
entire network is denoted by a vector X(t) ∈ {0, 1}n.

The intuition of malware spreading model is as follows. Any
node i that is infected with the malware is capable of passing
it to a neighbor j ∈ Ni randomly with Poisson rate β > 0
proportional to the amount of traffic flow wij , β termed as the
infection rate. At the same time each infected node is also able
to recover with Poisson rate δ > 0, δ termed as the recovery
rate. Thus, the SIS spreading process can be modeled using
the Markov process as follows

Xi : 0→ 1 with rate β
∑
j∈Ni

wijXj ,

Xi : 1→ 0 with rate δ.
(1)

B. Malware Epidemic Control Problem
Based on the introduced models, we formulate the problem

of malware epidemic control in the network here. Let W ′(t)

denote the modified graph where the traffic between some
nodes may have been reduced due to different control activities
such as removal of links. In other words, as a consequence of
the control mechanism the traffic is regulated between each
pair of active links w′ij ≤ wij to reduce the chance of node j
spreading malware to node i. Thus, the problem can be defined
as maximizing the objective function

J =
1

T

∫ T

0

P (W ′(t), X(t))dt (2)

over some time horizon T > 0. Here P (W ′(t), X(t)) denotes
the performance of the network at time-instant t. Note that
this objective function explicitly captures the trade-off between
shutting down links to contain the malware at the cost of
reducing instantaneous network performance, and keeping
links active to maintain the instantaneous network performance
at the risk of letting the malware spread.

This problem poses two challenges. First, in general, we
may not have access to the true infection state X(t) of a
node, i.e. malware is often meant to be undetected. This
indicates that a mechanism to detect the malware on nodes
is needed. Secondly, the malware confinement can reduce
the malware spread through the network, but can impact the
performance. In other words, malware confinement might not
hamper instantaneous network performance, but can impact
after certain time. Similarly, shutting down the links can
confine malware propagation, but impacts the instantaneous
network performance. Furthermore, the whole problem of
malware confinement involves challenge of considering the
true state of the nodes, infection spread characteristics of
malware in the network, and a way to combine them.

Optimizing equation (2) is non-trivial even if the infection
state X(t) of the network is known at all times. Thus, to
solve the problem of malware containment in the network, we
partition it into two subproblems: (a) detect the malware on the
nodes without incurring large overheads; and (b) confine the
malware based on the output of malware detection algorithm.

III. NODE-LEVEL RUNTIME MALWARE DETECTION
To perform effective node-level malware detection in IoT

network, we propose a lightweight, hardware-assisted runtime
malware detection technique (HaRM).
A. Overview of HaRM

The proposed malware detector, HaRM is shown in Figure
2. It comprises of feature collection and selection (performed
offline), and runtime malware detection (performed online).

1) Feature Selection: For runtime malware detection, we
employ HPC traces in this work, as software-based malware
detection incurs latency and processing overheads [12], [13],
[14]. As discussed, there exists a large number of microarchi-
tectural events, that can be monitored. However, given the lim-
ited number of available HPCs in today’s microprocessors, at a
max 4 for most IoT devices, only few microarchitectural events
equal to the number of available HPCs can be monitored
simultaneously. In addition, using all microarchitectural events
incur large computational overheads. Therefore, a subset of
HPCs are selected that represent the most critical features
required for malware detection. This feature selection process
is performed offline.

IoT Network
Epidemic Model

Predictive

Controller

ML classifier –

benign or malware

(Probability)

HPCs

Feature reduction

A
 r

an
d

o
m

 d
ev

ic
e
 i

n
 a

n
 I

o
T

 n
e
tw

o
rk

em
b

ed
d

ed
 w

it
h

 m
al

w
ar

e
 d

et
e
ct

o
r

Malware

probability

Malware

probability

Malware

probability
...

...

Stochastic optimal controller

Modifying network to preserve network

integrity and meet performance goals

Devi

ce 1

Devi

ce 2

Devi

ce n

Performance goals met or not
Network connectivity

Network connectivity

information

Connectivity update

...

Fig. 1.: IoT network comprising of numerous nodes connected with the aid of IoT gateways with malware detector deployed
on each node and a centralized malware confiner

Applications

(Malware and Benign)

Feature

Collection

Feature

Selection

ML

Classifiers

(OneR)

Correlation Analysis

& Attribute Evaluation

Feature Scoring

HPCs

Features

Malware

Benign

Benign

MalwareSection III-1 Section III-2

Perf Tool on

Linux

Fig. 2.: Overview of the proposed node-level HaRM
We collected 44 possible diverse microarchitectural events

using the available HPCs for the employed IoT devices by
repeating the experiments multiple times. For feature reduc-
tion, we apply “Correlation Attribute Evaluation” to identify
the most critical HPC events. Correlation evaluation algorithm
calculates the Pearson correlation coefficient between each
attribute and class, as given below.

ρ(i) =
cov(Zi, C)√
var(Zi) var(C)

i = 1, ..., 44 (3)

where ρ is the Pearson correlation coefficient. Zi is the input
dataset of event i (i = 1, . . . , 44). C is the output dataset on
each IoT node containing labels, i.e. “Malware” or “Benign”
in our case. The cov(Zi, C) measures the covariance between
input and output data. The var(Zi) and var(C) measure
variance of both input and output datasets, respectively.

Based on the ranking of ρ, top 8 features are selected for
detecting of malicious applications on the IoT device. The
features are ranked based on their importance and relevance
to the target variable through the feature scoring process.
The reduced set of features indicate that the top 8 includes
HPCs events representing pipeline front-end, pipeline back-
end, cache subsystem, and main memory behaviors which are
influential in the performance of standard applications. The
‘Branch instruction’ being the most influential event to classify
malware from benign applications. Further, as 16 HPCs are
not affordable for IoT devices, Principal Component Analysis
(PCA) is applied on the 16 features to select the prominent 4.

2) Malware Detection using ML Classifiers: Once the key
features are selected, they are used to train the ML classifiers
i.e. malware detectors of HaRM. For evaluation, we experi-
mented with various ML classifiers and compare them in terms
of malware detection accuracy, hardware overhead, power con-
sumption, and the time required to detect malware (latency).
The running application is profiled every 1ms i.e. non-trivial
HPCs are collected continuously at 1ms interval and fed to
the ML classifier. A k-fold (k=10) validation is employed for

evaluating and comparing the malware detection accuracy of
different classifiers. Training the malware detectors involve
profiling the incoming application with Perf tool available
under embedded Linux and extracting the vital performance
counters that are determined by the feature selection (as in
Section A1), and deriving a learning model from the training
data. The output variable is the class (malware or benign) of
an application (as shown in Figure 2).

Given the derived detection model, the ML classifiers pro-
vide information regarding the existence of malware. For the
IoT devices, we employ ‘OneR’ ML classifier for node-level
malware detection due to its lower latency and resource con-
sumption (as shown in Section B). As the malware detection
is performed on individual nodes, it is independent of the
network topology. As seen in the evaluation, the OneR based
HaRM achieves only 92% accuracy, indicating that there is
feasibility to have false positive or negatives. However, as
the deployed epidemic controller for malware confinement
requires an estimate of infection rather than deterministic
infection state of the node, using of HaRM is still beneficial.

IV. MALWARE EPIDEMIC CONTROL
Despite the best efforts in malware detection including the

deployed HaRM, there exist no technique that has a perfect
yield, as such it is not always possible to have the exact
infection data Xi(t) for node i ∈ V .

First of all, the malware propagation model (SIS) only
provides independent estimates X̂i(t) = Pr(Xi(t) = 1). Since
the true infection state Xi(t) is a binary random variable for
each node i, we instead maintain an estimate X̂i(t) ∈ [0, 1] at
all times. More specifically, we let X̂i(t|t) be the estimate of
infection state Xi(t) available at time t.

Taking expectations of the random binary infection vari-
ables, the dynamics according to (1) are given by

dE[Xi](t)

dt
= −δXi(t) + β

∑
j∈Ni

w′ijXj(t) (4)

where the modified network W ′ is used rather than the original
network W . In addition, we need to combine this estimate with
the updated information provided by the malware detectors
(HaRM) embedded on the IoT nodes. Using this, we can
propagate true estimates forward in time.

The infection states due to the malware on applications
executed by the devices have to be considered to capture the
true state of the nodes. As aforementioned, HaRMdoes not
provide perfect information, rather an estimate is provided.
These estimates (outputs of the HaRM) have to be combined
with the malware propagation model estimate in order to

obtain independent estimates X̂i(t|t) = Pr(Xi(t) = 1) each
time the malware detection algorithm is run.

Let yi(t`) ∈ [0, 1] be the output of the malware detector
(HaRM) on node i at time t`. Assuming this output is an
independent probability that the node is infected with malware,
we update the probability of infection of each node X̂i(t`|t`)
conditioned on the new information available at each sampling
time t ∈ {t`}`∈Z≥0

as

X̂i(t`|t`) = 1− ((1− X̂i(t`|t`−1))(1− yi(t`))) (5)

Thus, given both a way for propagating the estimate X̂(t′|t)
at time t and a way to incorporate new measurements yi(t`),
now we estimate X̂(t) of the infection state of all nodes.

Given the current infection estimate X̂i(t`|t`), we propagate
this according to equation (4) at a smaller time later by

X̂i(t`+1|t`) = X̂i(t`|t`) + ∆t(−δX̂i(t`|t`)+

β
∑
j∈Ni

w′ijX̂j(t`|t`)) (6)

Thus, the objective of optimal control problem in equation
(2) is redefined as a rate-constrained problem as follows.

Theorem 4.1: [Equivalent problem]

minimize
{w′ij}(i,j)∈E

∑
(i,j)∈E

gij(w
′
ij)

s.t.
∑
i∈O

(1− δ)Xi + ψ
{w}
i (1−Xi) ≤ r

∑
i∈V

X̂i(t|t),

(7)
where we have defined the convex function

ψ
{w}
i = 1−X̂j′(t|t)γ

1
w

j′iΠj∈{Ni∩Xi} γ
1
w
ji−x̂

c
j′(t|t)Πj∈{Ni∩Xi}γ

1
w
ji

(8)
where w > dmax and Xi = {i ∈ V ∩O |Xi = 1}. Suppose the
function gij is convex in the variable w′ij , (7) is the equivalent
optimization problem for defined problem statement, where the
optimal edge weights can be computed as w′ij = 1− (w?ij)

1
w ,

where w?ij is the solution to (7).
However, it is worth noting that product terms are in general

non-convex, and so CVX [15] may not solve the problem.
Finally, to put the solutions to the 2 subproblems together

in a way to solve the optimization problem (2), we need
to consider a specific form of the performance function P .
There exists numerous metrics to evaluate the performance of
a network such as throughput, latency, and bandwidth. In this
work, to evaluate the network performance in terms of overall
network throughput considering the infection state of nodes,
given by [16]

P (W ′(t), X(t)) = τ =

∫ T

0

log(1 + w)

h
Psuc(1−X(t)) (9)

where Psuc is the probability of successful transmission (i.e.
malware free data), modeled as the inverse of the node
malware infection probability; h is the number of hops; and
w is the weight assigned to the communicating nodes (signal-
to-noise ratio (SNR)). The SNR is given by

gijd
−α
ij∑

k∈L(t)\j gijd
−α
ik

(10)

where dij represents the distance between nodes i, j with a
channel gain gij in the network L(t) at a given time t; The
path-loss exponent given by α. As such, the traffic between
nodes is determined based on the throughput, connectivity, and
the malware infection of the nodes.

Depending on the determined malware infection state and
the infection spread, the infected node with higher number of
connected neighbors are chosen. The links from those nodes
are regulated i.e. traffic from infected node j to neighbors,
say i are made to be wij × r. The performance constraint is
imposed when regulating the traffic neighbors of the infected
node i.e. if the performance drops below the required per-
formance, the traffic regulation process is ceased. The decay
rate r is provided to the epidemic controller based on the
malware threat parameter σ as a way to limit how much
the network can be disconnected. As r → 0, the solution
to Theorem 4.1 provides much more aggressive containment
strategies by disconnecting the entire network. On the other
hand, as r → 1, the solution to Theorem 4.1 allows the
malware to spread and not disconnect many links. Based
on this, the proposed solution determines the best possible
network connectivity in order to maintain as many original
connections as possible while satisfying the desired decay rate.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

The experimental setup for deploying the IoT network is
discussed here. The malware propagation performed in the
experiments is similar to that in [17], [18].
Network and Hardware Setup: 20 different IoT nodes such
as temperature sensors connected with Intel ATLASEDGE
board, Beagle Boards (BeagleBone Blue) having ARM pro-
cessor, communicating via Bluetooth protocol are deployed
in an area of 5×5 m2. Most of the deployed boards host
RISC architecture with embedded Linux OS running on them.
The devices are statically placed during the experiments.
The epidemic model predictive controller is executed on a
controller built on Intel Haswell core i5 processor.
Software Framework: On each device, i.e. at the node-
level, in order to extract the HPC information, Perf tool
available under Linux is employed. Similar applications that
are deployed on IoT nodes are executed on a system running
Ubuntu 14.04 with Linux 4.4 Kernel. HPC information is
obtained by executing all the applications in Linux Container
(LXC) which is an isolated environment. LXC is chosen over
other commonly available virtual platforms such as VMWare
or VirtualBox since it provides access to actual performance
counters data instead of emulating HPCs. We extracted 44
CPU events available under Perf tool. As the employed
processors on IoT devices have only 4 HPC registers available
[19], we can only measure 4 events at a time and thus, we run
applications multiple times to capture all the events.
Applications: We executed 3000 benign and malware appli-
cations for HPC data collection. Benign applications include
MiBench [20] and SPEC2006 [21], Linux system programs,
browsers, text editors, and word processor. For malware ap-
plications, Linux malware is collected from virustotal.com

87

88

89

90

91

92

93

94

95

96

MLP OneR Logistic Jrip

A
cc

ur
ac

y
(%

)

8HPC 4HPC 2HPC

Fig. 3.: Ten-fold cross-validation malware detection accuracy
with different ML classifiers and HPCs in the proposed HaRM

and classified on virusshare.com. Malware applications include
Linux ELFs, python scripts, perl scripts, and bash scripts,
which are created to perform malicious activities consisting of
four classes of malware including 452 Backdoor, 350 Rootkit,
650 Virus, and 1169 Trojans.
B. Evaluation of HaRM: Node-Level Malware Detection

1) Malware Detection Accuracy: We evaluate the malware
detection accuracy when different ML classifiers are employed
in HaRM framework shown in Figure 2. A 10-fold cross-
validation is used to verify the performance of malware
detection with reduced features i.e. HaRM. For the detection
accuracy, we calculate the percentage value of samples that
are correctly classified. Figure 3 shows a comprehensive
(average) accuracy comparison of various ML classifiers used
for malware detection, with varied number of HPCs and
ML classifiers. The HaRM achieves nearly 94.7% detection
accuracy (max) when 8 HPCs are employed, and 93.03%
when 2 HPCs are employed with the verified classifiers. As
the IoT devices are constrained on the resources, using 8
HPCs is not feasible. Heavy weighted Multi-Layer Percep-
tron (MLP) classifier outperforms other classifiers even when
less number of HPCs. Lightweight OneR classifier provides
sufficient (∼92.21%) and nearly constant accuracy despite
varying number of HPCs. This is because, OneR employs
only one prominent feature for classification, despite multiple
HPCs are provided as inputs. We anticipate that the Logistic
regression and JRip are underperforming with 8 HPCs due
to the involved complex relationship between HPCs which
require large amount of data points (malware runtime is
generally very short, so limited data points can be captured).

2) Processing Overheads: Though a majority of the de-
ployed classifiers have shown a sufficient malware detection
accuracy, the resource consumption and the latency involved
for malware detection play a crucial role in choosing the best
suited ML model for runtime malware detection in HaRM.
The HaRM’s hardware footprint is evaluated on a FPGA
for a fair comparison. We use Vivado HLS to develop the
HDL implementation of the classifiers (HaRM) and deploy on
Xilinx Virtex 7 FPGA.

Figure 4 shows the malware detection power consumption
and latency for different ML models when used in HaRM. One
can observe that MLP has the highest power consumption and
latency, whereas OneR has the least power consumption and
smaller latency. The latency here refers to the processing time
to capture a malware. In terms of power, the OneR has only
25% of power consumption compared to MLP, and 30% lower

1

5

25

125

625

0

0.2

0.4

0.6

0.8

1

1.2

MLP OneR JRip Logistic

L
at

en
cy

 (
x1

0n
s)

P
ow

er
 (

W
)

Power (W) Latency

Fig. 4.: Power consumption, and latency of HaRM with differ-
ent ML classifiers

compared to JRip or Logistic regression implementations.
Furthermore, the malware detection accuracy degradation is
<2% with 2 or 4 HPCs using OneR compared to the highest
possible accuracy with MLPs, which is affordable in the
current work, as the employed malware confinement requires
an estimate of the infection state of the node rather than a
high accurate deterministic value to perform the stochastic
model predictive control. Also, it has been observed that OneR
employs only one HPC value (feature) i.e. branch instructions
for classification, which is possible to capture even in most of
the low-end IoT devices. Branch instructions are one of the
non-trivial microarchitectural events as most of the malware
[22], [23] relies on branching operations for executing the
malicious activity and the branch instructions also reveal the
behavior of most of the malware. As such, based on the
discussed analysis we choose to deploy OneR as the classifier
for HaRM on the IoT devices for further evaluation.

C. Evaluation of Malware Epidemic Control
We evaluate the performance of malware epidemic con-

troller on the network with 20 nodes deployed in 5×5m2 area.
Nearly 1000 experiments are carried out with each experiment
lasting for ∼40 seconds. Any device in the network is affected
by malware randomly at any point of time, and multiple
attacks are deployed on each device to replicate real-world
scenarios. At the initial time-instant (t = 0), two of the nodes
are deployed with self-propagating malware. We evaluate the
network performance in terms of overall average throughput.

0 5 10 15 20 25 30 35 40
Time (s)

0

5

10

15

20

T
hr

ou
gh

pu
t (

M
bp

s)

Proposed
ND
Greedy 1
After 1 Cyc.
Greedy 2

Fig. 5.: Network throughput with time under different malware
confinement techniques

Figure 5 presents the network performance (throughput) of
the proposed epidemic predictive controller i.e., network-level
malware confinement provided with real-time malware infec-

TABLE I
: Network throughput under different malware confinement
schemes

Technique Proposed After 1 cycle No disc. Greedy 1 Greedy 2
Thr. (Mbps) 460.9631 418.9087 182.143 310.6328 243.2209

TABLE II
: Average number of infected nodes in the network
Technique Proposed After 1 cycle Greedy 1 Greedy 2

2.48 3.32 14.79 2.71

tion, state of the nodes in the network, and the performance
when other heuristic methods are deployed in the IoT network
as a defense for malware propagation. The deployed heuristics
are: disconnect the node after 1 cycle of malware propagation
(denoted as ‘After 1 cyc.’); no defense in the network (‘ND’);
greedy algorithms based on the malware infection probability
(‘Greedy 1’) i.e., disconnect the node if malware is detected
by HaRM with a probability higher than a threshold (0.75);
and based on the degree of infected node (‘Greedy 2’) i.e.,
disconnect infected node with highest neighbors. One can
observe that with the proposed technique, the throughput
stays close to the maximum bound. The greedy 1 and no
disconnect performs worse, as the malware propagates through
the network. The greedy 2 i.e. disconnecting the infected
node with highest neighbors performs better than Greedy 1
indicating that infection spreads much faster than quarantining
the malware and malware propagation has more impact on the
overall network throughput. The network throughput obtained
for the experiments deployed with various schemes is listed
in Table I with first row describing the scheme for malware
confinement, and the second row provides the overall network
throughput (Thr in Mbps) for 40s. Nearly 200% throughput
is achieved compared to network without having any defense
for malware propagation defense. Similarly, up to 100% is
achieved with proposed malware epidemic control provided
with real-time infection data compared to heuristic approaches.
Additionally, the amount of infected nodes after 40s are
averaged for all the conducted experiments and presented in
Table II. One can see that the number of infected nodes with
proposed control mechanism has the least infected number of
nodes after 40s.

VI. CONCLUSION
Despite the tremendous growth in IoT networks, security

is often neglected in the design of IoT devices, making them
vulnerable for cyber-attacks. A single compromised node in
an IoT network can infect other nodes in the network, as a
consequence of malware spread. We propose a novel practical
solution for securing IoT networks against malware epidemics.
In this work, a lightweight runtime malware detector referred
as (HaRM), is deployed on IoT nodes for detecting malware.
The proposed HaRM utilizes on-chip HPCs’ information to
detect malware without incurring processing overheads while
facilitating runtime malware detection. Unfortunately, since
the malware detection algorithms are not perfect, their outputs
cannot be immediately used in theoretical optimal control
problems. Instead, we use the outputs of HaRM to generate
probabilistic outputs about the infection state rather than
binary deterministic ones that can be used to determine the

node disconnect criteria The proposed method is experimented
in a 20 node IoT network deployed in a 5×5m2 area. The
deployed HaRM with OneR classifier achieves a malware
detection accuracy of ∼92% on average, with a malware
detection latency of 10ns. The proposed malware epidemic
control method achieves a throughput of nearly 2× compared
to IoT network without any defense, and up to 1× higher
compared to other heuristic approaches.

REFERENCES

[1] A. K. Sikder et al., “A survey on sensor-based threats to internet-
of-things (IoT) devices and applications,” CoRR, vol. abs/1802.02041,
2018.

[2] D. Evans, “The internet of things: How the next evolution of the internet
is changing everything,” CISCO White Paper, pp. 1–11, Apr 2011.

[3] T. Abera et al., “Things, trouble, trust: On building trust in iot systems,”
in ACM/EDAC/IEEE Design Automation Conference (DAC), 2016.

[4] J. Wurm et al., “Security analysis on consumer and industrial IoT
devices,” in Asia and South Pacific Design Automation Conference (ASP-
DAC), 2016.

[5] M. B. Barcena and C. Wueest, “Insecurity in the internet of things,”
Whitepaper, Apr 2015.

[6] D. Chakrabarti et al., “Epidemic thresholds in real networks,” ACM
Trans. Inf. Syst. Secur., vol. 10, no. 4, pp. 1:1–1:26, Jan 2008.

[7] (2013) badbios. Last accessed: 29-Nov-2018. [Online].
Available: https://arstechnica.com/information-technology/2013/10/
meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/

[8] (2007) Yankee doodle. Last accessed: 29-Nov-2018. [On-
line]. Available: https://www.symantec.com/security-center/writeup/
2000-121914-2303-99

[9] (2017) Magneto. Last accessed: 07-Aug-2018. [Online]. Available:
https://magento.com/security/tag/malware

[10] R. J. Kryscio and C. Lefévre, “On the extinction of the SIS stochastic
logistic epidemic,” Journal of Applied Probability, pp. 685–694, 1989.

[11] C. Nowzari, V. M. Preciado, and G. J. Pappas, “Analysis and control
of epidemics: A survey of spreading processes on complex networks,”
IEEE Control Systems, vol. 36, no. 1, pp. 26–46, Feb 2016.

[12] H. Sayadi et al., “Comprehensive assessment of run-time hardware-
supported malware detection using general and ensemble learning,” in
ACM Int. Conf. on Computing Frontiers, 2018.

[13] H. Sayadi et al., “Ensemble learning for hardware-based malware detec-
tion: A comprehensive analysis and classification,” in ACM/EDAA/IEEE
Design Automation Conference, 2018.

[14] H. Sayadi et al., “Customized machine learning-based hardware-assisted
malware detection in embedded devices,” in IEEE Int. Conf. On Trust,
Security And Privacy In Computing And Communications, 2018.

[15] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar 2014.

[16] P. H. J. Nardelli, P. Cardieri, and M. Latva-aho, “Efficiency of wireless
networks under different hopping strategies,” IEEE Transactions on
Wireless Communications, vol. 11, no. 1, pp. 15–20, Jan 2012.

[17] C. Fleizach et al., “Can you infect me now?: malware propagation in
mobile phone networks,” in ACM W. on Recurring Malcode, 2007.

[18] S. Hosseini, M. A. Azgomi, and A. T. Rahmani, “Malware propagation
modeling considering software diversity and immunization,” Elsevier
Journal of computational science, vol. 13, pp. 49–67, Mar 2016.

[19] Intel, “Intel R© 64 and ISA-32 architectures software developer’s man-
ual,” 2016.

[20] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in IEEE International Workshop on Work-
load Characterization, 2001.

[21] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep 2006.

[22] B. Singh et al., “On the detection of kernel-level rootkits using hardware
performance counters,” in ACM on Asia Conference on Computer and
Communications Security, 2017.

[23] X. Wang et al., “Hardware performance counter-based malware identi-
fication and detection with adaptive compressive sensing,” ACM Trans.
Archit. Code Optim., vol. 13, no. 1, pp. 3:1–3:23, Mar 2016.

