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ABSTRACT

Detection of malicious software at the hardware level is emerg-
ing as an effective solution to increasing security threats.
Hardware based detectors rely on Machine Learning(ML)
classifiers to detect malware-like execution pattern based on
Hardware Performance Counters(HPC) information at run-
time. The effectiveness of these learning methods mainly re-
lies on the information provided by expensive-to-implement
limited number of HPC. This paper is the first attempt to
thoroughly analyze various robust machine learning meth-
ods to classify benign and malware applications. Given the
limited availability of HPC the analysis results help guiding
architectural decision on what hardware performance coun-
ters are needed most to effectively improve ML classifica-
tion accuracy. For software implementation we fully imple-
mented these classifier at OS Kernel to understand various
software overheads. The software implementation of these
classifiers are found to be relatively slow with the execu-
tion time in the range of milliseconds, order of magnitude
higher than the latency needed to capture malware at run-
time. This is calling for hardware accelerated implemen-
tation of these algorithms. For hardware implementation,
we have synthesized the studied classifier models on FPGA
to compare various design parameters including logic area,
power, and latency. The results show that while complex
ML classifier such as MultiLayerPerceptron and logistics are
achieving close to 90% accuracy, after taking into consider-
ation their implementation overheads, they perform worst
in terms of PDP, accuracy/area and latency compared to
simpler but slightly less accurate rule based and tree based
classifiers. Our results further show OneR to be the most
cost-effective classifier with more than 80% accuracy and
fast execution time of less than 10ns, achieving highest ac-
curacy per logic area, while mainly relying on only a single
branch-instruction HPC information.

1. INTRODUCTION

Malware is a piece of software which is used by attacker
to perform various malicious activities from stealing infor-
mation and performing DoS attack to gaining root access.
Such malware threats are increasing rapidly. According to
McAfee threats report[16] published in March 2016, 42 mil-
lion malware samples have been recorded in the last quar-
ter of 2015 alone with the rate of 316 new threats every
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minute. Recent proliferation of computing devices in the
form of mobile devices and Internet-Of-Things have made
effective detection of malware a great urgent challenge to be
addressed.

Anti-virus(AV) software can detect and remove such harm-
ful programs, but it has several significant drawbacks. First,
traditional AV software relies on static signature based de-
tection in order to detect malware. Such detection mech-
anism search for suspicious byte patterns in the program.
Attacker can deceive AV software by programming malware
in such a way that its signature appears as a benign soft-
ware. Second, AV software are prone to exploits like any
other software which can ultimately compromise protection
if exploited. Third, AV softwares are slow and resource hun-
gry. Situation becomes worse for metamorphic viruses, as
effective detection of them is an NP-complete problem[18].
Behavior based detection[11] method uses dynamic aspects
such as system call traces, control flow graphs, and data
flow graphs, which can overcome few disadvantages of static
based detection. In spite of that, being a software based
solution, behavior based detection is still vulnerable to ex-
ploitation.

Recently, security researchers have shifted their attention
to hardware based solutions. Demme et al.[5] showed that
using supervised ML classifiers on collected Hardware Per-
formance Counters(HPC) traces of both malware and benign
programs, the running applications can be classified with
high level of accuracy. Hardware based detectors offer fast
online detection, efficiency in resource utilization, and in-
vulnerability from getting infected by attackers which make
them suitable for mitigating newer threats. However, there
are several design challenges with hardware based detectors
including having the capability of online monitoring of HPC,
low false positives, small logic area and power overhead for
implementation on processor, and small detection latency
which includes reading HPC and running ML classifiers.

This paper is the first attempt to thoroughly analyze and
understand various machine learning methods to classify
benign and malware applications. We test various design
parameters of several learning methods in terms of accu-
racy, hardware implementation cost such as power, area,
and latency, as well as software implementation cost. This
helps the designer to understand and navigate the trade-
offs between several design parameters offered by each learn-
ing algorithms. Hardware performance counters are finding
their way into commodity processor architectures such ARM
based and Intel based processors. However, they are very
limited in numbers and can only capture few processor run-
time microarchitectural behaviors at a time. For instance,
a high-end Intel Xeon server has only 6 registers to mon-
itor microarchitectural behavior at run-time. For mobile
Intel Atom processor, this is even lower and there are only
4 registers available. Given the high implementation cost
of on-chip HPC and their limited availability, the results of
this research will also help in making architectural decision
on what HPC are needed to implement to most effectively
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Table 1: List of HPC events under PERF

improve ML classifiers accuracy.

In this paper, we collect HPC traces from execution of
malware and benign applications in Linux. For software im-
plementation, we fully implement several robust ML classi-
fiers at OS Kernel level to understand various software over-
heads including the time to read the HPC and the time to
execute the classifiers. We also report the accuracy of these
ML classifiers for different number of architectural events.
The results for software implementation of most accurate
classifiers are found to be in the range of milliseconds, or-
ders of magnitude higher than the response time needed to
detect malware. Note that most malware are small pieces
of codes with a execution time ranging from microseconds
to milliseconds. It is therefore important to capture them
within this execution range, to prevent them from corrupt-
ing the system. Such high overhead of software implemen-
tation of ML Classifiers is calling for a hardware accelerated
implementation. In response, in this paper, we fully imple-
ment and evaluate hardware accelerated ML classifiers on
FPGA and measure their power, latency, and area overhead.
By comparing their area, accuracy, latency, and power, we
show various implementation trade-offs to find out which
ML classifiers are more suited for hardware implementation.
The rest of this paper is organized as follows. We provide
background on performance counters available under Linux
in Section 2. We show procedure of collecting performance
counters in detail in Section 3. We perform offline learning
and testing of collected data in Section 4. We discuss soft-
ware implementation of classifier models in Section 5. We
discuss hardware implementation of classifier models in Sec-
tion 6. Section 7 discusses the related work and Section 8
concludes the work.

2. BACKGROUND

Hardware Performance Counters(HPC) are special pur-
pose registers available in modern microprocessors which
keep track of different microarchitectural events. The main
purpose of HPC is to analyze and tune architectural level
performance of running applications [14, 13, 15]. While HPC
are finding their ways in various processor platforms from
high-performance to low power embedded, they are limited
in the number of microarchitectural events that can be cap-
tured simultaneously. This is mainly due to limited number
of physical registers on the processor chip which are expen-
sive to implement. Recently, application areas of HPC are
grown from mere performance analysis to detecting firmware
modification in embedded systems [20], estimating complete
system power [3], and detection of software malware [5] or
even hardware trojans [21, 22]. Typical HPC events avail-
able under Linux Perf tool for Intel Haswell processors are
shown in Table 1.

We are using HPC to collect execution traces for all avail-
able microarchitectural events by executing collected mal-
ware and benign applications in an isolated environment. If
two different programs are executed on CPU, they generate
different performance counter traces. HPC trace of branch-
instructions is shown in Figure 1 for a normal and a malware
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Figure 1: HPC comparison for branch-instructions

application. The results show substantial different traces for
the branch instruction behavior for a malware compared to
a normal application. Using this observation, malware can
also be separated from normal applications by its different
HPC values. Our goal is to learn malware behavior with
collected HPC of various applications (including malware
and normal) using supervised Machine Learning(ML) meth-
ods. Detailed performance counters collection procedure is
discussed in the next section.

3. DATA COLLECTION AND DATA SET

We perform all data collections on a machine with an In-
tel Haswell Core i5-4590 CPU running Ubuntu 14.04 with
Linux 4.4 Kernel. There are different methods for captur-
ing HPC data including 1) Reading Model-specific Regis-
ters (MSRs) directly, 2)Building kernel module for sampled
collection, and 3) Using different utilities available under
Linux such as Perf, PAPI, and Perfctr. For this work we
use Perf. Perf uses perf_event_open function call behind the
scene which can measure multiple events at a time. We are
using 52 benign applications and 57 malware applications for
performance counters data collection. Benign applications
consist of mibench benchmark suite[7], Linux system pro-
grams, browsers, text editors, and word processor. For mal-
ware applications, Linux malware are collected from virus-
total.com [1]. Malware applications include Linux ELFs,
python scripts, perl scripts, and bash scripts, which are cre-
ated to do malicious activities.

HPC data are collected by running both malware and be-
nign applications in isolated environment called Linux Con-
tainers(LXC) [9]. LXC is an operating system level virtual-
ization which shares same kernel with the host operating sys-
tem. The reason of using Linux Containers over other com-
monly available virtualization platforms such as VMWare
or VirtualBox is that it provides access to all actual HPC
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Figure 2: Offline training and detection procedure
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rather than emulated ones. As shown in Table 1 our CPU
has 44 events available under perf tool. As Intel Haswell has
only 8 counter registers available[10], we can only measure
8 events at a time. We divide 44 events into 6 batches of
8 events and run each application 6 times at sampling time
of 10ms to gather all micro-architectural events. Running
malware inside container can contaminate the environment
which may affect subsequent data collection. To make sure
there is no contamination in collected data due to previous
run, we are destroying container after each execution. We
automate this data gathering using Python scripting. All
collected events are transformed into vectors with events as
columns as shown in Figure 3. Moreover, extra column of
“class” is added to each vector in which collected data is
manually labeled as “Malware” or “No Malware” depending
on the application type. Manual labeling is used for both
learning and testing of Machine Learning model for different
classifiers.

4. OFFLINE LEARNING AND TESTING

Detecting malicious behavior is a binary classification prob-
lem which we are addressing using supervised Machine Learn-
ing(ML) techniques. Detailed steps of offline training and
testing is shown in Figure 2. After collecting microarchitec-
tural events using perf, we use WEKA tool[8] for evaluating
accuracy of different ML classification algorithms. WEKA
also generates ML models which we use later for synthesizing
on FPGA using high level synthesis tools. We follow stan-
dard 70%-30% data set split for training and testing. To fol-
low complete non-biased splitting, we separate 70% benign-
70% malware application for training and 30% benign-30%
malware application for testing. It is important to note that
if instead we split the total vector data set then some identi-
cal vectors may end up in both sides creating biased results.
We have a total of 44 events/features that needs to be cap-
tured, which can become a significant overhead both for soft-
ware implementation as it requires multiple runs of the same
applications due to limited number of HPC, and for hard-
ware implementation due to area, power and latency cost.
Therefore, it is important to reduce the number of necessary
performance counters and eliminate the unnecessary events
which are not significantly expressing malware behavior.

4.1 Feature Reduction

Feature reduction can be helpful in reducing offline learn-
ing time as well as reducing hardware design complexity.
We follow two steps approach for feature reduction: First
a manual approach and next an algorithmic on. For the
manual approach, we analyze the events manually and ex-
clude certain event which are obviously not related to the
goal. Following the manual approach, for the algorithmic
approach, we apply attribute selection algorithm available
under WEKA to reduce features.

Out of 44 events shown in Table 1, there are certain events
which are provided by Linux kernel and they are included
as software events under Perf. We exclude such events.
These events are alignment-faults, context-switches, cpu-
clock, cpu-migrations, emulation-faults, major-faults, dummy,

minor-faults, page-faults, and task-clock. Moreover, events
like cpu-cycles, and ref-cycles don’t represent uniqueness in
terms of program phase so they are excluded too. A total
of 12 events are removed using manual feature reduction.

branch-loads
iTLB-load-misses
dTLB-store-misses
L1-dcache-stores

branch-instructions
instructions
dTLB-load-misses
LLC-prefetch-misses

Table 2: Reduced HPC events

For algorithmic selection of features, we use “Correlation
Attribute Evaluation” to rank 32 remaining features under
WEKA. Correlation evaluation algorithm calculates pearson
correlation between each attribute and class.

pli) = cov(X;, C)

1
var(X;)var(C) @

where p is pearson correlation coefficient. X; is an in-
put dataset of any performance counter event ¢. C is an
output dataset contains different classes, “Malware” or “No
Malware” in our case. Value of i represents anyone feature
out of 32 features. cov(X;, C)) measures covariance between
input dataset and output dataset. var(X;) and var(C) mea-
sure variance of both input and output dataset respectively.
Equation (1) can be elaborated further as shown below.
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where, k is the total number of values in both dataset.

Th,i 18 k'™ value in input dataset for feature i. ci is kth

value in output dataset. This algorithm finds correlation

co-efficient for all 32 features as per above equation. We list
top 8 features with the highest correlation co-efficient value.

These short listed features are shown in Table 2. These

events have mixture of branch related events representing

core behavior and cache related events representing memory
behavior of an application.

“branch-instruction” has highest value of p than other fea-
tures. Features that are listed in Table 2 has following pear-
son correlation coefficient relation.

p(branch-instructions) > p(branch-loads) > p(instructions)
> p(iTLB-load-misses) > p(dTLB-load-misses) > p(dTLB-
store-misses) > p(LLC-prefetch-misses) > p(L1-dcache-stores)

(i)

(2)

4.2 Result analysis

We apply 11 ML classifiers to our dataset to find their ac-
curacy in classifying malware and benign applications. We
calculate accuracy before algorithmic feature reduction with
32 features and after feature reduction with top 8, 4 and 1
feature(s) as shown in Table 2. Figure 4 shows accuracy of
various ML classifiers for our dataset. Before feature reduc-
tion, most of the algorithms perform well, mostly providing
above 80% accuracy. Certain algorithms have significant ac-
curacy reduction due to reduction in features but few classi-
fiers perform well even after feature reduction. Classifiers
like JRIP, OneR, PART, J48, and MultiLayerPerceptron
have small reduction in accuracy after feature reduction.
The Reason of OneR’s constant accuracy result is due to the
nature of OneR algorithm. OneR algorithm chooses only one
feature that can most accurately predict, which is “branch-
instruction”, which explains why OneR is not affected by
feature reduction. The results show that a minimum of four
features on average provide relatively high accuracy of more
than 80% across most algorithms. Reducing the features be-
low four significantly impact performance in most classifier.
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Figure 4: Accuracy comparison of ML classifiers

The results suggest that at least four hardware performance
counter registers are required to highly accurately detect
malware.

Also it is important to note that performance counters
data are collected at 10ms interval rate because of perf’s
maximum sampling rate limitation. There are patches avail-
able to boost perf sampling rate to 1ms interval. However,
increasing sampling rate doesn’t increase the detection ca-
pacity noticeably for common Linux malware such as buffer
overflow and Return-Oriented Programming(ROP) attacks
[6]. While higher sampling rate can bring slightly higher ac-
curacy for other attack types, it generates noticeable mea-
surement overhead.

S. SOFTWARE IMPLEMENTATION

In this section, we present details of software implemen-
tation of ML classifiers. For software implementation, we
fully implement the classifiers listed in Table 3 at OS Ker-
nel level to understand various software overheads. Soft-
ware overhead includes the time to read from the HPC and
the time to execute the classifiers. Intel CPU comes with
Turbo Boost technology which may generate error in execu-
tion time measurement. We disabled Turbo Boost and also
set CPU governor to operate at constant frequency of 800
MHz to avoid possible error in measurement. Performance
counter reading overhead is negligible in kernelspace when
monitoring single core but overall system overhead increases
for monitoring processes running on multiple cores. Over-
head can be as high as 12% [4] depending on the number
events that are being sampled. The results for software im-
plementation overhead of these classifiers show them to be
slow with the execution time in the range of milliseconds,
which is order of magnitude higher than the latency needed
to capture malware at run-time. It is important to note that
several studied malwares have execution time in the range of
microseconds or less which require fast detection to prevent
them from corrupting the system.

Classifier | Latency(ms) Classifier Latency(ms)
BayesNet 0.624 NaiveBayes 0.802
SMO 0.652 SimpleLogistic 0.648
SGD 0.652 PART 0.642
OneR 0.653 MultiLayerPercep 0.87
Logistic 0.844 JRIP 0.653
J48 0.663

Table 3: ML classifier execution overhead

6. HARDWARE IMPLEMENTATION

The latency overhead of software implementation of clas-
sifiers is calling for hardware accelerated implementation of

these algorithms to enhance their performance in analyzing
malware related microarchitectural events. When it comes
to choosing Machine Learning(ML) classifiers for hardware
implementation, accuracy of any algorithm is not the only
important parameter. Area, power and latency of logic (per-
formance) implementation are also key factors in deciding
a cost-efficient ML classifier. Some complex ML classifier
algorithms such as Ensemble Learning [12] or Convolution
Neural Networks can boost up accuracy of baseline classi-
fiers but they will also add significant overhead for hardware
implementation in terms of logic area, power consumption
and detection latency. We are interested in analyzing these
overheads when implementing commonly available baseline
ML classifiers. Classifiers with high accuracy, low area, low
power consumption, and low latency are the ideal choices for
hardware based detection techniques. That doesn’t mean
accuracy boost techniques are discouraged but techniques
which are going to make classifier model more complex on
hardware at a benefit of only small incremental accuracy im-
provement are discouraged. For hardware implementation,
we use Xilinx High-Level Synthesis (HLS) compiler which
translates high level code into HDL code.

E——
— > ML bool class
float vectors[8] : s
: classifier

s

Figure 5: ML classifier block

6.1 High Level Synthesis

We are using Xilinx Vivado Design suite to synthesize ML
classifiers for Xilinx Virtex 7 FPGA. Latency and power
estimation are collected at 10ns clock cycle time. Accuracy
of ML classifiers are based on data collected at 10ms interval
using perf.

Offline generated classifier models from WEKA are imple-
mented in C code. The generated models from WEKA have
information pertaining to corresponding ML classifiers. For
example, generated BayesNet model have table of probabil-
ities associated with each feature and J48 classifier model
have whole decision tree printed. We manually interpret
the models and implement the logic in C code. For syn-
thesizing ML classifier models, we assume that the logic of
fetching counter values periodically from CPU is already im-
plemented and is the same for all studied classifiers. Hence,
we are excluding data fetching logic for latency, area, and
power estimation. Moreover, we assume that vector with
all HPC events are already available at the input to classi-
fier. Every model is treated as a black box which accepts
HPC event vector of size 8 and outputs binary value “mal-



ware” or “not malware”. The logical view of the ML classifier
hardware is shown in Figure 5. Core logic of black box is
implemented from WEKA generated models. Xilinx Vivado
HLS compiler is used to convert C to VHDL IP core. During
high level synthesis latency and area/utilization of all ML
classifiers are collected. To collect total power estimation of
the implemented model, IP core is synthesized in Vivado.
Power estimation is collected for 100 MHz clock attached to
the IP core. Power estimation contains both static power
and dynamic power consumption of digital logic.

Results of estimated latency, area, and power are shown
in Table 4. Latency unit is in terms of number of clock
cycles required to classify input vector. Area unit is the
total number of utilized LUTs, FFs, and DSP units inside
Virtex 7 FPGA. The unit for power consumption is Watt.

Classifier Latency Power Area
(cycles@10mns) (W) (LUTs+FFs+DSPs)
BayesNet 14 0.445 6794
NaiveBayes 233 1.34 58177
SMO 34 0.443 2556
SimpleLogistic 22 0.454 4721
SGD 34 0.444 2556
PART 6 0.436 2131
OneR 1 0.324 1258
MultiLayerPercep 302 1.03 36252
Logistic 68 0.63 13041
JRIP 4 0.436 1504
J48 9 0.436 1801

Table 4: Hardware Synthesis Result

6.2 Ranking Classifiers

In this section we present the ranking of various ML clas-
sifiers implementation in hardware in terms of latency, area,
power, and accuracy. An ideal classifier should have high
accuracy, small logic footprint, fast detection response time
(delay), and low power consumption. Out of these param-
eters logic area and power consumption are important dur-
ing hardware design phase due to silicon and power budget.
Latency and accuracy are both Quality-of-Service(QoS) pa-
rameters for malware detectors. Different computing system
have different budget requirements. For example, data cen-
ters or servers have more aggressive requirements on QoS
than power and area whereas battery powered devices have
more aggressive requirement on power and area budget than
QoS. As accurate detection of malware is the highest prior-
ity for every type of computing device, accuracy of malware
detection is the most important parameter to decide suit-
able ML classification algorithm. Hence, we analyze differ-
ent combination of parameters along with the accuracy of
the algorithms.

To account for power and latency together, we calculate
Power Delay Product(PDP) of all ML classifiers using la-
tency and power data collected from hardware synthesis.
This comparison is helpful in shortlisting classifiers which
are more suitable for battery powered embedded devices.
Comparison of accuracy and PDP is shown in Figure 6. ML
classifiers with lower PDP and higher accuracy is preferred.
Classifiers OneR, JRIP, PART and J48 performs better than
the rest of the classifiers. OneR, JRIP ,and PART are rule
based classifiers, and generate rules for the features which in-
volves comparisons rather than computation, therefore they
can run faster. This is also the case for tree based classifier,
J48. Classifiers such as BayesNet and Logisitc regression in-
volves computation like probabilities and sigmoid functions
respectively, resulting in higher execution latency.

In addition to latency and power, we also compare accu-
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Figure 6: PDP and Accuracy Comparison

racy over unit of hardware area for various ML classifiers.
Area and accuracy comparison is putting more emphasis on
silicon area budget. We use ratio of Accuracy over Area
to list down ML classifiers which requires small area and
yet can predict with high accuracy. We show the results of
Accuracy/Area in Figure 7. Classifier with higher ratio is
considered better than with lower ratio. Again, rule based
and tree based classifiers are performing significantly better
in terms of accuracy per area compared to highly accurate
but complex Bayesnet, MultiLayerPerceptron and logistic
classifier.
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Figure 7: Accuracy/Area Ratio Comparison

Comparing the accuracy, PDP and accuracy/area results
show that rule based and tree based classifiers are signifi-
cantly better compared to complex and more accurate clas-
sifiers like MultiLayerPerceptron and Logistic. It is impor-
tant to note that for this study we have mainly considered
primary classifiers only. Certain tree based algorithms such
as Random forest will be complex to implement too but will
give better Accuracy to Area ratio than complex Artificial
Neural Network(ANN) algorithms.

7. RELATED WORK

In this section, we discuss related work in the field of
hardware based malware detection. Demme et al[5] first
showed that offline Machine Learning(ML) can classify mal-
ware by learning performance counter event traces. They
showed high detection accuracy result for Android malware
by applying complex ML algorithms like Artifical Neural
Network(ANN) and K-Nearest Neighbour(KNN). Although,
they have discussed implementing classifiers on hardware,
they didn’t present any hardware overhead analysis results.
The hardware implementation overhead, in particular power,
area and latency are important as they decide which ML
classifier performs most cost-efficient. As our results showed,



with ignoring hardware overheads, complex ML classifier
such as MultiLayerPerceptron and logistics are the winners
given their high accuracy, however after taking into consid-
eration the overhead, they perform worst in terms of PDP,
accuracy/area and latency compared to significantly simpler
but slightly less accurate rule based and tree based classifiers
such as JRIP, J48 and OneR. Tang et al[19] and Garcia[6]
discussed feasibility of unsupervised learning method to de-
tect ROP and buffer overflow attacks by finding anomaly
in HPC during execution of such attacks. Although unsu-
pervised algorithms are effective, they are complex in na-
ture which can increase complexity when implementing in
hardware. Also the software implementation is not an ef-
fective solution to detect malware at run-time, due to large
latency to compute the complex algorithms. In a different
work Ozsoy et al[17] used sub-semantic features rather than
performance counters to detect malware. Moreover, they
suggested changes in microprocessor pipeline to detect mal-
ware in truly real-time nature. They discussed estimated
latency and area utilization of Logistic and ANN algorithm
implementation for their architecture. However, Our work
is different as it does not require any change in processor
pipeline. Bahador et al[2] used Singular Value Decompo-
sition(SVD) technique to detect malicious software in real-
time. They used similar ML classifiers as ours but they
haven’t discussed hardware implementation of those classi-
fiers.

8. CONCLUSION

This paper is the first effort in thoroughly analyzing var-
ious machine learning methods that uses hardware perfor-
mance counters to classify benign and malware applications.
We first present full software (Linux Kernel) and hardware
(FPGA) implementation of various ML classifiers. While
the accuracy of an ML classifier to detect malware is de-
pendent on the number of feature captured with hardware
performance counters, we found a minimum of four hard-
ware performance counter to be sufficient to provide almost
80% accuracy across all studied ML classifiers. The results
further show that the software solution is not responding
as fast as it requires to capture run-time behavior of mal-
ware. In response, the hardware accelerated solution shows
promising results, reducing the latency by order of magni-
tude with small hardware cost. The results show that with-
out hardware overheads consideration, complex ML classi-
fiers such as MultiLayerPerceptron and logistics are the win-
ners given their higher accuracy, however after taking into
consideration their implementation overheads, they perform
worst in terms of PDP, accuracy/area and latency com-
pared to significantly simpler but slightly less accurate rule
based and tree based classifiers such as JRIP, J48 and OneR.
Among all studied classifiers OneR, mainly relying on single
branch-instruction hardware performance counter informa-
tion, achieves over 80% accuracy, takes only 10ns for compu-
tation, consumes only 0.3 watts of power, and occupies just
more than 1K gates for physical implementation found to be
the most cost-effective solution for hardware based malware
detection.
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