
Exploiting STT-NV Technology for Reconfigurable, High Performance, Low Power, 
and Low Temperature Functional Unit Design 

 
Adarsh Reddy Ashammagari 

Dept. of Electrical & Computer Engineering 
George Mason University, Fairfax, VA 

E-mail: aashamma@gmu.edu 
 

Hamid Mahmoodi 
Dept. of Computer Engineering 

San Francisco State University, SF, CA 
E-mail: mahmoodi@sfsu.edu 

 

Houman Homayoun 
Dept. of Electrical & Computer Engineering 

George Mason University, Fairfax, VA 
E-mail: hhomayou@gmu.edu 

Abstract-‐Unavailability of functional units and their unequal 
activity makes performance bottlenecks and thermal hot spot 
units in general-purpose processors. We propose to use 
reconfigurable functional units to overcome these challenges. A 
selected set of complex functional units that might be under-
utilized, such as a multiplier and divider, are realized in a time-
multiplexed fashion using a shared programmable Look Up Table 
(LUT) based fabric. This allows for run-time reconfiguration and 
migration of their activity. LUT based implementation also allows 
under-utilized functional units to be dynamically reconfigured to 
the functional units that have a performance bottleneck and 
hence improving performance. The programmable LUTs are 
realized using Spin Transfer Torque (STT) Magnetic technology 
(also called STT-NV) due to its zero leakage and CMOS 
compatibility. The results show significant performance 
improvement of 16% on average across standard benchmarks, 
when replacing CMOS multiplier and divider with reconfigurable 
STT-NV LUT counterpart. In addition, reconfiguration reduces 
the maximum temperature of functional units by up to 27oC and 
almost eliminates the thermal variation across them. This comes 
with small power overhead and no area impact.  
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I.    INTRODUCTION 
With mobile devices being battery powered, energy 

efficiency of the processing units and the thermal stability of 
the design become major concerns. These concerns become 
serious with the growth rate in battery power falling short of 
the growth rate in consumer demands for higher data rates. 
One promising way to address this energy-efficiency challenge 
is to exploit reconfiguration in designs, whereby the same 
hardware component can be “reconfigured” to execute 
different functionality at different points in time. The way to 
provide reconfigurability in designs today is primarily through 
the use of FPGA or Coarse Grain Reconfigurable Arrays 
(CGRA). For FPGAs, However, not only are there challenges 
in the integration on the processor die, but they also exhibit 
quite poor power-efficiency. Unlike FPGAs, CGRAs are 
extremely power-efficient and quite general-purpose 
accelerators (wherein most mobile applications can be 
accelerated). However CGRAs pose immense challenges to 
compiler technology [6], while at the same time their 
performance and power-efficiency is so critically dependent on 
the compiler optimization techniques.  
In this paper, we present an alternative way to enable 
reconfigurability in embedded processor architecture.  Our 
solution is to enable reconfigurability in the general-purpose 
processor (GPP) by using Spin Transfer Torque non-volatile 
(STT-NV) fabric. STT-NV is a new fabrication technology 
that is compatible with CMOS. The advantages of using STT-

NV technology are its zero standby power, non-volatility, 
scalability, and thermally robust behavior. The most popular 
use of STT-NV is to implement low-power, high-density on-
chip memories. As a rule of thumb, it is possible to design 4 
times denser memories, with almost the same read power and 
read times with STT-NV technology. Since caches (made up 
of RAM circuits) are the major contributors to the leakage 
power of the processor (which in turn is a significant chunk of 
the total processor power), using STT-NV based RAM results 
in a good amount of power savings [5, 12]. In this paper, we 
take the next step – We attempt to aggressively exploit STT-
NV technology, by using it to design the reconfigurable logic 
needed to support dynamic reconfiguration of functional units. 
We will explore ways to use reconfiguration to maximally 
improve power, performance and robustness of processor 
architecture. 
As a first step, in this paper we investigate the design of a 
reconfigurable functional unit in embedded processors. 
General-purpose embedded processor such as ARM, Atom, 
MIPS, or Tensilica based cores typically have a certain number 
of functional units for each type of adder, divider, and 
multiplier, for instance. In these cores a functional unit is a 
critical unit that is not only a performance bottleneck of the 
design, but also a temperature hotspot [7, 20]. Due to its high 
activity and small size, the functional unit’s power density is 
high, and therefore is a thermal hotspot. Using STT-NV logic 
we are attempting to make dynamic reconfigurable units to 
address these power, performance, and thermal challenges. In 
this paper we present our analysis, demonstrating the benefits 
of a reconfigurable STT-NV logic when deployed in the 
functional unit of the GPP in an MPSoC architecture.  The 
novel contributions of this work are as follows: 
• Utilizing STT-NV technology for dynamic reconfiguration 

of functional units resulting in lower power, higher 
performance, and more thermally balanced design 

• Proposing performance aware reconfiguration algorithms to 
reconfigure functional units with the objective of 
performance enhancement.   

• Proposing a thermal aware reconfiguration algorithm based 
on regional migration of computation from hot spots to 
cooler spots to achieve more thermal balancing. 

• Comparative analysis of power, performance, and 
temperature of STT-NV design style versus custom CMOS 
that is augmented with state-of-the-art leakage reduction 
techniques such as power grating. This analysis is 
performed for various functional units to identify the best 
design style for each unit. 

II.   MOTIVATION 
In this section we motivate this work by providing insight 

on why functional units in general-purpose processors are 
performance, power and temperature bottleneck units. 
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Figure	  1.	  (a)	  Percentage	  of	  execution	  time	  (Y	  axis)	  that	  functional	  unit	  is	  idle.	  (b)	  Percentage	  of	  times	  functional	  unit	  requested	  but	  was	  not	  available	  
(functional	  unit	  conflict).	  

A. Performance 
Unavailability of a functional unit is one of the major 

performance bottlenecks in general purpose embedded and 
high performance processors [1, 3]. The functional unit 
conflicts occur when the processor pipeline has ready 
instructions, but there are no available functional units to 
execute them. Note that in spite of high functional unit 
conflicts, it is not design efficient to increase the number of 
functional units in the processor pipeline, as the complexity of 
additional functional units will be significant [16, 17, 19]. As 
studied in several works, increasing the number of functional 
units in general purpose processors not only increases the 
power consumption of the processor but will also significantly 
affect the complexity of several pipeline stages including 
instruction queue, write-back buffers, bypass stage, register 
file design and could severely affect the processor 
performance, as the number of write-back ports increases 
significantly [16, 17]. Only increasing the total number of 
functional units (which are equivalent to the maximum issue 
width) from 4 to 6, increase the critical path delay and the total 
power of the processor by 21% [16, 17]. The major increase is 
due to the impact on the wake-up and bypass logic stages. 
The utilization of each functional unit in a processor is 
significantly different. Figure 1 shows the utilization of each of 
the functional units for SPEC2K benchmarks. Figure 1 (a) 
shows the percentage of program execution time that each 
functional unit is idle. Across all benchmarks most functional 
units are significantly idle, except for IntAlu. Figure 1 (b) 
reports percentage of program execution time when a 
functional unit was requested but was not available. In most 
benchmarks a significant conflict is being observed in only one 
functional unit, which is not the same unit for all benchmarks. 
Results from Figure 1 (a) and (b) suggest that if we could 
transform the idle units to the unit with high conflict we could 
reduce the conflict rate and potentially improve performance. 
Note that for most of the benchmarks, the functional unit with 
high conflict was also idle for more than 80% of execution 
time. This implies that, most of the time, units are accessed in 
a burst and remain idle for most of the time. Note that there is 
no single unit that has high unavailability across all 
benchmarks. Therefore, there is a need for reconfiguration 
algorithms to manage the idle resources during a resource 
conflict to reduce the conflict rate. This reconfiguration can be 
achieved by using a LUT based functional units. In this 
research we use STT-NV fabric to realize this. 

B. Power & Temperature 
Power density of processors is increasing as technology is 

scaling down. High power density is known to create local hot 
spots, which result in excessive regional temperature and 
reduced reliability of the units and increased leakage current 
exponentially. Increased cooling cost, higher probability of 
timing errors, physical damage, and lifetime reduction are just 
a few of many consequences caused by higher power density. 
High active regions in a processor such as functional units and 
register file have shown to have more than 20-degree Celsius 
higher temperature compared to less active regions like on-
chip caches [7]. In particular, functional units have shown to 
be a thermal hotspot component in many embedded and high 
performance processors [7, 20]. 

	  
Figure	  2.	  Power	  and	  Temperature	  variation	  in	  functional	  units	  

Figure 2 shows the average power and average steady-state 
temperatures of various functional units in our studied 
architecture for SPEC2K benchmark. In general, temperature 
of a block rises because of its high activity i.e. high power 
density. IntAlu being a highly active unit has the maximum 
temperature among other functional units, creating a thermal 
hot spot. The temperature of a block not only depends on its 
power dissipation but also the adjacent block power 
dissipation. Due to adjacency to an integer register file which 
is also a thermal hotspot, IntAlu unit temperature rises 
compared to other functional units. In this paper we describe 
the Reconfiguration and Migration (RC+M) technique to 
mitigate the activity of a hot functional unit to a cold 
functional unit and therefore reducing the maximum 
temperature of the functional units. 

III.LUT BASED RECONFIGURABLE FUNCTIONAL UNIT 
A. Overview of STT-Based LUT Circuit	   	  

STT-NV technology utilizes Magnetic Tunnel Junctions 
(MTJ) to realize nonvolatile resistive storage. There have been 
several attempts to use MTJs for building logic circuits with 
the hope of exploiting the leakage benefit of MTJs in order to 
reduce the circuit power [4, 12]. However, due to the 
significant energy involved in changing the state of an MTJ, 
circuit styles that rely on changing the state of MTJs in 
response to input changes do not show any power and 
performance benefits [15]. An alternative to this approach has 
been to realize logic in memory by using LUTs that are built  
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Figure	  4.	  Power	  (dynamic:	  blue	  and	  leakage:	  red),	  performance,	  and	  area	  results	  of	  LUTs	  with	  high	  and	  low	  state	  MTJs.	  

based on MTJs [12]. Resistive Computation [12] replaces 
conventional CMOS logic with Magnetic Tunnel Junction 
(MTJ) based Look-Up Tables (LUTs); it has been proposed for 
tackling the power wall. Figure 3 shows the schematic of a 3-
input MTJ-based LUT that was used in [4, 12]. An MTJ is 
selected by using the pull-down NMOS selection tree, and the 
current of the dynamic current source is divided between the 
selected MTJ and the reference resistor, resulting in a low 
swing differential voltage on nodes DEC and REF during the 
evaluation phase when clock (CLK) is high. This low swing 
voltage is then amplified using a sense amplifier stage to 
achieve full voltage swing outputs (Z and Z’). Figure 4 shows 
the plots of power, delay, and energy for LUT sizes ranging 
from 2 inputs to 8 inputs. This data is obtained for the cases 
where 50% of the MTJs are at the high state, and the remaining 
50% at the low state. Simulations are performed in a 32nm 
predictive technology [11], where the expected RH and RL 
values are at 6.25K and 2.5K, respectively [12]  

 
Figure	  3.	  3-‐input	  MTJ-‐based	  LUT	  [4,	  12].	  

B. Estimate of Area, Power, and Performance	   	  
To obtain an estimate of area, power, and performance of 

an LUT based adder as compared to a static CMOS (ASIC) 
counterpart, we have performed a case study on a 64-bit ripple 
carry adder and a multiplier implemented in static CMOS, 
CMOS LUT based, and the STT-NV LUT based styles in a 
32nm predictive technology node [11]. We used a commercial 
FPGA synthesis tool in order to get a count of LUTs and 
switch boxes (for routing) needed for each design. For static 
CMOS design we used design compiler to synthesis functional 
units (from the DesignWare) in a commercial 45nm 
technology and scaled the results to 32nm. Table 1 shows the 
results of the 64-bit adder and multiplier implemented in both 
styles. The results indicate that except for the leakage power, 
the STT-NV based LUT has overhead in other metrics 
(especially for the adder). That means the performance of the 
reconfigurable adder in STT-NV style will be 2.89X lower 
than that of the static CMOS adder counterpart. Its standby 
	  

Table	  1.	  Comparison	  of	  adder	  and	  multiplier	  results	  in	  alternative	  styles	  
Metric	   Unit	   STT-‐NV	  LUT	  style	   CMOS	  LUT	  style	   Static	  CMOS	  style	  
Delay	   adder	   2.89	   3.24	   1	  

multiplier	   2	   3.73	   1	  
Active	  mode	  
power	  

adder	   6.46	   6.70	   1	  
multiplier	   0.74	   1.26	   1	  

Standby	  mode	  
(leakage)	  power	  

adder	   0.17	   3.87	   1	  
multiplier	   0.23	   1.42	   1	  

Area	   adder	   3.89	   4.61	   1	  
multiplier	   0.90	   1.83	   1	  

mode power is 0.17X lower, but its active mode power is 
6.46X higher. Due to a larger delay of reconfigurable STT-NV 
multiplier compared to the baseline CMOS style, the STT-NV 
multiplier implementation needs to be pipelined two times 
deeper than the original CMOS based implementation. 
However this has shown to impact performance minimally 
[12]. Also in spite of the advantage of a static CMOS based 
multiplier over the STT-NV based design in terms of delay, it 
still makes a lot of sense to replace it with the STT-NV design 
due to significant leakage advantage of the STT-NV design. 
Due to low utilization and high temperature of the multiplier, 
the standby power becomes the major component of the total 
power. Also as results in table 1 suggests, the CMOS LUT 
based style has no obvious advantage over the static CMOS 
style. While both STT-NV LUT and CMOS LUT are 
reconfigurable, STT-NV LUT has advantage over CMOS LUT 
in several metrics, noticeably leakage power. The leakage 
power of a STT-NV style is at least 6X lower than the CMOS 
LUT design. Based on the results presented in table 1 we select 
IntALU to be a non-reconfigurable static CMOS as the power 
and area increase for a reconfigurable IntALU is significant. 
Other functional units including multiplier and divider (Int and 
FP) are implemented with STT-NV LUT reconfigurable style 
where they do not incur area overhead (the area of STT-NV 
LUT style is even smaller than the CMOS counterpart). 

C. Estimate of Reconfiguration Energy and Performance 
The reconfiguration energy and performance estimation is 

performed for configuring a 64X64 multiplier unit to a 64-bit 
adder unit. This represents the worst-case scenario as 
reconfiguration between any other pair of functional units 
takes less energy and delay. Reconfiguring a LUT-based 
multiplier to an adder unit involves programming the LUTs. 
We have taken the HDL of the multiplier and adder units and 
synthesized them using a commercial FPGA (with 6 input 
LUT) synthesis tool in order to get a count of LUTs needed for 
each design. We have also taken into account the routing 
overhead including the switch boxes. The multiplier unit can 
be realized using 437 4-input LUTs and the adder using 65 
such LUTs. Hence, we assume reconfiguring the multiplier 
unit to the adder or vice versa involves writing to at most 65 
LUTs. Therefore, the total number of STT-Non-Volatile (STT-
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NV) bits to be written is 65 * 16 = 1040 bits or roughly 1 
Kbits. The write access time to a single bit STT-NV is 
estimated to be 25ns [10], which are 25 cycles for 1GHz 
system clock. If LUTS are written in parallel using a 128-bit 
wide data bus, the reconfiguration is estimated to take about 8 
write operations (i.e. 200 cycles). The configuration bits for 
the LUTs that are different between the adder and multiplier 
configuration need to be stored in a ROM. A controller will 
read the configuration bits from ROM and write to the STT-
NV LUTs. For the configuration energy estimate, we have 
ignored the energy of reading the configuration bits from the 
ROM, since the configuration energy is expected to be 
dominated by the energy of writing to the STT-NV cells. 
Using the NVSIM tool, the write energy per bit cell is 
estimated to be 7.9 pJ [10]. Hence, the total energy estimated 
for the reconfiguration of LUTs is 1040 * 7.9 pJ = 8.2 nJ. The 
above estimates are conservative because we assume all the 
bits of those 65 LUTS need to be re-written; whereas, in reality 
some of the bits could be same between the two 
configurations. In addition to programming LUT we also need 
to program the router and switchboxes. The routing power 
overhead is not trivial. We used the results of FPGA synthesis 
to estimate the routing energy as 3.7nJ. 

IV.    RECONFIGURATION TECHNIQUES 
In this section, we describe our proposed techniques for 

reconfiguring the functional units. We compare our proposed 
architecture with CMOS based functional units (baseline 
architecture). We assume that in our baseline architecture, 
power leakage is suppressed using power-gating techniques 
reported in [8, 18]. For the purpose of performance, power, 
and thermal comparison we study four following architectures: 
-CMOS+PG (baseline): A design with a CMOS based 
functional units and power gating technique. -STT-NV+NR: A 
design with a STT-NV based functional units and no 
reconfiguration capability. -RC+ST and RC+SAT: A design 
with a STT-NV based functional unit and reconfigurable 
capability. Note that for all these designs, we assumed a 
CMOS implementation for IntAlu as described in section 3.  

A. Static Technique (RC+ST) 
In this algorithm, the application is being profiled for an 

initial phase (learning phase) and based on the profiling 
information, the reconfiguration decision is being made for the 
rest of the program execution. During the learning period, 
active and idle functional units are being identified. At the end 
of the learning period, all idle units are reconfigured to active 
units in the order of their activity. In this technique when a unit 
that has been reconfigured is requested and therefore is not 
available it needs to be reconfigured back to its original 
function. We refer to this re-reconfiguration as the adjustment 
process. The adjustment process is asynchronous - For 
example if a multiplier is reconfigured to an adder and later in 
the program execution, a multiply operation request a multiply 
unit, then the reconfigured adder needs to be adjusted back to a 
multiplier immediately. Note that the reconfiguration decision 
is made only once and after an initial learning period (N 
cycles). Since only one reconfiguration is allowed at the end of 
the learning phase, at most one adjustment process is 
performed during program execution time. This technique is 
better suited for the application which does not change their 

behavior in terms of functional unit utilization very frequently 
at runtime. This is a low power overhead technique, since we 
reconfigure the units only once, hence the power overhead 
would be small.  

B. Static Adaptive Technique (RC+SAT)	  
This algorithm is very similar to static technique except that 

the monitoring is done periodically. In this technique the 
functional units are monitored for every M cycles and hence 
have a better chance to predict and adapt to the behavior of the 
application. In this technique, similar to the static technique, 
the adjustment process is used to reconfigure back a 
reconfigured functional unit to its initial unit. This technique is 
well suited for the application for which the functional unit 
requirements change significantly at run-time. 

C. Reconfiguration and Migration Technique (RC+M) 
In this technique, we are mainly concerned with the 

temperature of the functional unit. The functional units are 
frequently monitored to get a temperature feedback. According 
to the temperature information obtained, the activity of the 
hottest unit is migrated to the coldest unit, the 2nd hottest 
unit’s activity to the 2nd coldest unit, and so on. For activity 
migration, the hottest unit is reconfigured to the coldest unit 
and vice-versa. For better comparison of the result and to set 
motivation for this technique, an ideal case has been 
considered, which sets the upper bound, i.e. the maximum 
gain, this technique can achieve. The ideal case is when all the 
functional units have same power throughout the entire 
application run time. This model strives to equate the power 
between all the units using a perfect Activity Migration. 

V.    RESULTS 
In this section we present our simulation methodology and 

the results demonstrating the performance, power and 
temperature benefits of the reconfigurable STT-NV design. 

A. Methodology  
For the performance estimation, we used MASE simulator 

[9]. We modeled a dual issue processor which is similar in 
functionality to IBM PowerPC 750 FX. Our baseline 
architecture parameter is shown in table 2. We used a SPEC2K 
benchmarks suite for evaluation. All benchmarks were 
simulated for 500M instructions after fast forwarding for 
500M instructions. For thermal models Hotspot 5.02 is used 
[7]. We developed a modified version of ev6 floor-plan for the 
32nm technology node. Power values were obtained from 
McPAT power simulation tool [22].  

B. Performance Results 
In Figure 5 we report the performance improvement of the 

static (RC+ST) and Static Adaptive (RC+SAT) techniques 
normalized to the baseline architecture (CMOS design and 
without reconfiguration) for SPEC2K benchmarks. It was 
experimentally determined that for RC+ST technique N=100 
millions cycles and for RC+SAT technique M=1 million 
cycles maximize the performance and delivers a good 
power/performance trade-off. For RC+SAT the performance 
improvement is 16% over the baseline. For RC+ST the 
improvement is lower, an improvement of 13% on average. In 
most benchmarks the RC+ST and RC+SAT technique are able 
to capture functional unit requirements at run-time, and 



 
Figure	  5.	  Performance	  improvement	  of	  Static	  (RC+ST)	  and	  Static	  Adaptive	  (RC+SAT)	  techniques	  

 
Figure	  6.	  Power	  variations	  across	  functional	  units	  

therefore a large performance improvement is observed. In all 
benchmarks the adaptive reconfigurable technique, RC+SAT 
provides larger performance benefits compared to the static 
RC+ST technique. Exceptions are in wupwise, art, ammp 
benchmarks that are highlighted with a circle in the figure. In 
these benchmarks functional unit requirements change 
significantly at run-time. Therefore using RC+SAT algorithm, a 
large number of functional unit reconfiguration is performed. 
The 200 cycles cost of reconfiguration overhead, thus 
diminishes the performance gain of RC+SAT technique in 
these benchmarks. Unlike RC+SAT, in RC+ST technique a 
very small number of reconfiguration is performed which 
makes the overhead very low. 

Table	  2.	  Baseline	  Processor	  Configuration	  and	  Hotspot	  configuration	  
Number of cores 4 Register file 64 entry 
L1 I-cache 8KB, ,4 way, 2 

cycles 
Memory 50 cycles 

L1 D-cache 8KB, 4 way, 2 
cycles 

Instruction fetch 
queue 

8 

L2-cache 256KB, 15 cycles Load/store 
queue 

16 entry 

Pipeline 12 stages Complex unit 2 INT 
Processor speed and 
Voltage 

1 GHz, 1.0 V Issue dual, out-of-order 

Fetch, dispatch  2 wide Arithmetic units 3 integer 
Thermal Parameter Chip	  thickness	  (m)	  

Ambient	  temperature	  
Convection	  capacitance	  
Convection	  resistance	  
Heat	  sink	  side	  
Heat	  spreader	  side	  

0.00015	  
318.15	  K	  
40	  J/K	  
50	  K/W	  
0.06	  m	  
0.03	  m	  

C. Power Analysis 
In Figure 6 we present the power dissipation of functional 

units in each studied design. To have a better understanding of 
the power dissipation among several benchmarks, we have 
separated integer benchmarks (top) from floating point 
benchmarks (bottom). The results are averaged across SPEC2K 
benchmarks. For each functional unit, the power dissipation is 
shown for baseline design (CMOS+PG), STT-NV+NRC 
(without reconfiguration), RC+ST and RC+SAT. The overall 
power for floating point benchmarks is less than the integer 

benchmarks.  Among all the units, IntAlu has the highest power 
dissipation, mainly in the form of dynamic power. The 
remaining functional units have significant leakage power, as 
they are idle most of the execution time (Figure 1). 
In Figure 6 we report the power breakdown of CMOS based 
and various STT-NV based designs we studied in this work. 
Note that for CMOS based design we assumed a state-of-the-art 
power gating technique has been applied to suppress the 
leakage power by up to 90% in floating points units and up to 
45% in integer units. [8, 18]. 
In both integer and floating point benchmarks, for IntMUL, 
IntDIV units the power leakage is reduced in STT-NV based 
design compare to a CMOS based design. In integer 
benchmarks, for IntALU, the power leakage is lower in STT-
NV designs compare to CMOS based design. Note that in 
CMOS based design, there is a small opportunity to suppress 
leakage using power-gating techniques, as the integer unit is 
busy most of the times. Overall in integer benchmarks, the total 
power leakage of all functional units increase slightly in STT-
NV designs compare to CMOS based design. In floating point 
benchmarks, the total power leakage of all functional units is 
reduced substantially by up to 37%, compared to CMOS based 
design (in RC+ST design). The dynamic power increases in 
both integer and floating point benchmarks in STT-NV designs. 
This is somewhat expected as STT-NV designs attempts to put 
more functional units into work and therefore they have higher 
dynamic power dissipation compared to CMOS design. Among 
all STT-NV designs, RC+ST in floating point benchmarks has 
lower total power dissipation compared to a CMOS+PG design, 
by 18%, on average. In integer benchmark all STT-NV designs 
has higher total power dissipation compared to CMOS+PG 
design. This is mainly due to a significant rise in dynamic 
power for STT-NV designs compared to CMOS+PG designs. 
Overall, an STT-NV design (RC+ST) is more power efficient 
compared to a CMOS+PG design when running floating-point 
benchmarks. For integer benchmarks a CMOS+PG design is 
always more power efficient.  
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D. Thermal Analysis 
Figure 7 shows the thermal analysis of CMOS based and 

various STT-NV based designs we studied in this paper. We 
report the maximum temperature of each of functional units 
during program execution time. For STT-NV+NRC, RC+ST 
and RC+SAT the temperatures of all units increased compare to 
CMOS+PG. For RC+M unit, a significant thermal reduction is 
observed. RC+M technique migrates the activity of a high 
temperature unit to a low temperature unit after each 
monitoring cycle. Hence the temperature across all units is 
reduced substantially. 

	  
Figure	  7.	  Thermal	  Analysis	  of	  functional	  units	  before	  and	  after	  RC+M	  

The largest reduction is in IntALU unit, by 27oC on average 
compared to CMOS+PG design.  RC+M technique reduces the 
temperature across all 6 functional units by more than 12oC 
compared to CMOS+PG. Compare to a STT-NV design with 
no reconfiguration (STT-NV+NC), RC+M technique reduces 
temperature by up to 30oC (in IntALU). We also studied how 
temperature variation is affected for our proposed design 
compared to a CMOS based design. Temperature variation can 
be best measured using the coefficient of variation (CV). The 
higher the CV, the larger temperature variation is expected i.e. 
more thermal hot spots and vice versa. Our results indicate that 
in our baseline CMOS+PG technique there is a large 14% 
thermal variation across functional units. The thermal variation 
is also significant for reconfigurable design; for RC+SAT the 
thermal variation is even larger and it reaches to 16%. RC+M 
technique reduces the temperature variation across all 
functional units substantially to only 2% by distributing the 
concentrated power and hence reducing the variation of 
temperature (i.e. reducing the power density of hot spot).  

VI.    RELATED WORK 
The concept of reconfigurable design is not new and has 

been explored extensively in various researches [2, 14, 21]. 
Several work explored the concept of augmenting GPP 
processor with a reconfigurable array logic to accelerate 
performance [21]. A number of works also explored 
reconfiguration of functional units. Examples are 
Chimaera[14], OneChip[13] and XiRisc[19] that proposed 
tightly coupled integration of a GPP with fine-grain 
programmable hardware. All of these designs require new 
programming models, new opcodes, new compilers, and source 
code modification. In addition while the main focus of these 
work were on accelerating performance, they are silent on 
power and temperature of functional unit. To the best of our 
knowledge our work is the first to introduce and explore the 
benefit of dynamic reconfigurability in the functional unit of a 
GPP processor using low leakage STT-NV technology where it 
addresses performance, power and temperature simultaneously. 
There has been also several works proposed in literature to 
reduce power and temperature of functional units using various 
combinational circuit and architectural techniques [3, 6, 8]. 

These techniques mainly trade performance with 
power/temperature and can be also explored in the new 
reconfigurable design we are proposing in this work. 

VII.    CONCLUSION 
In embedded processors a functional unit is a critical unit 

that is not only a performance bottleneck for the design, but 
also is a temperature hotspot. This paper has proposed the novel 
concept of functional unit reconfiguration to address the 
performance, power, and thermal efficiency challenges. A 
selected set of complex functional units that might be under-
utilized such as multiplier and divider are realized using a 
reconfigurable STT-NV based LUT fabric in time multiplied 
fashion. This allows for run-time reconfiguration of such 
functional units to the functional units that might be creating 
performance or thermal bottlenecks. The results show 
significant performance improvement of 16% on average across 
standard benchmarks. Additionally, reconfiguration reduces 
maximum temperature of functional units by up to 27oC and 
almost eliminates the thermal variation across them.  
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