
Exploiting STT-NV Technology for Reconfigurable, High Performance, Low Power,
and Low Temperature Functional Unit Design

Adarsh Reddy Ashammagari

Dept. of Electrical & Computer Engineering
George Mason University, Fairfax, VA

E-mail: aashamma@gmu.edu

Hamid Mahmoodi
Dept. of Computer Engineering

San Francisco State University, SF, CA
E-mail: mahmoodi@sfsu.edu

Houman Homayoun
Dept. of Electrical & Computer Engineering

George Mason University, Fairfax, VA
E-mail: hhomayou@gmu.edu

Abstract-‐Unavailability of functional units and their unequal
activity makes performance bottlenecks and thermal hot spot
units in general-purpose processors. We propose to use
reconfigurable functional units to overcome these challenges. A
selected set of complex functional units that might be under-
utilized, such as a multiplier and divider, are realized in a time-
multiplexed fashion using a shared programmable Look Up Table
(LUT) based fabric. This allows for run-time reconfiguration and
migration of their activity. LUT based implementation also allows
under-utilized functional units to be dynamically reconfigured to
the functional units that have a performance bottleneck and
hence improving performance. The programmable LUTs are
realized using Spin Transfer Torque (STT) Magnetic technology
(also called STT-NV) due to its zero leakage and CMOS
compatibility. The results show significant performance
improvement of 16% on average across standard benchmarks,
when replacing CMOS multiplier and divider with reconfigurable
STT-NV LUT counterpart. In addition, reconfiguration reduces
the maximum temperature of functional units by up to 27oC and
almost eliminates the thermal variation across them. This comes
with small power overhead and no area impact.

Keywords--STT-NV logic; reconfigurable architecture; low power;
functional units; low temperature; multiplier; divider
	

I. INTRODUCTION
With mobile devices being battery powered, energy

efficiency of the processing units and the thermal stability of
the design become major concerns. These concerns become
serious with the growth rate in battery power falling short of
the growth rate in consumer demands for higher data rates.
One promising way to address this energy-efficiency challenge
is to exploit reconfiguration in designs, whereby the same
hardware component can be “reconfigured” to execute
different functionality at different points in time. The way to
provide reconfigurability in designs today is primarily through
the use of FPGA or Coarse Grain Reconfigurable Arrays
(CGRA). For FPGAs, However, not only are there challenges
in the integration on the processor die, but they also exhibit
quite poor power-efficiency. Unlike FPGAs, CGRAs are
extremely power-efficient and quite general-purpose
accelerators (wherein most mobile applications can be
accelerated). However CGRAs pose immense challenges to
compiler technology [6], while at the same time their
performance and power-efficiency is so critically dependent on
the compiler optimization techniques.
In this paper, we present an alternative way to enable
reconfigurability in embedded processor architecture. Our
solution is to enable reconfigurability in the general-purpose
processor (GPP) by using Spin Transfer Torque non-volatile
(STT-NV) fabric. STT-NV is a new fabrication technology
that is compatible with CMOS. The advantages of using STT-

NV technology are its zero standby power, non-volatility,
scalability, and thermally robust behavior. The most popular
use of STT-NV is to implement low-power, high-density on-
chip memories. As a rule of thumb, it is possible to design 4
times denser memories, with almost the same read power and
read times with STT-NV technology. Since caches (made up
of RAM circuits) are the major contributors to the leakage
power of the processor (which in turn is a significant chunk of
the total processor power), using STT-NV based RAM results
in a good amount of power savings [5, 12]. In this paper, we
take the next step – We attempt to aggressively exploit STT-
NV technology, by using it to design the reconfigurable logic
needed to support dynamic reconfiguration of functional units.
We will explore ways to use reconfiguration to maximally
improve power, performance and robustness of processor
architecture.
As a first step, in this paper we investigate the design of a
reconfigurable functional unit in embedded processors.
General-purpose embedded processor such as ARM, Atom,
MIPS, or Tensilica based cores typically have a certain number
of functional units for each type of adder, divider, and
multiplier, for instance. In these cores a functional unit is a
critical unit that is not only a performance bottleneck of the
design, but also a temperature hotspot [7, 20]. Due to its high
activity and small size, the functional unit’s power density is
high, and therefore is a thermal hotspot. Using STT-NV logic
we are attempting to make dynamic reconfigurable units to
address these power, performance, and thermal challenges. In
this paper we present our analysis, demonstrating the benefits
of a reconfigurable STT-NV logic when deployed in the
functional unit of the GPP in an MPSoC architecture. The
novel contributions of this work are as follows:
• Utilizing STT-NV technology for dynamic reconfiguration

of functional units resulting in lower power, higher
performance, and more thermally balanced design

• Proposing performance aware reconfiguration algorithms to
reconfigure functional units with the objective of
performance enhancement.

• Proposing a thermal aware reconfiguration algorithm based
on regional migration of computation from hot spots to
cooler spots to achieve more thermal balancing.

• Comparative analysis of power, performance, and
temperature of STT-NV design style versus custom CMOS
that is augmented with state-of-the-art leakage reduction
techniques such as power grating. This analysis is
performed for various functional units to identify the best
design style for each unit.

II. MOTIVATION
In this section we motivate this work by providing insight

on why functional units in general-purpose processors are
performance, power and temperature bottleneck units.

978-3-9815370-2-4/DATE14/©2014 EDAA

Figure	 1.	 (a)	 Percentage	 of	 execution	 time	 (Y	 axis)	 that	 functional	 unit	 is	 idle.	 (b)	 Percentage	 of	 times	 functional	 unit	 requested	 but	 was	 not	 available	
(functional	 unit	 conflict).	

A. Performance
Unavailability of a functional unit is one of the major

performance bottlenecks in general purpose embedded and
high performance processors [1, 3]. The functional unit
conflicts occur when the processor pipeline has ready
instructions, but there are no available functional units to
execute them. Note that in spite of high functional unit
conflicts, it is not design efficient to increase the number of
functional units in the processor pipeline, as the complexity of
additional functional units will be significant [16, 17, 19]. As
studied in several works, increasing the number of functional
units in general purpose processors not only increases the
power consumption of the processor but will also significantly
affect the complexity of several pipeline stages including
instruction queue, write-back buffers, bypass stage, register
file design and could severely affect the processor
performance, as the number of write-back ports increases
significantly [16, 17]. Only increasing the total number of
functional units (which are equivalent to the maximum issue
width) from 4 to 6, increase the critical path delay and the total
power of the processor by 21% [16, 17]. The major increase is
due to the impact on the wake-up and bypass logic stages.
The utilization of each functional unit in a processor is
significantly different. Figure 1 shows the utilization of each of
the functional units for SPEC2K benchmarks. Figure 1 (a)
shows the percentage of program execution time that each
functional unit is idle. Across all benchmarks most functional
units are significantly idle, except for IntAlu. Figure 1 (b)
reports percentage of program execution time when a
functional unit was requested but was not available. In most
benchmarks a significant conflict is being observed in only one
functional unit, which is not the same unit for all benchmarks.
Results from Figure 1 (a) and (b) suggest that if we could
transform the idle units to the unit with high conflict we could
reduce the conflict rate and potentially improve performance.
Note that for most of the benchmarks, the functional unit with
high conflict was also idle for more than 80% of execution
time. This implies that, most of the time, units are accessed in
a burst and remain idle for most of the time. Note that there is
no single unit that has high unavailability across all
benchmarks. Therefore, there is a need for reconfiguration
algorithms to manage the idle resources during a resource
conflict to reduce the conflict rate. This reconfiguration can be
achieved by using a LUT based functional units. In this
research we use STT-NV fabric to realize this.

B. Power & Temperature
Power density of processors is increasing as technology is

scaling down. High power density is known to create local hot
spots, which result in excessive regional temperature and
reduced reliability of the units and increased leakage current
exponentially. Increased cooling cost, higher probability of
timing errors, physical damage, and lifetime reduction are just
a few of many consequences caused by higher power density.
High active regions in a processor such as functional units and
register file have shown to have more than 20-degree Celsius
higher temperature compared to less active regions like on-
chip caches [7]. In particular, functional units have shown to
be a thermal hotspot component in many embedded and high
performance processors [7, 20].

	
Figure	 2.	 Power	 and	 Temperature	 variation	 in	 functional	 units	

Figure 2 shows the average power and average steady-state
temperatures of various functional units in our studied
architecture for SPEC2K benchmark. In general, temperature
of a block rises because of its high activity i.e. high power
density. IntAlu being a highly active unit has the maximum
temperature among other functional units, creating a thermal
hot spot. The temperature of a block not only depends on its
power dissipation but also the adjacent block power
dissipation. Due to adjacency to an integer register file which
is also a thermal hotspot, IntAlu unit temperature rises
compared to other functional units. In this paper we describe
the Reconfiguration and Migration (RC+M) technique to
mitigate the activity of a hot functional unit to a cold
functional unit and therefore reducing the maximum
temperature of the functional units.

III.LUT BASED RECONFIGURABLE FUNCTIONAL UNIT
A. Overview of STT-Based LUT Circuit	 	

STT-NV technology utilizes Magnetic Tunnel Junctions
(MTJ) to realize nonvolatile resistive storage. There have been
several attempts to use MTJs for building logic circuits with
the hope of exploiting the leakage benefit of MTJs in order to
reduce the circuit power [4, 12]. However, due to the
significant energy involved in changing the state of an MTJ,
circuit styles that rely on changing the state of MTJs in
response to input changes do not show any power and
performance benefits [15]. An alternative to this approach has
been to realize logic in memory by using LUTs that are built

0%#
20%#
40%#
60%#
80%#
100%#

intalu# intmul/div# fpalu# fpmul/div#

0%#
10%#
20%#
30%#
40%#

am
mp
$

ap
plu
$

ap
si$ art

$
bz
ip2
$

cra
/y
$

eo
n$

eq
ua
k
fac
ere

fm
a3
d$

ga
lge
l$

ga
p$ gcc

$
gzi
p$

luc
as$ mc

f$
me
sa$

mg
rid
$

pa
rse
r$

pe
rlb

sw
im
$
tw
olf
$

vo
rte
x$ vp

r$

wu
pw
i

Av
era
g

Hu
nd

re
ds
$

	

Figure	 4.	 Power	 (dynamic:	 blue	 and	 leakage:	 red),	 performance,	 and	 area	 results	 of	 LUTs	 with	 high	 and	 low	 state	 MTJs.	

based on MTJs [12]. Resistive Computation [12] replaces
conventional CMOS logic with Magnetic Tunnel Junction
(MTJ) based Look-Up Tables (LUTs); it has been proposed for
tackling the power wall. Figure 3 shows the schematic of a 3-
input MTJ-based LUT that was used in [4, 12]. An MTJ is
selected by using the pull-down NMOS selection tree, and the
current of the dynamic current source is divided between the
selected MTJ and the reference resistor, resulting in a low
swing differential voltage on nodes DEC and REF during the
evaluation phase when clock (CLK) is high. This low swing
voltage is then amplified using a sense amplifier stage to
achieve full voltage swing outputs (Z and Z’). Figure 4 shows
the plots of power, delay, and energy for LUT sizes ranging
from 2 inputs to 8 inputs. This data is obtained for the cases
where 50% of the MTJs are at the high state, and the remaining
50% at the low state. Simulations are performed in a 32nm
predictive technology [11], where the expected RH and RL
values are at 6.25K and 2.5K, respectively [12]

Figure	 3.	 3-‐input	 MTJ-‐based	 LUT	 [4,	 12].	

B. Estimate of Area, Power, and Performance	 	
To obtain an estimate of area, power, and performance of

an LUT based adder as compared to a static CMOS (ASIC)
counterpart, we have performed a case study on a 64-bit ripple
carry adder and a multiplier implemented in static CMOS,
CMOS LUT based, and the STT-NV LUT based styles in a
32nm predictive technology node [11]. We used a commercial
FPGA synthesis tool in order to get a count of LUTs and
switch boxes (for routing) needed for each design. For static
CMOS design we used design compiler to synthesis functional
units (from the DesignWare) in a commercial 45nm
technology and scaled the results to 32nm. Table 1 shows the
results of the 64-bit adder and multiplier implemented in both
styles. The results indicate that except for the leakage power,
the STT-NV based LUT has overhead in other metrics
(especially for the adder). That means the performance of the
reconfigurable adder in STT-NV style will be 2.89X lower
than that of the static CMOS adder counterpart. Its standby
	

Table	 1.	 Comparison	 of	 adder	 and	 multiplier	 results	 in	 alternative	 styles	
Metric	 Unit	 STT-‐NV	 LUT	 style	 CMOS	 LUT	 style	 Static	 CMOS	 style	
Delay	 adder	 2.89	 3.24	 1	

multiplier	 2	 3.73	 1	
Active	 mode	
power	

adder	 6.46	 6.70	 1	
multiplier	 0.74	 1.26	 1	

Standby	 mode	
(leakage)	 power	

adder	 0.17	 3.87	 1	
multiplier	 0.23	 1.42	 1	

Area	 adder	 3.89	 4.61	 1	
multiplier	 0.90	 1.83	 1	

mode power is 0.17X lower, but its active mode power is
6.46X higher. Due to a larger delay of reconfigurable STT-NV
multiplier compared to the baseline CMOS style, the STT-NV
multiplier implementation needs to be pipelined two times
deeper than the original CMOS based implementation.
However this has shown to impact performance minimally
[12]. Also in spite of the advantage of a static CMOS based
multiplier over the STT-NV based design in terms of delay, it
still makes a lot of sense to replace it with the STT-NV design
due to significant leakage advantage of the STT-NV design.
Due to low utilization and high temperature of the multiplier,
the standby power becomes the major component of the total
power. Also as results in table 1 suggests, the CMOS LUT
based style has no obvious advantage over the static CMOS
style. While both STT-NV LUT and CMOS LUT are
reconfigurable, STT-NV LUT has advantage over CMOS LUT
in several metrics, noticeably leakage power. The leakage
power of a STT-NV style is at least 6X lower than the CMOS
LUT design. Based on the results presented in table 1 we select
IntALU to be a non-reconfigurable static CMOS as the power
and area increase for a reconfigurable IntALU is significant.
Other functional units including multiplier and divider (Int and
FP) are implemented with STT-NV LUT reconfigurable style
where they do not incur area overhead (the area of STT-NV
LUT style is even smaller than the CMOS counterpart).

C. Estimate of Reconfiguration Energy and Performance
The reconfiguration energy and performance estimation is

performed for configuring a 64X64 multiplier unit to a 64-bit
adder unit. This represents the worst-case scenario as
reconfiguration between any other pair of functional units
takes less energy and delay. Reconfiguring a LUT-based
multiplier to an adder unit involves programming the LUTs.
We have taken the HDL of the multiplier and adder units and
synthesized them using a commercial FPGA (with 6 input
LUT) synthesis tool in order to get a count of LUTs needed for
each design. We have also taken into account the routing
overhead including the switch boxes. The multiplier unit can
be realized using 437 4-input LUTs and the adder using 65
such LUTs. Hence, we assume reconfiguring the multiplier
unit to the adder or vice versa involves writing to at most 65
LUTs. Therefore, the total number of STT-Non-Volatile (STT-

0"
0.5"
1"
1.5"
2"
2.5"
3"
3.5"

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"
1.4"
1.6"
1.8"

2" 3" 4" 5" 6" 7" 8"

St
an

db
y"
po

w
er
"(n

W
)"

Dy
na

m
ic
"P
ow

er
"(µ

W
)"

Number"of"LUT"Inputs"

(a)"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"

2" 3" 4" 5" 6" 7" 8"

Re
ad

"E
ne

rg
y"
(fJ
)"

Number"of"LUT"Inputs"

(b)"

0"
50"
100"
150"
200"
250"
300"
350"
400"

2" 3" 4" 5" 6" 7" 8"

Ac
ce
ss
"D
el
ay
"(p

S)
"

Number"of"LUT"Inputs"

(c)"

0"

0.5"

1"

1.5"

2"

2.5"

3"

2" 3" 4" 5" 6" 7" 8"
Number"of"LUT"Inputs"

Ar
ea
"(µ

m
^2
)"

(d)"

A

CLK

A’

B B’ B B’

C C’ C C’ C C’ C C’

CLK’

MTJ MTJ MTJ MTJ MTJ MTJ MTJ MTJ

A A’

B B’

C C’

RREF

VDD

CLK CLK

CLK’ CLK’

VDD

CLK’

Z’
Z

3x8 Selection Tree
Reference Tree

Dynamic Current
Source

Sense Amplifier

Precharge and
active load circuit

DEC REF

NV) bits to be written is 65 * 16 = 1040 bits or roughly 1
Kbits. The write access time to a single bit STT-NV is
estimated to be 25ns [10], which are 25 cycles for 1GHz
system clock. If LUTS are written in parallel using a 128-bit
wide data bus, the reconfiguration is estimated to take about 8
write operations (i.e. 200 cycles). The configuration bits for
the LUTs that are different between the adder and multiplier
configuration need to be stored in a ROM. A controller will
read the configuration bits from ROM and write to the STT-
NV LUTs. For the configuration energy estimate, we have
ignored the energy of reading the configuration bits from the
ROM, since the configuration energy is expected to be
dominated by the energy of writing to the STT-NV cells.
Using the NVSIM tool, the write energy per bit cell is
estimated to be 7.9 pJ [10]. Hence, the total energy estimated
for the reconfiguration of LUTs is 1040 * 7.9 pJ = 8.2 nJ. The
above estimates are conservative because we assume all the
bits of those 65 LUTS need to be re-written; whereas, in reality
some of the bits could be same between the two
configurations. In addition to programming LUT we also need
to program the router and switchboxes. The routing power
overhead is not trivial. We used the results of FPGA synthesis
to estimate the routing energy as 3.7nJ.

IV. RECONFIGURATION TECHNIQUES
In this section, we describe our proposed techniques for

reconfiguring the functional units. We compare our proposed
architecture with CMOS based functional units (baseline
architecture). We assume that in our baseline architecture,
power leakage is suppressed using power-gating techniques
reported in [8, 18]. For the purpose of performance, power,
and thermal comparison we study four following architectures:
-CMOS+PG (baseline): A design with a CMOS based
functional units and power gating technique. -STT-NV+NR: A
design with a STT-NV based functional units and no
reconfiguration capability. -RC+ST and RC+SAT: A design
with a STT-NV based functional unit and reconfigurable
capability. Note that for all these designs, we assumed a
CMOS implementation for IntAlu as described in section 3.

A. Static Technique (RC+ST)
In this algorithm, the application is being profiled for an

initial phase (learning phase) and based on the profiling
information, the reconfiguration decision is being made for the
rest of the program execution. During the learning period,
active and idle functional units are being identified. At the end
of the learning period, all idle units are reconfigured to active
units in the order of their activity. In this technique when a unit
that has been reconfigured is requested and therefore is not
available it needs to be reconfigured back to its original
function. We refer to this re-reconfiguration as the adjustment
process. The adjustment process is asynchronous - For
example if a multiplier is reconfigured to an adder and later in
the program execution, a multiply operation request a multiply
unit, then the reconfigured adder needs to be adjusted back to a
multiplier immediately. Note that the reconfiguration decision
is made only once and after an initial learning period (N
cycles). Since only one reconfiguration is allowed at the end of
the learning phase, at most one adjustment process is
performed during program execution time. This technique is
better suited for the application which does not change their

behavior in terms of functional unit utilization very frequently
at runtime. This is a low power overhead technique, since we
reconfigure the units only once, hence the power overhead
would be small.

B. Static Adaptive Technique (RC+SAT)	
This algorithm is very similar to static technique except that

the monitoring is done periodically. In this technique the
functional units are monitored for every M cycles and hence
have a better chance to predict and adapt to the behavior of the
application. In this technique, similar to the static technique,
the adjustment process is used to reconfigure back a
reconfigured functional unit to its initial unit. This technique is
well suited for the application for which the functional unit
requirements change significantly at run-time.

C. Reconfiguration and Migration Technique (RC+M)
In this technique, we are mainly concerned with the

temperature of the functional unit. The functional units are
frequently monitored to get a temperature feedback. According
to the temperature information obtained, the activity of the
hottest unit is migrated to the coldest unit, the 2nd hottest
unit’s activity to the 2nd coldest unit, and so on. For activity
migration, the hottest unit is reconfigured to the coldest unit
and vice-versa. For better comparison of the result and to set
motivation for this technique, an ideal case has been
considered, which sets the upper bound, i.e. the maximum
gain, this technique can achieve. The ideal case is when all the
functional units have same power throughout the entire
application run time. This model strives to equate the power
between all the units using a perfect Activity Migration.

V. RESULTS
In this section we present our simulation methodology and

the results demonstrating the performance, power and
temperature benefits of the reconfigurable STT-NV design.

A. Methodology
For the performance estimation, we used MASE simulator

[9]. We modeled a dual issue processor which is similar in
functionality to IBM PowerPC 750 FX. Our baseline
architecture parameter is shown in table 2. We used a SPEC2K
benchmarks suite for evaluation. All benchmarks were
simulated for 500M instructions after fast forwarding for
500M instructions. For thermal models Hotspot 5.02 is used
[7]. We developed a modified version of ev6 floor-plan for the
32nm technology node. Power values were obtained from
McPAT power simulation tool [22].

B. Performance Results
In Figure 5 we report the performance improvement of the

static (RC+ST) and Static Adaptive (RC+SAT) techniques
normalized to the baseline architecture (CMOS design and
without reconfiguration) for SPEC2K benchmarks. It was
experimentally determined that for RC+ST technique N=100
millions cycles and for RC+SAT technique M=1 million
cycles maximize the performance and delivers a good
power/performance trade-off. For RC+SAT the performance
improvement is 16% over the baseline. For RC+ST the
improvement is lower, an improvement of 13% on average. In
most benchmarks the RC+ST and RC+SAT technique are able
to capture functional unit requirements at run-time, and

Figure	 5.	 Performance	 improvement	 of	 Static	 (RC+ST)	 and	 Static	 Adaptive	 (RC+SAT)	 techniques	

Figure	 6.	 Power	 variations	 across	 functional	 units	

therefore a large performance improvement is observed. In all
benchmarks the adaptive reconfigurable technique, RC+SAT
provides larger performance benefits compared to the static
RC+ST technique. Exceptions are in wupwise, art, ammp
benchmarks that are highlighted with a circle in the figure. In
these benchmarks functional unit requirements change
significantly at run-time. Therefore using RC+SAT algorithm, a
large number of functional unit reconfiguration is performed.
The 200 cycles cost of reconfiguration overhead, thus
diminishes the performance gain of RC+SAT technique in
these benchmarks. Unlike RC+SAT, in RC+ST technique a
very small number of reconfiguration is performed which
makes the overhead very low.

Table	 2.	 Baseline	 Processor	 Configuration	 and	 Hotspot	 configuration	
Number of cores 4 Register file 64 entry
L1 I-cache 8KB, ,4 way, 2

cycles
Memory 50 cycles

L1 D-cache 8KB, 4 way, 2
cycles

Instruction fetch
queue

8

L2-cache 256KB, 15 cycles Load/store
queue

16 entry

Pipeline 12 stages Complex unit 2 INT
Processor speed and
Voltage

1 GHz, 1.0 V Issue dual, out-of-order

Fetch, dispatch 2 wide Arithmetic units 3 integer
Thermal Parameter Chip	 thickness	 (m)	

Ambient	 temperature	
Convection	 capacitance	
Convection	 resistance	
Heat	 sink	 side	
Heat	 spreader	 side	

0.00015	
318.15	 K	
40	 J/K	
50	 K/W	
0.06	 m	
0.03	 m	

C. Power Analysis
In Figure 6 we present the power dissipation of functional

units in each studied design. To have a better understanding of
the power dissipation among several benchmarks, we have
separated integer benchmarks (top) from floating point
benchmarks (bottom). The results are averaged across SPEC2K
benchmarks. For each functional unit, the power dissipation is
shown for baseline design (CMOS+PG), STT-NV+NRC
(without reconfiguration), RC+ST and RC+SAT. The overall
power for floating point benchmarks is less than the integer

benchmarks. Among all the units, IntAlu has the highest power
dissipation, mainly in the form of dynamic power. The
remaining functional units have significant leakage power, as
they are idle most of the execution time (Figure 1).
In Figure 6 we report the power breakdown of CMOS based
and various STT-NV based designs we studied in this work.
Note that for CMOS based design we assumed a state-of-the-art
power gating technique has been applied to suppress the
leakage power by up to 90% in floating points units and up to
45% in integer units. [8, 18].
In both integer and floating point benchmarks, for IntMUL,
IntDIV units the power leakage is reduced in STT-NV based
design compare to a CMOS based design. In integer
benchmarks, for IntALU, the power leakage is lower in STT-
NV designs compare to CMOS based design. Note that in
CMOS based design, there is a small opportunity to suppress
leakage using power-gating techniques, as the integer unit is
busy most of the times. Overall in integer benchmarks, the total
power leakage of all functional units increase slightly in STT-
NV designs compare to CMOS based design. In floating point
benchmarks, the total power leakage of all functional units is
reduced substantially by up to 37%, compared to CMOS based
design (in RC+ST design). The dynamic power increases in
both integer and floating point benchmarks in STT-NV designs.
This is somewhat expected as STT-NV designs attempts to put
more functional units into work and therefore they have higher
dynamic power dissipation compared to CMOS design. Among
all STT-NV designs, RC+ST in floating point benchmarks has
lower total power dissipation compared to a CMOS+PG design,
by 18%, on average. In integer benchmark all STT-NV designs
has higher total power dissipation compared to CMOS+PG
design. This is mainly due to a significant rise in dynamic
power for STT-NV designs compared to CMOS+PG designs.
Overall, an STT-NV design (RC+ST) is more power efficient
compared to a CMOS+PG design when running floating-point
benchmarks. For integer benchmarks a CMOS+PG design is
always more power efficient.

-‐10	
10	
30	
50	
70	 RC+ST	 RC+SAT	

%
	 IP
C	
im
pr
ov
em

en
t	

D. Thermal Analysis
Figure 7 shows the thermal analysis of CMOS based and

various STT-NV based designs we studied in this paper. We
report the maximum temperature of each of functional units
during program execution time. For STT-NV+NRC, RC+ST
and RC+SAT the temperatures of all units increased compare to
CMOS+PG. For RC+M unit, a significant thermal reduction is
observed. RC+M technique migrates the activity of a high
temperature unit to a low temperature unit after each
monitoring cycle. Hence the temperature across all units is
reduced substantially.

	
Figure	 7.	 Thermal	 Analysis	 of	 functional	 units	 before	 and	 after	 RC+M	

The largest reduction is in IntALU unit, by 27oC on average
compared to CMOS+PG design. RC+M technique reduces the
temperature across all 6 functional units by more than 12oC
compared to CMOS+PG. Compare to a STT-NV design with
no reconfiguration (STT-NV+NC), RC+M technique reduces
temperature by up to 30oC (in IntALU). We also studied how
temperature variation is affected for our proposed design
compared to a CMOS based design. Temperature variation can
be best measured using the coefficient of variation (CV). The
higher the CV, the larger temperature variation is expected i.e.
more thermal hot spots and vice versa. Our results indicate that
in our baseline CMOS+PG technique there is a large 14%
thermal variation across functional units. The thermal variation
is also significant for reconfigurable design; for RC+SAT the
thermal variation is even larger and it reaches to 16%. RC+M
technique reduces the temperature variation across all
functional units substantially to only 2% by distributing the
concentrated power and hence reducing the variation of
temperature (i.e. reducing the power density of hot spot).

VI. RELATED WORK
The concept of reconfigurable design is not new and has

been explored extensively in various researches [2, 14, 21].
Several work explored the concept of augmenting GPP
processor with a reconfigurable array logic to accelerate
performance [21]. A number of works also explored
reconfiguration of functional units. Examples are
Chimaera[14], OneChip[13] and XiRisc[19] that proposed
tightly coupled integration of a GPP with fine-grain
programmable hardware. All of these designs require new
programming models, new opcodes, new compilers, and source
code modification. In addition while the main focus of these
work were on accelerating performance, they are silent on
power and temperature of functional unit. To the best of our
knowledge our work is the first to introduce and explore the
benefit of dynamic reconfigurability in the functional unit of a
GPP processor using low leakage STT-NV technology where it
addresses performance, power and temperature simultaneously.
There has been also several works proposed in literature to
reduce power and temperature of functional units using various
combinational circuit and architectural techniques [3, 6, 8].

These techniques mainly trade performance with
power/temperature and can be also explored in the new
reconfigurable design we are proposing in this work.

VII. CONCLUSION
In embedded processors a functional unit is a critical unit

that is not only a performance bottleneck for the design, but
also is a temperature hotspot. This paper has proposed the novel
concept of functional unit reconfiguration to address the
performance, power, and thermal efficiency challenges. A
selected set of complex functional units that might be under-
utilized such as multiplier and divider are realized using a
reconfigurable STT-NV based LUT fabric in time multiplied
fashion. This allows for run-time reconfiguration of such
functional units to the functional units that might be creating
performance or thermal bottlenecks. The results show
significant performance improvement of 16% on average across
standard benchmarks. Additionally, reconfiguration reduces
maximum temperature of functional units by up to 27oC and
almost eliminates the thermal variation across them.

REFERENCES
[1] Arun Kejariwal et al., “Comparative Architectural Characterization of

SPEC CPU2000 and CPU2006 Benchmarks on the Intel Core 2 Duo
Processor,” SAMOS VIII , 2008.

[2] Singh, Hartej, et al. MorphoSys: an integrated reconfigurable system for
computation-intensive applications. IEEE Transactions on 49.5 (2000).

[3] Hu, Zhigang, et al. "Microarchitectural techniques for power gating of
execution units." ISLPED 2004.

[4] H. Mahmoodi, S. Lakshmipuram, M. Arora, Y. Asgarieh, H. Homayoun, B.
Lin, D. Tullsen, Resistive Computation: A Critique, IEEE Computer
Architecture Letter, 2013,

[5] Strikos, Nikolaos, et al. "Low-current probabilistic writes for power-
efficient STT-RAM caches." Computer Design (ICCD), 2013 IEEE 31st
International Conference on. IEEE, 2013.

[6] J.-E. Lee, et al. Compilation approach for coarse-grained reconfigurable
architectures. IEEE Design and Test of Computers ’03.

[7] Huang, Wei, et al. "HotSpot: A compact thermal modeling methodology
for early-stage VLSI design." TVLSI 2006.

[8] Homayoun, Houman, Kin F. Li, and Setareh Rafatirad. "Functional units
power gating in SMT processors." Communications, Computers and signal
Processing, IEEE Pacific Rim Conference on. IEEE, 2005.

[9] Larson, Eric, et al. "MASE: A novel infrastructure for detailed
microarchitectural modeling." ISPASS. 2001.

[10] X. Dong, et al. "NVSim: A Circuit-Level Performance, Energy, and Area
Model for Emerging Nonvolatile Memory." TCAD 2012.

[11] Predictive technology models. http://ptm.asu.edu/.
[12] Guo, X., et al., Resistive computation: Avoiding the power wall with low-

leakage, stt-mram based computing. ISCA 2010.
[13] J. E. Carrillo, and P. Chow, “The effect of reconfigurable units in

superscalar processors,” in Proc.of the 2001 ACM/SIGDA FPGA, 2002.
[14] Zhi Alex and e. al. CHIMAERA: A High−Performance Architecture with

a Tightly−Coupled Reconfigurable Functional Unit, ISCA 2000.
[15] F. Ren, et al., True energy-performance analysis of the mtj-based logic-in-

memory architecture. Electron Devices, IEEE Transactions on, 57(5):1023.
[16] Palacharla,et al.Complexity-effective superscalar processors.ACM, 1997.
[17] Homayoun, H., Pasricha, S., Makhzar, M., & Veidenbaum, A. (2008,

June). Dynamic register file resizing and frequency scaling to improve
embedded processor performance and energy-delay efficiency. DAC 2008.

[18] Homayoun, Houman, and Amirali Baniasadi. "Reducing execution unit
leakage power in embedded processors." Embedded Computer Systems:
Architectures, Modeling, and Simulation. 2006. 299-308.

[19] A. Lodi, et al., “A VLIW Processor with Reconfigurable Instruction Set
for Embedded Applications,” IJSSC 2003.

[20] F. J. Martinez, J. Nayfach-Battilana, J. Renau, “Power model validation
through thermal measurements”, ISCA 2007.

[21] Compton, Katherine, and Scott Hauck. "Reconfigurable computing: a
survey of systems and software." ACM Computing Surveys 2002.

[22] Sheng Li, ane et. Al., “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore Architectures”, in Micro 2009.

310	
320	
330	
340	
350	
360	

IntALU	 IntMuL	 IntDiv	 FpAdd	 FpMul	 FpDiv	

CMOS+PG	 STTNV+NRC	 RC+ST	 RC+SAT	 RC+M	

Te
m
pe
ra
tu
re
	 (K
)	

