
Enabling Dynamic Heterogeneity
Through Core-on-Core Stacking

Vasileios Kontorinis1,2, Mohammad K.Tavana3, Mohammad H.Hajkazemi3, Dean M.Tullsen2 and Houman Homayoun3

1Google

2Department of Computer Science and Engineering, University of California, San Diego

3Department of Electrical and Computer Engineering, George Mason University

ABSTRACT
Future computing platforms will need to be flexible, scalable,
and power-conservative, while saving size, weight, energy,
etc. Heterogeneous architecture can address these challenges
by allowing each application to run on a core that matches
resource needs more closely than a one-size-fits-all core. Dy-
namic heterogeneous architectures can extend these benefits
further, allowing the system to construct the right core at
run-time for each application, borrowing or freeing resources
only as needed by the particular application that is running.
The key insight in the described design is that 3D stacking
of cores eliminates the fundamental barrier to dynamic het-
erogeneity, allowing various resources belonging to different
cores to be shared at run-time with minimal overhead.

Categories and Subject Descriptors
C.1 [Processor Architectures]: General; C.1.3 [Processor
Architectures]: Other Architecture Styles—Adaptable ar-
chitectures, Heterogeneous (hybrid) systems

General Terms
Design, Performance

Keywords
3D stacking technology, core-on-core stacking, resource pool-
ing, energy efficiency

1. INTRODUCTION
The quest for performance has meant that modern general-

purpose cores are out-of-order, superscalar, with large spec-
ulative structures and large caches. Although these tech-
nologies are capable of boosting the performance of prob-
lematic applications, there is a significant cost in area and
power. Unfortunately, this cost is typically paid even for
less problematic applications. The problem is one of over-
provisioning – costly resources such as register files, reorder
buffers, instruction queues, load and store queues, and cache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

memory are each sized to satisfy the most demanding ap-
plications. However most applications will run well with
smaller amounts of each of these resources, and few, if any,
applications need all resources maximally sized.

While very static embedded cores can be highly tuned to
an individual application, the more dynamic the workload
(e.g., smart phones, mobile processors, server processors) the
more the processor core is over-provisioned to provide high
general-purpose performance on the variety of applications
that might be run on the core. In the multi-core era, ho-
mogeneous multicore designs exacerbate the problem, as the
over-provisioning is multiplied by the number of cores. Het-
erogeneous (or asymmetric) multicore designs, conversely,
provide multiple cores with different architectural features;
because a thread need only find a single core that runs it
effectively, no single core need be over-provisioned for all
possible applications. The heterogeneous cores greatly in-
crease the likelihood that a single thread finds a core that
matches its execution needs. We focus in particular on
single-ISA heterogeneous multicores [7, 9] which can dynam-
ically discover the best thread-to-core mapping, and change
that mapping across phases of execution, via core migra-
tion. Examples of such architectures now include the ARM
big.LITTLE processor and the NVIDIA Tegra 3.

Heterogeneous designs, because they eliminate or reduce
over-provisioning without necessarily sacrificing performance,
enable significant gains in performance per area and perfor-
mance per Watt [2]. In the Dark Silicon era, homogeneous
cores that cannot be turned on are of no use, but hetero-
geneous or specialized cores still add value. It has been
shown, for example, that when resources are constrained,
the optimal general-purpose multicore processor is not ac-
tually composed of general-purpose cores, but rather is a
collection of specialized cores [10].

Processors in which the cores are diverse but the char-
acteristics of each core is fixed at design time we will call
statically heterogeneous. Another alternative is to configure
the core to meet the exact needs of the current application
at runtime; we will call this approach a dynamically het-
erogeneous multicore processor. There will always be a cost
to this flexibility – a static core that exactly meets the de-
mands of an application will be more efficient than one that
must be configured; however, the likelihood of finding a core
that exactly meets the demands of a particular thread are
far greater in the dynamic case.

Several designs have been proposed that provide some

level of dynamic heterogeneity. These proposals include
Core Fusion [4], TFlex [6], and WiDGET [18]. In a 2-
dimensional plane, however, these designs all struggle with
the same tradeoff. Either the core pipelines are each layed
out tightly and resources (e.g., registers) that we would like
to share across cores are distant, or shareable resources are
configured close together significantly compromising the ef-
ficiency of each pipeline.
In the research primarily described in this paper, we make

the case that the recent advent of 3-D architectures opens an
opportunity to overcome the drawbacks of existing dynam-
ically heterogeneous designs [3]. A 3-D architecture is one
where there are multiple layers of logic implemented in ver-
tically stacked layers of silicon. Each layer can be connected
to circuit elements on other layers right above or below with
very low latency, as low as a few picoseconds [19]. For ex-
ample, if we have cores on multiple layers we can have each
pipeline efficiently designed in the 2D plane, yet register file
partitions of one core can still be very close (both in distance
and access time) to those of another core on a different layer,
making sharing or reassignment of those resources feasible.
In this paper we show the benefits of resource sharing

and core-on-core stacking architecture for enhancing perfor-
mance and power efficiency. This work describes a first-
cut 3-D architecture where multiple cores are placed verti-
cally one above the other on different layers of logic, with
low-latency sharing of certain pipeline resources. The ar-
chitecture has several attractive features, including vertical
sharing of resources, reuse of traditional 2D pipeline designs
that still exploit 3D geometries, reduced energy consump-
tion, and improved performance, especially when otherwise
unused resources can be reclaimed.

2. BACKGROUND – 3D DIE STACKING
3D die stacking is a recent technological development which

makes it possible to create chip multiprocessors using mul-
tiple layers of active silicon bonded with low-latency, high-
bandwidth, and very dense vertical interconnects [12]. 3D
die stacking technology provides very fast communication,
as low as a few picoseconds [19], between processing ele-
ments residing on different layers of the chip. Three dimen-
sional integration has the potential to address demands for
shrinking footprints, reduced power consumption, and en-
hanced overall performance of the system. Advances in the
manufacturing process [15] make fabrication of 3D stacking
architectures feasible as an emerging technology and com-
mercially employed solution [1]. Die stacking adds an extra
dimension for placing and routing circuit blocks and pro-
vides more flexibility for new architectures to improve per-
formance [13, 19].
3D stacking offers flexibility and features which benefit

new architectures: As feature sizes continue to shrink, in-
terconnect delays have become a critical bottleneck in chip
performance. Wiring buffers often have to be inserted to
keep the delays of long wires tractable, but these additional
buffers increase power consumption. By providing a third di-
mension of interconnect, communication latency and power
can be substantially reduced. For example, assuming a
quad-core AMD Bulldozer in 45nm technology, the regis-
ters of one core are essentially 5000 ps in wire delay from
another core that might like to share them. Conversely, the
distance between register files for vertically stacked cores is
closer to 5 ps. Additionally, three dimensional integration

offers the potential for significant increases in bandwidth.
Communication between blocks across dies can be signifi-
cantly faster and wider than with the same block across the
same chip.

3D technology, and its implications on processor architec-
ture, is still in the early stages of development. A number
of design approaches are possible and many have been pro-
posed, from alternating cores and memory/cache [13], to
folding a single pipeline across layers [14].

3. HETEROGENEOUS ARCHITECTURE
This section gives a brief overview of proposed heteroge-

neous architectures.
3.1 Static Heterogeneous Architecture

In a heterogeneous architecture, the various cores of a
chip multiprocessor are not all configured the same, en-
abling core designs that are each optimized for a subset of
the applications that might run on the processor. A het-
erogeneous architecture allows each thread to run on a core
that matches its resource needs more closely than a single
one-size-fits-all core. Heterogeneous architectures have ex-
isted in many forms, including IBM’s Cell processor, TI’s
OMAP, and AMD’s Fusion APU; however, those architec-
tures do not share a single ISA, meaning that code must
be mapped a priori to particular core types. Kumar, et
al. proposed Single-ISA Heterogeneous Multicore Architec-
tures [7, 9] to more effectively use the available hardware.
That work proposed statically heterogeneous designs – that
is, core designs that vary across the processor at design time.
Industry has now adopted these heterogeneous designs. In
particular, the ARM big.LITTLE combines a Cortex-A15
(Big) with Cortex-A7 (Little) and the Nvidia Tegra 3 has 4
performance cores and a fifth low-power core that can take
over when performance is not critical.

3.2 Dynamic Heterogeneous Architecture
Unlike static heterogeneous architecture, dynamic hetero-

geneous architectures provide more opportunity to map an
application to a core which matches its resource needs more
closely. Some of the first efforts to provide this kind of
heterogeneity include Core Fusion [4], TFlex [6], and WiD-
GET [18]. Because of the distance problem, each of these
architectures restricts sharing of resources to a relatively
coarse granularity to try to minimize steering and inter-
pipeline communication delays. Core Fusion has the ability
to merge all of the resources of small cores into compos-
ite cores that are double or quadruple the size. TFlex also
combines narrow-width pipeline cores to create wider cores.
WiDGET has the ability to borrow execution units from a
neighboring pipeline to construct cores with wider execution
bandwidth.

With a 3D architecture, we can dynamically pool resources
that are potential performance bottlenecks, for possible shar-
ing with neighboring cores. Because we aggregate resources
in the vertical dimension, we can share resources at a much
finer granularity. Vertically stacked cores can share resources
such as register file, functional units, reorder buffer, instruc-
tion queue, load and store queue, private L1 cache, and
branch predictor. With 3D integration we can design the
pipeline traditionally in the 2D plane, yet have poolable re-
sources connected along the 3rd direction on other layers.
Thus, in contrast to prior approaches, we can borrow some
renaming registers from one core that is not using them to
address a specific bottleneck in a second core, while the sec-

ond core might donate instruction queue entries it is not
using to the first.
The dynamically heterogeneous 3D processors we propose

provide several key benefits:
(1) They enable software to run on hardware optimized for

the execution characteristics of the running code, even for
software the original processor designers did not envision.
(2) They enable us to design the processor with compact,

lightweight cores without sacrificing general-purpose perfor-
mance. Modern cores are typically highly over-provisioned [8]
to guarantee good general-purpose performance – if we have
the ability to borrow the specific resources that a thread
needs, the basic core need not be over-provisioned in any
dimension.
(3) The processor provides true general-purpose perfor-

mance, not just adapting to the needs of a variety of appli-
cations, but also to both high thread-level parallelism (en-
abling many area-efficient cores) and low thread-level paral-
lelism (enabling one or a few heavyweight cores).
3.3 Challenges with Heterogeneous Designs
There remain several research challenges with heteroge-

neous architecture, beyond those addressed in this work.
(1) Architecture Diversity: The design space for static het-
erogeneous architectures is huge, and identifying an opti-
mal design is difficult. Dynamically heterogeneous designs
only push this problem down to the runtime, where finding
the best configuration dynamically for a particular thread is
still a very difficult problem. Even the static design choices
(which resources to share, and how to share without adding
complexity to the baseline pipeline) for the dynamic het-
erogeneous architecture are not obvious. (2) Application
Mapping: Mapping applications to a heterogeneous archi-
tecture to benefit from the diverse core flavor is also a com-
plex problem, particular because different phases of the same
application will often prefer different cores or configurations.
(3) Programming Model: Programming a heterogeneous ar-
chitecture can pose several challenges. While this work as-
sumes heterogeneity that is transparent to the programming
model, heterogeneity that introduces more specific accelera-
tors and custom architectures will require new programming
paradigms which must balance performance, programmabil-
ity, and portability.

4. DYNAMIC HETEROGENEITY WITH 3D
CORE-ON-CORE STACKING

In this section we present our solution for dynamic hetero-
geneity and demonstrate how core-on-core stacking enables
resource sharing and run-time adaptation in this new archi-
tecture.

4.1 Baseline Architecture
In this section, we discuss the baseline chip multiproces-

sor architecture and derive a reasonable floorplan for the
3D CMP. This floorplan is the basis for our initial power,
temperature, and performance modeling of various on-chip
structures and the processor as a whole.
In this research, we are simply attempting to add a new

alternative to the 3D design space. A principal advantage
of the dynamically heterogeneous 3D architecture is that it
does not change the fundamental pipeline design of 2D ar-
chitectures, yet still exploits the 3D technology to provide
greater energy proportionality and core customization. For
comparison purposes, we will compare against a commonly
proposed approach which preserves the 2D pipeline design,

(a) (b)

Core

Cache

Memory

Layer 0

Layer 1

Layer 2

Layer 3

(c)

Figure 1: CMP configurations: (a) baseline and (b)
4 layers resource pooling (c) 2 layers resource pool-
ing.

but where core layers enable more extensive cache and mem-
ory. For the choice of core we initially study two types of
architecture, a high-end architecture which is an aggressive
superscalar processor with issue width of 4, and a medium-
end architecture which is an out-of-order processor with is-
sue width of 2. The detailed architecture specification for
each case has been presented in [3].

4.1.1 Floorplans
For our high-end processor we assume the same floorplan

and same area as the Alpha 21264 [5] but scaled down to
45nm technology. For the medium-end architecture we scale
down the Alpha 21264 floorplan (in 45nm) based on smaller
pipeline components. Moving from 2D to 3D increases power
density due to the proximity of the active layers. As a result,
temperature is always a concern for 3D designs. Early work
in 3D architectures assumed that the best designs sought to
alternate hot active logic layers with cooler cache/memory
layers. More recent work contradicts that assumption – it is
sometimes more important to put the active logic layers as
close as possible to the heat sink. Therefore, an architecture
that clusters active processor core layers tightly is consistent
with this approach. Other research has also exploited this
principle.

For the rest of this work we focus on three types of floor-
plan; the baseline which puts all cores in one layer as shown
in Figure 1(b) (thermal-aware) and our proposed floorplans
which stack cores vertically across four layers as shown in
Figure 1(b) or across two layers as shown in Figure 1(c)
(performance-aware). All of these floorplans preserve the
traditional 2D pipeline, but each provides a different perfor-
mance, flexibility, and temperature tradeoff.

The thermal-aware architecture keeps the pipeline logic
closest to the heat-sink and does not stack pipeline logic
on top of pipeline logic. Conversely, the 3D dynamically
heterogeneous configuration stacks pipeline logic on top of
pipeline logic, as in other performance-aware designs, gain-
ing increased processor flexibility through resource pooling.

4.2 Motivation for Resource Sharing
Combining 3D die stacking with chip multiprocessors that

span multiple layers of active silicon, among other bene-
fits, places more resources within reasonable access time
than would otherwise be configured on a single 2D pipeline,
thanks to the existence of fast vertical interconnects.

The focus of this work is on resource adaptation in four
major delay and performance-critical units – the reorder

Figure 2: Speedup from increasing resource size in
the 3D stacked CMP with medium-end and high-
end cores

buffer, register file, load/store queue, and instruction queue.
By pooling (allocating resources from a single combined pool
to the set of cores that are stacked vertically) just these re-
sources, we create an architecture where an application’s
scheduling window can grow to meet its runtime demands,
potentially benefiting from other applications that do not
need large windows.
We assume 4 cores are stacked on top of each other. The

maximum gains will be achieved when one, two, or three
cores in our 4-core CMP are idle, freeing all of their poolable
resources for possible use by running cores. The one-thread
case represents a limit study for how much can be gained
by pooling, but also represents a very important scenario –
the ability to automatically configure a more powerful core
when thread level parallelism is low. This does not repre-
sent an unrealistic case for this architecture – in a 2D ar-
chitecture, the cost of quadrupling, say, the register file is
high, lengthening wires significantly and moving other key
function blocks further away from each other. In this archi-
tecture, we are exploiting resources that are already there,
the additional wire lengths are much smaller than in the 2D
case, and we do not perturb the 2D pipeline layout.
We examine two baseline architectures— a 4-issue high-

end core and a 2-issue medium-end core. In Figure 2 we re-
port the speedup for each of these core types when selected
resources are quadrupled (when 3 cores are idle). This repre-
sents an upper bound for the performance gain with resource
sharing across four vertically stacked cores.
In several benchmarks a performance gain of 2X is ob-

served. On average, 45% performance improvement can be
achieved for the medium-end processor, and 26% for the
high end, by increasing selected window resources. Most
importantly, the effect of increased window size varies dra-
matically by application. This motivates resource pooling,
where we can hope to achieve high overall speedup by allo-
cating window resources where they are most beneficial.

5. ARCHITECTURAL SUPPORT, CIRCUIT
IMPLEMENTATION, AND TECHNOLOGY
MODELING

While resources between stacked cores on different layers
are physically close, we still need architectural solutions to
allow those resources to be shared (re-allocated from one
core to another). We need mechanisms and policies to con-
trol the sharing of resources. Architectural solutions are
required to allow a partition of a resource to be accessed by
other cores. For example, at the architecture level we need
to modify register renaming to be able to share a register file
between different cores. We also need architectural support

to direct the allocation and re-allocation of those partitions.
We provide the detailed architectural modifications required
to enable resource sharing in various processor units in [3].

The implementation of a heterogeneous IC with multi-
ple cores sharing computing resources requires novel cir-
cuits techniques to properly control the signaling between
device planes, the synchronization of the data paths, and
the power delivery of each plane. Circuit modifications to
properly couple two adjacent device planes for resource shar-
ing are described in [3]. Through silicon vias (TSVs), the
technology that permits vertical stacking of device planes,
can potentially influence the impedance of interconnects be-
tween device planes as well as negatively affect the active
silicon area available to circuits. Therefore, an electrical
analysis of the TSV and the area penalty of using TSVs
need to be considered [3]. In addition, circuit techniques
and methodologies to distribute power across device planes
and synchronize circuit blocks found in disparate technolo-
gies are required. Multi-plane power delivery requires that
the current demands of each device plane are met while also
ensuring no violations of the noise requirements of each tier.
The design of the clock distribution network must meet the
skew and slew requirements of the data paths across device
planes.

In [3] we present the circuit modifications required to en-
able sharing of the register file, reorder buffer, instruction
queue, and load/store queue across different cores. The
overall delay added to the ROB or RF due to the required
additional multiplexing and decoding is shown to be small,
ranging from 0.04 ns to 0.12 ns in 45nm technology, which
only effects the clock rate if those resources were already on
or near the critical path. The area overhead of the design
(e.g., keep out area of TSVs) is found to be lower than 1%.

6. ADAPTIVE ALLOCATION
In addition to the circuit modifications that are neces-

sary to allow resource aggregation across dies, we also need
mechanisms and policies to control the pooling or sharing
of resources. In devising policies to manage the new shared
resources in this architecture, we would like to maximize
flexibility; however, design considerations limit the granu-
larity (both in time and space) at which we can partition
core resources. Time is actually the easier issue. Because
the aggregated structures are quite compact (in total 3D
distance), we can reallocate partitions between cores very
quickly, within a cycle or cycles. However, to reduce circuit
complexity, we expect to physically repartition on a more
coarse-grain boundary (e.g., four or eight entries rather than
single entries). We experiment with a variety of size gran-
ularities for reallocation of pooled resources. Large parti-
tions both restrict the flexibility of pooling and also tend to
lengthen the latency to free resources. We also vary how
aggressively the system is allowed to reallocate resources;
specifically, we explore various static settings for the mini-
mum (MIN) and the maximum (MAX) number of partitions
a single core can own, which determine the floor and the ceil-
ing for core resource allocation.

Our baseline allocation strategy exploits two principles.
First, we need to be able to allocate resources quickly. Thus,
we cannot reassign active partitions, which could take hun-
dreds of cycles or more to clear active state. Instead we
actively harvest empty partitions into a free list, from which
they can later be assigned quickly. Second, we do not wait

Figure 3: Comparison between the medium-end and
the high-end core with and without 3D sharing.

to harvest empty partitions on demand — we grab them im-
mediately when they become free. This works because even
if the same core needs the resource again right away, it can
typically get it back in a few cycles.
We assume a central arbitration point for the (free) pooled

resources. A thread will request additional partitions when
a resource is full. If available (on the list of free partitions),
and the thread is not yet at its MAX value, those resources
can be allocated upon request. As soon as a partition has
been found to be empty it is returned to the free list (unless
the size of the resource is at MIN). The architecture could
adjust MIN and MAX at intervals depending on the behav-
ior of a thread, but this will be the focus of future work –
for now we find static values of MIN and MAX to perform
well. If two cores request resources in the same cycle, we
use a simple round-robin priority scheme to arbitrate.

7. RESULTS
In order to evaluate different resource adaptation policies,

we add support for dynamic adaptation to the SMTSIM
simulator [17], configured for multicore simulation.The ar-
chitecture configurations for both medium-end and high-end
cores have been presented in [3], in detailed. For power es-
timation we used McPAT [11] and integrated it with SMT-
SIM. For temperature calculation we use Hotspot 5.0 [16]
and our detailed configuration for thermal analysis has been
presented in [3].

7.1 Performance
This section demonstrates the performance advantage of

resource pooling. We assume all configurations reported
pool resources among vertically stacked cores, whether the
workload is four threads or two. Therefore, for the 2-layer
floorplan, a total of two cores pool resources together. For
the case of a 4-layer floorplan all four cores pool resources to-
gether. All cores allocate resources greedily, within the con-
straints of the MIN and MAX settings. Assuming MIN and
MAX are constant over time and the same for all cores we
performed a large space exploration (not shown) and found
that setting MIN=0.125, MAX=1.0 gives us the best per-
formance results. For the four layer floorplan, our results [3]
indicate that while we can get significant performance gains
(8-9%) with full utilization (four threads), gains are dra-
matic when some cores are idle. With two threads we get
26-28% performance for the best policy. Not surprisingly,
setting a MIN value to zero, in which case a core can actu-
ally give up all resources (for example if it is stalled for an
Icache miss) is a bad idea.
To directly compare medium-end and high-end architec-

ture, we show the results for the two architectures (no shar-
ing and sharing with MIN=0.125 and MAX=1.0, for the two

Figure 4: Power consumption per core for
MIN=0.125, MAX=1.0 as well as the baseline (no
sharing) for 2 and 4 thread workloads. All results
normalized to high end core power when there is no
resource sharing.

layer floorplan and the four layer floorplan) all normalized
to the high-end no sharing result, in Figure 3. From this
graph we can see that resource pooling makes the medium
core significantly more competitive with the high-end. With-
out sharing, the medium core operates at 75% of the per-
formance of the high end. For the 4-layer floorplan, with
pooling and four active threads it operates at 79%, with
two active threads, it operates at 83%, and with one ac-
tive thread, it operates at 97% of the performance of the
high-end core. For the 2-layer floorplan, with pooling and
two active threads it operates at 81% of the high end core;
with one active thread, it operates at 87% of the high-end
core. In both floorplans, the larger number of idle cores pro-
vide potential to bridge the performance gap between a high
performance core and medium core, using resource sharing.
Also, comparing the 2-layer and 4-layer floorplan we can ob-
serve that for one active thread the 4-layer design provide
substantially higher performance compared to a 2-layer de-
sign, as expected. However as we increase the number of
active threads the performance gap between the 2-layer de-
sign and the 4-layer design diminishes. In some cases the 2-
layer case outperforms the 4-layer – some static partitioning
actually helps. This implies that our simple greedy alloca-
tion of partitions is not providing optimal sharing with the
larger number of cores, an opportunity for future research.
The one case where the difference is significant is with two
threads – in this case each thread (in the two layer case)
gets all the resources of two cores; however, with four-layer
sharing and two threads, one greedy thread can still interfere
with the other thread.

7.2 Power, Temperature, and Energy
Figure 4 shows the power consumption of the studied

architectures. The pooling processor architectures pay a
small price in power, in large part because of the enhanced
throughput. The small additional power overhead is in con-
trast in some cases to the large performance benefit (in
terms of weighted speed up). This is not an obvious re-
sult. It happens because weighted speedup weights appli-
cation speedups equally (rather than over-weighting high-
IPC threads, which throughput measures do). Because we
get some large speedups on low-IPC threads, we see high
average speedup, but smaller increase in total instruction
throughput and thus smaller increase in power.

Because of the layout advantages (remember, the baseline
processor places all cores right next to the heat sink), the
cost in maximum temperature is more significant (Figure 5).
Interestingly, the temperature of the medium resource-pooling

Figure 5: MAX temperature for MIN=0.125,
MAX=1 and baseline for 2-thread workloads and
4-thread workloads.

Figure 6: MIPS2 per Watt for the 2-thread and the
4-thread workloads normalized to the high-end con-
figuration without sharing.

core is comparable to the high-end core. This is because we
assume the medium core is laid out tightly, resulting in a
slightly higher max temperature for four-thread workloads.
For two-thread workloads, the medium resource-pooling core
has slightly lower temperature than the high-end core (av-
erage 2 degree lower). If the medium core covered the same
area as the high-end core, for example, the max tempera-
ture would be significantly lower. As Figure 5 shows, in the
medium-end architecture the temperature rise is more sig-
nificant than the high-end architecture, i.e., 10oC compared
to 6oC in both 2 thread and 4 thread. This is because we
assume a weaker packaging for the medium-end design com-
pared to the high-end design. As expected, by stacking more
layers, the temperature rises, however, the 2-layer floorplan
adds only 4oC in temperature, while the 4-layer resource
pooling increases the temperature by 10oC. Even still, at
equal temperature, the more modest cores have a signifi-
cant advantage in energy efficiency measured in MIPS2/W
(note that MIPS2/W is the inverse of energy-delay prod-
uct), as seen in Figure 6. This is a critical result. By out-
performing the non-pooling medium core, and approaching
the performance in some cases of the large core (due to its
just-in-time provisioning of resources), the dynamically het-
erogeneous medium-end core provides the highest energy ef-
ficiency. For high-end cores, the 2-layer resource pooling
always provide better energy efficiency compare to 4-layer.
For both medium-end and high-end cores the energy effi-
ciency significantly improves with resource pooling when 2
threads are running (up to 2.8x and 1.6x respectively). How-
ever, when the load is high (4 thread), the improvement is
minor for high-end cores. In other words, more idle cores
provide more opportunity to exploit resource sharing and
increase energy efficiency.

8. CONCLUSIONS
A dynamically heterogeneous architecture aims to change

both the configuration and the quantity of cores available,

in response to the running workload. The challenge with
existing dynamically heterogeneous design is that they can
only configure the resources at coarse granularities, due to
the communication distances across pipelines. This paper
describes a dynamically heterogeneous 3D stacked architec-
ture which enables very fine-grain reallocation of resources
between cores, through resource pooling on a stacked chip
multiprocessor architecture. It leverages our current exper-
tise in creating tight 2D pipelines on one layer, while ac-
cessing pooled resources of the same type on other layers.
By eliminating the need to over-provision each core, mod-
est cores become more competitive with high-performance
cores, enabling an architecture that gives up little in per-
formance, yet provides strong gains in energy-delay product
over a conventional high-performance architecture.

9. REFERENCES
[1] Tezzaron semiconductor. In www.tezzaron.com.
[2] M. Hill and M. Marty. Amdahl’s law in the multicore

era. Computer, 2008.
[3] H. Homayoun et al. Dynamically heterogeneous cores

through 3d resource pooling. In HPCA, Feb 2012.
[4] E. Ipek et al. Core fusion: Accommodating software

diversity in chip multiprocessors. In ISCA, June 2007.
[5] R. Kessler et al. The alpha 21264 microprocessor

architecture. In ICCD, 1998.
[6] C. Kim et al. Composable lightweight processors. In

MICRO, 2007.
[7] R. Kumar and et. al. Single-ISA Heterogeneous

Multi-core Architectures: The Potential for Processor
Power Reduction. In MICRO, 2003.

[8] R. Kumar and et. al. Conjoined-core chip
multiprocessing. In MICRO, Dec. 2004.

[9] R. Kumar et al. Single-ISA Heterogeneous Multi-core
Architectures for Multithreaded Workload
Performance. In ISCA, June 2004.

[10] R. Kumar and et. al. Core architecture optimization
for heterogeneous chip multiprocessors. In PACT,
2006.

[11] S. Li and et. al. Mcpat: an integrated power, area, and
timing modeling framework for multicore and
manycore architectures. In MICRO, pages 469–480.
IEEE, 2009.

[12] G. H. Loh, Y. Xie, and B. Black. Processor design in
3d die-stacking technologies. IEEE Micro, 2007.

[13] N. Madan et al. Optimizing communication and
capacity in a 3d stacked reconfigurable cache
hierarchy. In HPCA, 2009.

[14] K. Puttaswamy and G. H. Loh. Dynamic instruction
schedulers in a 3-dimensional integration technology.
In GLSVLSI, 2006.

[15] V. Rao et al. Tsv interposer fabrication for 3d ic
packaging. In Electronics Packaging Technology
Conference, 2009.

[16] K. Skadron et al. Temperature aware
microarchitecture. In ACM SIGARCH Computer
Architecture News, volume 31, pages 2–13. ACM, 2003.

[17] D. Tullsen. Simulation and modeling of a simultaneous
multithreading processor. In CMG, 1996.

[18] Y. Watanabe et al. WiDGET: Wisconsin decoupled
grid execution tiles. In ISCA, June 2010.

[19] D. H. Woo et al. An optimized 3d-stacked memory
architecture by exploiting excessive, high-density tsv
bandwidth. In HPCA, 2010.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140421094700
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 28.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 28.8000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

