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Abstract— This paper presents a rigorous step towards

design-for-assurance by introducing a new class of logically

reconfigurable design resilient to design reverse engineer-

ing. Based on the non-volatile spin transfer torque (STT)

magnetic technology, we introduce a basic set of non-volatile

reconfigurable Look-Up-Table (LUT) logic components (NV-

STT-based LUTs). STT-based LUT with significantly dif-

ferent set of characteristics compared to CMOS provides

new opportunities to enhance design security yet makes

it challenging to remain highly competitive with custom

CMOS or even SRAM-based LUT in terms of power, per-

formance and area. To address these challenges, we pro-

pose several algorithms to select and replace custom CMOS

gates with reconfigurable STT-based LUTs during design

implementation such that the functionality of STT-based

components and therefore the entire design cannot be de-

termined in any manageable time, rendering any design re-

verse engineering attack ineffective. Our study conducted

on a large number of standard circuit benchmarks con-

cludes significant resiliency of hybrid STT-CMOS circuits

against various types of attacks. Furthermore, the selec-

tion algorithms on average have a small impact of less than

3%, 8%, and 3% on design parametric constraints including

performance, power and area, respectively.

I. Introduction

Integrated Circuits (ICs) are at the core of any modern com-
puting system deployed in various industry sectors such as fi-
nancial, information technology, smart electric power grids, and
aerospace & defense; their security and trustworthiness ground
the security of the entire system. However, the security and
trustworthiness of ICs are exacerbated by the modern global-
ized, horizontal semiconductor business model. This model in-
volves many steps performed at multiple locations by different
providers and integrates various intellectual properties (IPs)
from several vendors, which has become prevalent due to con-
fluence of increasingly complex supply chains, time-to-market
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delivery, and cost pressures.
This trend poses significant challenges to hardware security

assurance in various forms. At the design stage, there is a
chance of IP piracy and tampering with IP to change its in-
tended functionality. Outsourcing design manufacturing pro-
vides significant opportunities for untrusted foundries for tam-
pering, overproducing, and cloning, to name a few. Even after
releasing design to the market, the design can be subject to
non-invasive reserve engineering, such as side-channel attacks,
to obtain secret information during design operation or invasive
reserve engineering to obtain detailed design implementation.
ICs may experience counterfeiting attacks even after being re-
signed in the forms of recycling and remarking as well as forging
their documentation and selling defective ones.

To realize design assurance, we leverage the concept of cir-
cuit design using reconfigurable logic based on hardware re-
configuration and transformation which recently proposed in [1,
8] and employ highly promising Spin Transfer Torque (STT)
magnetic technology to build robust and reverse-engineering
resilient Look-Up-Table (LUT) logic components. The STT
reconfigurable design is similar in functionality to an FPGA
but with significantly higher speed running at GHz frequency,
near zero leakage power, high thermal stability, highly integra-
tive with CMOS and overall competitive with custom CMOS
design in terms of performance and energy-efficiency. In ad-
dition, compared to SRAM-based LUT, STT-based LUT is
non-volatile, that is, there is no need to another flash mem-
ory (which could be a source of vulnerability) to store the
configuration bits to load from on every power up. However
compared to SRAM-based LUT, STT-based LUT require sig-
nificantly higher write current. This new set of characteris-
tics provide new opportunities to enhance design security yet
makes it challenging to remain highly competitive with custom
CMOS or even SRAM-based LUT in terms of power, perfor-
mance and area. To the best of our knowledge this is the first
work that introduces the concept of reconfigurable STT-based
LUT for enhancing design security and highlight the oppor-
tunities and challenges with the new technology and design
and address these challenges to make it a deployable technol-
ogy to enhance security yet remain competitive with custom
CMOS. To protect a design from design reverse engineering
attacks after final product release, depending on the required
level of security, we propose several algorithms to select and re-
place custom CMOS gates in circuit netlist with reconfigurable
STT-based LUTs during design implementation. While an un-
trusted foundry may still have access to the reconfigured design



after its release to the market, the selection of custom CMOS
gates for replacement ensures that the untrusted foundry can-
not determine the functionality of reconfigurable LUTs, and
therefore cannot reverse engineer the design in any reasonable
time. The selection algorithm will ensure that original design
parametric constraints such as design performance will be im-
pacted only minimally.

The main contributions of this paper are as follows:

• Introducing the concept of reconfigurable STT-based LUT
for enhancing design security and highlighting the oppor-
tunities and challenges with the new technology and de-
sign to make it a deployable technology,

• Introducing a security driven design flow at gate level to
prevent design reverse engineering,

• Proposing several algorithms for selection and replace-
ment of custom CMOS gates with STT-based LUTs, and

• Analyzing performance, area and power overhead on stan-
dard circuit benchmarks.

The remainder of this paper is organized as follows. Section
II presents preliminaries and surveys related work. In Section
III, we explain STT technology. Next, we describe how to
employ CMOS-STT technology to realize design for assurance
in Section IV. Experimental results are presented in Section
V. Finally, Section VI concludes this paper.

II. Previous Work
Current techniques for hardware reverse engineering have

raised serious concerns in the IC design community, partic-
ularly when facing a very high-tech adversary. Reverse engi-
neering can be done at different levels of design abstraction and
various phases of system on chip (SoC) design supply chain.
An untrusted foundry may compromise the design security by
inserting extra circuits as hardware Trojans [17], or extracting
IPs used in a circuit and making profits by selling them without
knowledge of IP owner [19], or overproducing the design and
sell in the black market [5]. Many techniques to counter these
attacks have been proposed and many are in active use. Exam-
ples of such countermeasures are mislabeling [14], shielding [2],
obfuscation [3], camouflaging [12], and self-modification (re-
configuration) [7]. While several of these countermeasures are
aimed at making an attack more difficult through obfuscation
without providing any actual protection (mislabeling, potting,
obfuscation, camouflaging), others remove or minimize side-
channel leakage. Neither of these countermeasures require the
detection of an attack, i.e., they are always on.

STT and Reconfigurable Logic for Security: Hardware
reconfigurability has been around for several years, primarily
in the form of FPGAs. In [8], using embedded SRAM-based
reconfigurable logic for application specific integrated circuits
(ASIC) design obfuscation is investigated. SRAM reconfig-
urable logic blocks provide reconfigurability and potentially en-
hance security, but they are not practical for use in embedded
systems where power and performance are major constraints.
Furthermore, SRAM require an external non-volatile memory
to keep reconfiguration bitstream which becomes the source of
vulnerability. Our idea in this paper of building reconfigurable
logic using STT is different from the previous work in vari-
ous aspects. Firstly, we introduce the non-volatile STT-based
look up table design as a new method of realizing the hard-
ware reconfiguration for security and integrating non-volatile
STT-based LUTs and custom CMOS gates side by side on the
same die. Secondly, we propose a security-driven hybrid STT-
CMOS design flow to integrate design assurance with other de-
sign constraints and considerations. STT reconfigurable logic

has several advantages over reconfigurable CMOS in terms of
power, performance, area as well as security metrics. STT-
based LUT has substantially lower leakage power compared to
CMOS-based LUT [9]. In addition, STT-based LUT has ad-
vantage over CMOS-based LUT in terms of performance and
area [16, 9]. Also it has a high thermal robustness. From secu-
rity perspective, STT-based LUT brings two clear advantages
over CMOS design: First, due to its non-volatility feature,
it holds the reconfiguration bitstream, whereas CMOS-based
LUT requires an external non-volatile memory which becomes
the source of vulnerability. Second, STT-based LUT power
consumption is almost insensitive to its input changes [16, 9],
therefore compared to CMOS-based LUT, it is more robust
against power-based side channel attacks.

III. Design of STT-Based LUT

STT technology provides i) approximately 4X higher inte-
gration density than conventional Static Random Access Mem-
ory (SRAM) [20], ii) high retention times (even more than
10 years [15]), iii) high endurance (1016 writes, or 10 years
of operation as L1 cache) [4], iv) near-zero leakage [13] with
close-to SRAM read performance, v) excellent thermal robust-
ness 300oC, vi) soft error resilience, and vii) above all, STT
cells are easy to integrate with the conventional CMOS fabri-
cation process. STT technology, for the first time, provides us
the amazing opportunity to design reconfigurable logics that
are on-die, comparable in performance to custom CMOS logic,
and have low reconfiguration overhead. An alternative would
be to use SRAM based reconfigurable units, but they suffer
from problems of scalability, high leakage, high sensitivity to
variations, and soft errors [10]. Moreover, SRAM based recon-
figuration is volatile and needs to be re-programmed on every
power up and this demands a separate non-volatile storage such
as a flash memory to store configuration bits. In this paper we
use the STT-based LUT design proposed by Suzuki [16] and
further improved in a recent work by Mahmoodi [9]. By load-
ing different values in the LUTs, the reconfigurable fabric is
able to implement various logic functions. Moreover, there is
added security benefit because the content of the LUTs can be
hidden to IC manufacturers or eliminated upon detection of a
reverse engineering attempt. Moreover, the content of an LUT
cannot be reverse engineered from its physical layout because
of its generic and programmable nature.

Figure 1 shows the simulation results of the STT-based LUT
and static custom CMOS circuit styles for logic gates of various
complexity implemented in a predictive 32nm technology. All
the results are normalized to the corresponding results for a
static CMOS implementation. It is clear from the results that
for small logic gates, the STT-based LUT style shows consider-
able overhead as compared to the custom CMOS implementa-
tion; however, as the circuit complexity increases this overhead
reduces. The delay overhead is also less for high fan-in NOR
gates as their static CMOS implementation would require a se-
ries connection of PMOSes in their pull-up networks. PMOS
transistors tend to be slower than NMOS transistors and since
the STT-based LUT style uses less number of PMOS transis-
tors, its benefit is more noticeable for implementation of such
logic gates.

Another observation from Figure 1 is that the LUT style
shows less power overhead for higher data activity (α). This is
due to the dynamic nature of the STT-based LUT style that
increases its switching activity making it a better fit for high
data activity applications. Note that the power and delay of the



Fig. 1. Comparison of circuit style alternatives (α: output
switching activity).

STT-based LUT is independent of the logic it is programmed
to implement (i.e its data content) and also independent of its
input data activity. The power and delay of the STT-based
LUT only depends on its fain-in (number of inputs). The leak-
age power of the STT-based LUT style is lower than the custom
CMOS except for high fan-in NAND and NOR gates. In high
fan-in static CMOS NAND (NOR) gates, there is a long chain
of series connected NMOS (PMOS) transistors that suppresses
leakage via the transistor stacking effect. However, this leakage
advantage for such static CMOS gates will disappear if those
gates are implemented using cascade of lower fan-in gates for
performance reasons. Therefore we can argue that for low fan-
in (4-input or less) standard logic gates, the STT-based LUT
style implementation offers less leakage.

IV. Security and STT Technology
Figure 2 presents our novel security-driven design flow. While

it is fully compatible with the common-practice VLSI design
flow, the proposed flow aims to introduce security in the early
design stages to prevent design reverse engineering with no or
minimum impact on design parametric constraints. Along with
the design constraints and the target CMOS technology node,
the design security requirements and the STT technology li-
brary information are passed to the standard VLSI design flow.

The design flow is continued with circuit implementation and
then the logic synthesis. Afterwards, an obtained gate-level
netlist from the logic synthesis is passed to our novel CMOS
gate selection and replacement stage. Depending on the de-
sign security requirements, one of our proposed algorithms de-
scribed in section IV-A is chosen by the designer. The selected
algorithm takes the synthesized gate-level netlist and carefully
select a number of CMOS gates to replace them with equiva-
lent STT-based LUT implementation. In this context, we use
STT-based LUTs, reconfigurable units and missing gates inter-
changeably. We refer to the obtained netlist as a hybrid netlist.
After obtaining the hybrid netlist, the design flow is continued
with physical design, and then the design is signed-off.

By introducing design security requirements and reconfig-
urability in the early stages of design, our novel security-driven
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Fig. 2. Our novel security-driven hybrid STT-CMOS design
flow.

hybrid STT-CMOS design flow effectively resist design reverse
engineering attacks. With a circuit consisting of missing gates,
an untrusted foundry is not able to overproduce the design as
each design finally should be configured by the design house or
authorized vendors. Furthermore, selection and replacement of
CMOS gates are so that it makes it impossible to determine
missing gates in any reasonable time.

A. Algorithms

We propose two methods to select the CMOS gates in a
netlist to replace with STT-based LUTs counterpart: indepen-
dent selection and dependent selection.

A.1 Independent Selection
In this method, gates are randomly selected such that they

may or may not connected to each other (directly or indirectly)
through any design path. From the security perspective, using
the circuit netlist with reconfigurable units and an available
configured counterpart, an attacker can use a testing technique
to justify and propagate the output of missing gates to some
observation points. With this effort, the attacker can develop a
partial or complete truth table for each missing gate and then
guess the functionality of those missing gate.

The independent selection provides some level of security;
however, an attacker with adequate resources would be able
to break and determine the functionality of STT-based LUTs
using testing techniques to justify their inputs and propagate
their outputs to some observation points. Assuming M the
number of missing gates, and D the depth of circuit defined as
the maximum number of flip-flops on a path from a primary
input to a primary output in a circuit, the maximum possible
number of required test clocks to determine all missing gates
in the independent selection Nindep is equal to

Nindep =

M∑
i=1

αi ×Di (1)

where α is the average number of required patterns to deter-
mine an independent missing gate. The value of α is deter-
mined based on the similarity of the output of the gates. For
example, the similarity of 2-input AND gate and 2-input NOR
gate is 2 since for two input combinations they produce the
same output, and the similarity of 2-input AND gate and 2-
input NAND gate is 0 as their output are completely opposite.
For 2-input gates, the average similarity of gates is 1.45, so the
average required patterns to determine a 2-input missing gate
(α) is 2.45. For 3-input gates and 4-input gates, α is equal to
4.2 and 7.4, respectively.



Input: A gate-level netlist
Output: A hybrid netlist
The list of the longest I/O paths (lst) containing only
non-critical timing paths;

foreach timing path on lst do
replace all gates with STT-based LUTs;

end
return Hybrid netlist ;

Algorithm 1: Implementation of dependent selection algo-
rithm.

A.2 Dependent Selection
The second method is the dependent selection where there is

dependency between reconfigurable units. Reconfigurable units
are selected so that they are reachable from each other; in gen-
eral, some inputs of a missing gate are driven by some output
of other missing gates. This method significantly increases the
efforts to determine the functionality of missing gates.

Algorithm 1 presents the implementation of dependent se-
lection. In dependent selection, it first obtains the list of the
longest I/O path that is between a primary input to a primary
output and contains timing paths beginning at and ending to
flip-flops. Then all gates on composing timing paths are re-
placed with reconfigurable units.

Assuming M is the number of missing gates that the input
of one missing gate is driven by the output of another missing
gate, Di is the depth of missing gate i is the number of flip-flops
between the missing gate and a primary output, and Pi is the
number of possible gates for the missing gate i, the maximum
number of required test clocks to determine all missing gates
in the dependent selection Ndep, on average, is equal to

Ndep =

M∏
i=1

αi × Pi ×Di (2)

where αi is the number of required patterns to determine an
independent missing gate. For example, α = 2.45 and P = 2.5
for 2-input missing gates.

A.3 Parametric-aware Dependent Selection
In the dependent selection, all gates on selected timing paths

are replaced with reconfigurable units. It is possible that re-
placing all gates violates timing requirement of original circuit.
Therefore, we introduce the parametric-aware dependent se-
lection method to minimize the impact and possibly avoid vi-
olating timing requirement. The parametric-aware dependent
selection method selects only a few number of gates on a timing
path and replaces them with their reconfigurable counterparts.
As untouched gates make determining missing gates possible,
all gates driving and driven by the untouched gates that are
not on the timing path are also replaced with reconfigurable
units.

Algorithm 2 presents the implementation of parametric-aware
dependent selection algorithm. Similar to the dependent selec-
tion algorithm, it first obtains the list of the longest I/O paths.
It then replaces some of gates with STT-based LUTs. To in-
crease the effort for reverse engineering, only gates with two or
more number of inputs are considered for replacement. After
replacement, design timing information is updated and com-
pared against design timing constraints. If there is a violation,
selection and replacement are repeated. Any unselected gate
on a targeted timing path, is saved in a unselected list (USL).
After this step, any gate that drives or is driven by any gate in
USL is replaced with a STT-based LUT.

Compared with the dependent selection method, parametric-
aware method indeed significantly increases the efforts to de-

Input: A gate-level netlist
Output: A hybrid netlist
The list of the longest I/O paths (lst) containing only
non-critical timing paths;

foreach timing path on lst do
L1: Randomly select some gates with two or more
inputs and replace with STT-based LUTs;

Check design timing constrains;
if violated then go to L1 ;
Push unselected gates into USL;

end
foreach gate in USL do

Replace immediate gates driving or being derived by
the gate but not belong to the longest I/O path;

end
return Hybrid netlist ;

Algorithm 2: Implementation of parametric-aware depen-
dent selection algorithm.

termine missing gates as it would make it impossible to create
partial truth tables for missing gates. As a result, a more plau-
sible approach for the attacker is to launch a brute force or
even a machine learning attack. Considering M is the number
of missing gates, I is inputs accessible that drive missing gates,
P is the number of possible gates for each missing gate, and
D is the depth of circuit, the number of required clock cycles
to determine the missing gates in a brute-force attack (Nbf ) is
equal to

Nbf = 2I × PM ×D. (3)
Equation 3 shows the exponential relationship between the

number of required clock cycles and the number of missing
gates and the number of inputs driving missing gates.

Selecting gates to be replaced with STT-based LUTs while
meeting design security requirements and design constraints
can be very challenging considering the huge number of timing
paths in large circuits. To overcome this issue, first, we con-
struct a graph representation of all of the components of the
synthesized gate-level CMOS netlist. Using this graph repre-
sentation, we randomly select a sample of 2% of the compo-
nents within the circuit and perform a depth-first search in the
graph to find the path to a primary input and a primary out-
put of the circuit containing at least two flip-flops. Once all
of the unique paths have been collected, we remove any paths
that contain the critical path and sort the remaining paths by
depth (e.g., the number of flip-flops between the primary input
and primary output). For independent selection, we select a
pre-determined number of nodes for STT out of all nodes on
the chosen paths. For dependent selection, we select a ran-
dom timing path from flip-flop to flip-flop for a random path
identified above. For parametric-aware selection, we randomly
select a pre-determined number of timing paths and select a
pre-determined number of random nodes within that timing
path and then continue on the parametric-aware selection al-
gorithm.

In addition to brute-force attack, a hybrid STT-CMOS cir-
cuit may undergo machine learning attacks similar to [11]. Con-
trary to similar works such as camouflaging [12], the possible
candidates per STT-based LUT is not limited to a small num-
ber of gates. A 2-input STT-based LUT can realize 6 mean-
ingful 2-input gates consisting of AND, NAND, OR, NOR,
XOR, XNOR gates. 3-/4-input STT-based LUTs can also im-
plement more than 12 meaningful gates. To exacerbate the
situation for machine learning attacks, a 4-input STT-based
LUT and a 3-input STT-based LUT can be also used to im-



plement 3-/2-input gates and 2-input gates, respectively, with
connecting unused inputs of STT-based LUTs to some signals
in the circuit to expand search space for machine learning at-
tacks. Furthermore, we can realize complex functions, such
as (A.(B ⊕ C)) + D, using a STT-based LUT instead of im-
plementing only one simple gate. With incorporating these
measures, the machine learning attack would render ineffective
to determine the missing gates in any reasonable time as the
size of search space is significantly large even with inserting
a moderate number STT-based LUTs. While work, such as
[11], significantly accounts on accessibility to scan architecture
to reduce attack time, it is a common practice that the scan
architecture is disable or locked before releasing the design to
raise bar against different attacks such as secret key extraction
[6] [18].

V. Results

To evaluate the effectiveness of logical reconfigurability against
the design reverse-engineering attack, our proposed security-
driven hybrid STT-CMOS design flow is applied to several IS-
CAS’ 89 benchmarks. The benchmarks are first synthesized
in 90nm technology node using Synopsys’s Design Compiler.
While the STT technology library based on Suzuki [16] is pro-
vided, the CMOS gate selection and replacement is performed
and the circuit power and performance parameters are evalu-
ated up on any gate replacement. While all evaluation in this
paper is performed in the gate selection and replacement step,
the flow continues with the physical design to obtain the circuit
layout. Finally, the design is signed off for fabrication.

By introducing security measures in the early stages of de-
sign flow, it is possible to effectively meet both design secu-
rity requirements and parametric constraints. Table I shows
the impact on performance, power, and area after introducing
STT-based LUT units to the selected benchmarks. The sec-
ond, third, and forth columns of the table present the relative
performance degradation after deploying the independent, de-
pendent, and parametric-aware selection, respectively, on the
original circuits.

While the circuit sizes rages from about 300 to 20,000 gates,
the results indicate that among the three selection algorithms,
the dependent selection has considerable impact on design per-
formance in terms of the delay of the longest path. This is
attributed to replacing all gates of timing paths on selected
I/O paths with STT-based LUT equivalent. The performance
degradation is less or none using independent and parametric-
aware selections as all STT-based LUTs are not placed on a
single I/O path. Furthermore, with increasing the size of the
circuit, both algorithms are provided a larger pool of gates
and timing paths; therefore, STT-based LUTs are fairly dis-
tributed and a very few STT-based LUTs are located on a
single timing path. The results in Table I signify that the
relative performance degradation is almost zero for larger cir-
cuits. The results imply that for large industrial circuits the
impact of STT-based LUT units on circuit performance using
the independent and dependent selections will be negligible. It
should be noted that as the selection of timing paths and gates
is performed randomly, we observe that there is slightly larger
overhead for a larger circuit in some cases where a slightly
smaller circuit incurs smaller overhead, like between s1288 and
s1488 benchmarks or s1238 and s1196 bechmarks. However,
the trend clearly indicates that larger circuits result in smaller
overhead.

In Table I, we also present the relative power overhead and
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Fig. 3. The number of possible required test clocks to
determine the functionality of missing gates.

the number of replaced gates after applying the three selection
techniques. For the independent selection, we always randomly
select 5 gates for replacement. With increasing the size of the
circuits, more number of gates are generally chosen for replace-
ment in the dependent and parametric selection. On the other
hand, the power overhead is considerably reduces when the size
of the circuit increases. For example, s641 benchmark only
consists of 287 gates and 5, 39, and 9 gates are replaced with
STT-based LUTs in independent, dependent, and parametric
selections, respectively. Due to the small size of the circuit,
the power overhead is relatively high, i.e. 11.14%, 82.11%, and
8.45% for independent, dependent, and parametric selections,
respectively. On the opposite, s38584 benchmark consists of
19,253 gates, and 5, 47, and 166 gates are replaced with STT-
based LUTs in independent, dependent, and parametric selec-
tions, respectively. While there is a considerable increase in the
number of replaced gates, these incur only a small power over-
head, 0.21%, 1.86%, and 5.13% for independent, dependent,
and parametric selections.

The last column of Table I indicates the number of gates in
the circuits excluding the number of flip-flops. Columns 8 to
10 of Table I presents the percentage of incurred area overhead.
The results clearly indicate that the area overhead significantly
reduces with increasing the size of the circuit. Collectively ana-
lyzing results in Table I reveals that with increasing the size of
the circuit, it is possible to insert more number of STT-based
LUTs with no or very negligible impact on performance, power,
and area. Figure 3 shows the number of possible required test
clocks to determine the missing gates using the machine learn-
ing attacks. The results signify that even for small circuits
the number of required test clocks for the parametric-aware
selection is significantly high so that it would take more than
1000 years assuming one billion pattern application per second
to correctly resolve a hybrid STT-CMOS circuit using mod-
ern testing equipment. For example, the analysis of s38584
benchmark shows that with introducing only 166 STT-based
LUTs using the parametric-aware selection technique, about
6.07E+219 test clocks are required to determine their func-
tionality while there is only about 5.13% increase in power con-
sumption, 1.56% increase in area, and 0% performance degra-
dation.

Table II presents the CPU time for selecting gates for re-
placement in independent, dependent, and parametric selec-
tions. The results obtained on a 1.7 GHz Intel Core i7 with 8
GB of RAM. As results show, it only takes about 44 seconds
to select 166 gates for parametric-aware selection in s38584
benchmark with about 20,000 gates. It can be concluded that



TABLE I
The percentage of power, performance and area overhead after introducing STT-based LUT units.

Performance degradation % Power overhead % Area overhead % Number of STTs
Circuit Indep Dep Para Indep Dep Para Indep Dep Para Indep Dep Para size
s641 0 2 1 11.14 82.11 8.45 2.64 20.66 4.98 5 39 9 287
s820 10.82 14.77 2.37 11.45 18.72 5.08 3.02 5.63 1.34 5 9 2 289
s832 4.42 71.20 7.75 13.44 14.39 1.92 3.22 4.98 0.51 5 8 1 379
s953 0 28.42 4.55 11.02 33.49 8.03 2.32 7.14 2.38 5 15 5 395
s1196 0 0 0 7.83 12.54 7.95 1.97 3.94 2.64 5 10 7 508
s1238 0 8.76 4.45 8.32 14.39 8.13 2.02 4.38 2.73 5 11 7 529
s1488 0 45.45 6.7 4.43 15.49 8.18 1.60 6.83 3.47 5 21 11 657
s5378a 7.3 82.32 1.5 2.93 45.11 9.80 0.37 9.30 6.88 5 131 98 2779
s9234a 7.7 62.42 0 1.20 42.18 9.83 0.20 10.06 3.24 5 256 82 5597
s13207 2.07 0 0 0.73 9.82 8.21 0.12 2.19 2.60 5 92 111 7951
s15850a 0 25.39 0 0.70 9.41 6.04 0.10 1.88 1.78 5 89 85 9772
s38584 0 0 0 0.21 1.86 5.13 0.05 0.44 1.56 5 47 166 19253
Average 2.69 28.40 2.36 6.12 24.96 7.23 1.47 6.45 2.84 5.00 60.67 48.67 4033.00

TABLE II
The CPU time (min:sec)for selecting gates for
replacement in various selection algorithms.

Circuit Independent Dependent Parametric
s641 00:00.7 00:01.0 00:00.8
s820 00:00.1 00:00.1 00:00.1
s832 00:00.1 00:00.1 00:00.1
s953 00:00.1 00:00.2 00:00.2
s1196 00:00.1 00:00.2 00:00.2
s1238 00:00.1 00:00.1 00:00.1
s1488 00:00.1 00:00.1 00:00.1
s5378a 00:09.1 00:14.9 00:26.9
s9234a 01:15.5 01:07.4 01:30.2
s13207 00:25.4 00:25.4 00:27.1
s15850a 00:52.6 00:48.2 00:54.9
s38584 00:35.7 00:42.3 00:44.0

selecting gates for replacement in large industrial circuits can
be performed in a small fraction of time.

VI. Conclusions
To prevent design reverse engineering, we introduced a novel

security-driven hybrid STT-CMOS design flow. The flow does
completely match the current in-practice industry standard de-
sign flow and makes it possible to introduce security measure
in the early stage of circuit design. With introducing three
novel selection and replacement algorithms, i.e. independent,
dependent, and parametric-aware dependent selections, a se-
lected number of CMOS gates from a synthesized gate-level
netlist are replaced with reconfigurable non-volatile STT-based
LUTs counterparts based on the required security demands
and design parametric constraints. Results on standard bench-
marks showed significant resiliency of hybrid STT-CMOS cir-
cuits against the reverse engineering attack. Meanwhile, the
impact of STT-based LUTs on design parametric constraints
including area, power, and performance has shown to be neg-
ligible for large circuits. Furthermore, it has shown that the
proposed methods are computationally inexpensive where se-
lecting CMOS gates for replacement takes less than a minute
even for large circuits.
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