
Big Data Analytics on Heterogeneous Accelerator Architectures
Katayoun Neshatpour, Avesta Sasan, Houman Homayoun

Electrical and Computer Engineering Department, George Mason University
kneshatp@gmu.edu, asasan@gmu.edu, hhomayou@gmu.edu

ABSTRACT
In this paper, we present the implementation of big data analytics
applications in a heterogeneous CPU+FPGA accelerator
architecture. We develop the MapReduce implementation of K-
means, K nearest neighbor, support vector machine and Naive
Bayes in a Hadoop Streaming environment that allows developing
mapper/reducer functions in a non-Java based language suited for
interfacing with FPGA-based hardware accelerating environment.
We present a full implementation of the HW+SW mappers on the
Zynq FPGA platform. A promising speedup as well as energy-
efficiency gains of upto 4.5X and 22X is achieved, respectively,
in an end-to-end Hadoop implementation.

1. INTRODUCTION
Emerging big data analytics applications require a significant
amount of server computational power. However, these
applications share many inherent characteristics that are
fundamentally different from traditional desktop, parallel, and
scale-out applications [6,13,14]. They heavily rely on specific
deep machine learning and data mining algorithms. The
characteristics of big data applications necessitate a change in the
direction of server-class microarchitecture, to improve their
computational efficiency. However, while demand for data center
computational resources continues to grow with the growth in the
size of data, the semiconductor industry has reached scaling limits
and is no longer able to reduce power consumption in new chips.
Thus, current server designs based on commodity homogeneous
processors, are no longer efficient in terms of performance/watt to
process big data applications [6,13,14].
To address the energy efficiency problem, heterogeneous
accelerator architectures have emerged to allow each application
to run on a core that best matches its resource needs, than a one
size-fits-all processing node. A heterogeneous chip architecture
integrates cores with various micro-architectures with on-chip
GPU or FPGA accelerators, so that the application can find a
better match among various components to improve energy
efficiency. Most recent work on hardware acceleration of big data
analytics have focused on the implementation of an entire
particular machine learning application, or offloading an entire
phase of MapReduce to the FPGA hardware [10,11,12]. While
these approaches provide performance benefit, their
implementations require excessive hardware resources and
extensive design effort. As an alternative, hardware+software
(HW+SW) co-design trades some speedup at the benefit of less
hardware and more design automation using high-level synthesis
(HLS) tools. To understand the potential performance gain of
HW+SW co-design to accelerate analytics applications in
MapReduce, in our most recent work [3,9,10,12] including this

paper we present a full end-to-end implementation of big data
analytics applications in a heterogeneous CPU+FPGA
architecture, taking into account various communication and
computation overhead in the system. The rest of the paper
presents the result of our latest effort on big data acceleration.

2. SYSTEM ARCHITECTURE
Fig. 1 shows the system architecture of a single-node, multi-core
heterogeneous accelerator platform studied in this paper. While in
a general purpose CPU, mapper/reducer slots are mapped to a
single core, in a heterogeneous accelerator architecture depicted in
Fig. 1, each mapper/reducer slot is mapped to a core that is
extended with an FPGA accelerator. In a homogenous
architecture, the cores are connected together through their
shared-memory distributed interconnect. On the other hand, in a
heterogeneous accelerator architecture the interconnection
interface between the FPGA and CPU, is the main overhead in
this architecture. However, given the tight integration between
FPGA and CPU, the acceleration of the mapper/reducer slots,
with the FPGA, introduces no significant off-chip data transfer
overhead. For implementation purposes, we compare two types of
general-purpose core architectures; low-power little Intel Atom
C2758 core, and high-performance big Intel Xeon E5 core. Note
that the general-purpose core is required for job scheduling as
well as HDFS management. Each FPGA shown in Fig. 1 is a low
cost Xilinx Artix-7. The integration between the core and the
FPGA is compatible with the advanced micro-controller bus
architecture (AMBA) and utilizes the Advanced eXtensible
Interface (AXI)-interconnect. Fig. 2 shows the system architecture
of a multi-node cluster. The architecture consists of a
homogeneous CPU as the NameNode, which is connected to
several DataNodes with heterogeneous accelerators. The
NameNode is responsible for job scheduling and workload
distribution between all DataNodes. The number of map/reduce
slots on each DataNode is based on its number of cores.

3. METHODOLOGY
This paper characterizes the FPGA acceleration potential for big
data analytics applications. Accordingly, we develop MapReduce
implementation of data mining and machine applications as
examples of big data analytics applications. Subsequently, we
accelerate the map/reduce function through HW+SW co-design.
It should be noted that Hadoop applications are mostly
implemented in Java; however, the FPGA+CPU platforms allow
hardware acceleration of C-based applications. However, Hadoop
Streaming allows any executable or script to be used as the
mapper and/or reducer function in the Hadoop. Our methodology
for HW acceleration includes two levels of profiling.
1) Profiling of the entire application in MapReduce: MapReduce
platform is comprised of several execution phases; we use the
timing information to calculate the execution time of each phase
of the entire MapReduce before the acceleration.
2) Profiling of the map/reduce functions: Since only the
map/reduce functions are accelerated, we profile these functions
in order to find out the execution time of different sub-functions
within the map/reduce and select the sub-functions with the
highest execution time (hotspot) to offload to the FPGA for
acceleration. To estimate the execution time after the acceleration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CODES/ISSS '16, October 01-07, 2016, Pittsburgh, PA, USA
© 2016 ACM. ISBN 978-1-4503-4483-8/16/10…$15.00
DOI: http://dx.doi.org/10.1145/2968456.2976765

accurately, we fully implement the map/reduce functions on the
Zedboards, featuring XC7Z020 Zynq, which integrates ARM
Cortex-A9 with an Artix-7 FPGA. The connections between the
core and the FPGA is established through the AXI interconnect.
Subsequently, based on the information about the execution time
of each phase, and the speedup of the map/reduce functions, we
perform a comprehensive analysis to find out how acceleration of
the map/reduce functions contribute to the acceleration of the
entire application on Hadoop MapReduce.
4. PARAMETER TUNING
The execution time, power and energy-efficiency of MapReduce,
both before and after acceleration, is affected by various
parameters at the system, architecture and application-level. We
describe the major parameters briefly in the sequel.
1) Size of HDFS block size: Hadoop stores data in highly fault-
tolerant distributed file system (HDFS). The size of the HDFS
block size is optimized to account for the requirements of the
Hadoop architecture. On one hand, reading and writing data at
high volume (granularity) is efficient, as it improves performance
by decreasing the amount of metadata that is tracked in the file
system, and allows memory access latency to be amortized over a
large volume of data. On the other hand, lower granularity allows
better exploitation of parallelism and resources.
2) Number of mapper/reducer slots: An important criteria while
making architectural decisions is the restrictions on the number of
mapper/reducer slots. The MapReduce programmer decides the
number of map and reduce tasks. First, the input data is divided
into data splits. Then, based on the data split size, the number of
map tasks is derived. However, the number of tasks that are
executed in parallel depends on the hardware resources, namely
mapper/reducer slots.	
 Experiments show that for performance
optimization the number of slots is best to be tuned in a range of
(0.95-1.75)× the number of available cores [2].
3) Core architecture: The general-purpose core used for job
scheduling and HDFS management greatly affects the
acceleration benefits. While the acceleration could improve the
speed more significantly in one architecture (little core), it could
enhance the energy-efficiency more in the other (big core).
It should be noted that the optimal configuration for performance,
energy or a trade-off of both is a function of all above parameters,
thus, we carry-out real experiments for various corners to find the
optimal solution for a given optimization goal. In the results
section we show the results with the lowest post acceleration time.

5. RESULTS
Table 1 shows the results of the HW+SW acceleration of the
mapper functions using the FPGA and interconnect resources in
the Zynq platform. The non-accelerated parts of the mapper
functions remain on the Atom and Xeon cores. Based on the
results in the table the mapper function shown to gain more
performance improvement on Atom. Table 2 and Table 3 show
the execution time and power of the studied applications. Results
show that an acceleration of upto 4.5X can be achieved. Moreover
the speedup values are higher on Atom than Xeon. This is due to
the fact that in Atom a higher portion of the execution time is
spent in the accelerated phases (map/reduce). However, both
before and after the acceleration, Xeon outperforms Atom. The
power results show that the power consumption mostly increases
after the acceleration of Atom, which is expected, as Atom cores
are designed to be low power. However the acceleration shows
potential for power reduction on Xeon. Based on the results from
Table 2 and Table 3, the hardware acceleration improves the
speed more on Atom while reducing power on Xeon. Overall the
Energy-Delay Product (EDP), which is an indication of energy-

Fig. 1. Single-node heterogeneous accelerator architecture.

Fig. 2. Multi-node heterogeneous accelerator architecture.

efficiency, improves significantly in both architectures. The
energy-efficiency gain varies significantly across applications and
architectures. While in Naïve Bayes a 22X EDP gain is achieved,
in SVM the energy-efficiency gain show to be only 8%.
5.1 Scalability in a Multi-node Architecture
In order to understand the scalability of our proposed acceleration
method, we study HW+SW acceleration in a multi-node cluster
and across a large range of input data size. We use a 12-node (1
NameNode and 11 DataNodes) cluster, each with dual Intel Xeon
E5 allowing upto 176 mapper/reducer slots to run simultaneously.
We execute the applications for various data sizes. It should be
noted that as the input data size increases, the execution time does
not increase linearly with the size of data. Thus, in Fig. 3 we show
the execution time for each GB of data for various data sizes (for
all applications except SVM as there is no significant performance
benefit). The dashed line shows the time after the acceleration.
The figure shows that as the size of data increases beyond 20GB,
the execution time per 1GB of data converges to fixed values for
each application both before and after acceleration. However with
acceleration, this happens earlier, at a smaller data size. In fact
acceleration increases the role of communication overhead in
deciding the overall performance. Also increasing the data size
increases the amount of intra-node communication and therefore
makes the hardware acceleration less effective.

6. RELATED WORK
The performance and bottlenecks of Hadoop MapReduce, as a de
facto standard for big data analysis, have been extensively studied
in recent work [4,5,6,13]. To enhance the performance of
MapReduce and based on the performance bottlenecks found,
hardware accelerators are finding their ways in cloud scale system
architectures. MARS [7], a MapReduce framework on an
NVIDIA G80 GPU and Cluster GPU MapReduce [8] are
examples of the GPU-based accelerator platforms. However, GPU

Table 1.	
 Acceleration and resource utilization of HW+SW
acceleration of mapper functions

Resources Available Utilization (%)

 SVM K-means KNN NB
FF 35200 7.57 6.38 4.07 4.28
LUT 17600 12.03 11.98 7.13 8.66
Memory LUT 6000 1.23 2.03 1.14 1.23
BRAM 60 59.29 37.86 47.5 62.14
DSP48 80 2.27 9.55 0 0
BUFG 32 3.13 3.13 3.13 3.13
Mapper acceleration on Atom 1.028 4.2 2.51 8.99
Mapper acceleration on Xeon 1.042 7.9 3.9 18.52

Table 2. Execution time and speedup of the end-to-end
MapReduce after acceleration of the map phase

Application Core time[s] Accel time [s] Speedup
Naïve Bayes Atom 1256.32 275.48 4.561

Xeon 756.59 182.68 4.142
K-means Atom 60.22 18.60 3.238

Xeon 41.34 23.19 1.783
KNN Atom 707.14 332.66 2.126

Xeon 369.87 240.45 1.538
SVM Atom 51.90 50.44 1.029

Xeon 35.19 34.89 1.008
Table 3. Power of the end-to-end MapReduce before and after

the acceleration of the map phase
Application Core Initial

power [w]
Accel
power [w]

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑤𝑒𝑟
𝑎𝑐𝑐𝑒𝑙 𝑝𝑜𝑤𝑒𝑟

 EDP
ratio

Naïve Bayes Atom 5.94 11.2 0.53 11.04
Xeon 38.37 29.65 1.29 22.20

K-means Atom 3.65 7.49 0.49 5.11
Xeon 12.99 14.33 0.91 2.88

KNN Atom 3.53 5.29 0.67 3.02
Xeon 27.69 25.33 1.09 2.48

SVM Atom 3.56 3.52 1.01 1.07
Xeon 26.05 24.81 1.05 1.08

Fig. 3. The execution time per 1GB of the MapReduce for
various input sizes on a 12-node cluster.
-based work mostly target performance optimizations at the cost
of more power, therefore are not the most energy-efficient
solution. Alternatively, FPGAs, by allowing hardware
customizations to match application demands, have been used as a
more energy-efficient solution. Examples of FPGA acceleration
platforms for big data is Microsoft’s composable fabric used to
accelerate portions of large-scale software services, which
consists of 6x8 2-D torus of Stratix V FPGAs embedded into a
half-rack of 48-node machine [1]. Heterogeneous architecture
research platform (HARP), is another example designed for server
architectures that uses HW+SW acceleration by integrating Intel
CPU with Altera FPGAs. These work mainly rely on high
performance, high cost FPGAs with a fast dedicated
interconnection network to improve performance. However, in
our recent work [3,9,12] including this work we use a low cost,
small FPGA fabric to improve performance of Hadoop
MapReduce applications which makes it a cost-effective and
scalable solution for big data analytics in cloud architectures.
Given the importance of MapReduce for big data analytics, recent

work [4,11] have used hardware accelerators to improve the speed
of MapReduce on heterogamous platforms by offloading an entire
MapReduce application on the accelerator. While these work have
mainly focused on the implementation of an entire phase of
MapReduce on the hardware and for particular applications, their
implementations require excessive hardware resources and is not
automated. As an alternative, in our work [3,9,10,12,14] the map
phase in MapReduce is accelerated through HW+SW co-design,
which trades some speedup at a benefit of less hardware and more
automation. Moreover, we focus on the acceleration for non-Java
based map and reduce functions, which makes it a favorite choice
for hardware programming. C/C++ definition of such functions in
Hadoop streaming allows a flexible partitioning of them between
the FPGA and CPU core on platforms that allow their on-chip
integration such as Xilinx Zynq and Altera Arria. This is the first
step towards a full-automated solution [3,9,12].

7. CONCLUSION
In this paper, we presented a full end-to-end implementation of
big data analytics applications in a heterogeneous CPU+FPGA
architecture. We developed the MapReduce parallel
implementation of K-means, KNN, SVM and naive Bayes in a
Hadoop Streaming environment. We accelerated the mapper
functions through HW+SW co-design with full implementations
on the Zynq FPGA platform. Overall, the experimental results
show that a low cost embedded FPGA platform, programmed
using our proposed HW+SW co-design method, yields
performance and energy efficiency gains for MapReduce
computing in cloud-based architectures, significantly reducing the
reliance on large number of big high-performance cores for high
performance designs.

8. REFERENCES
[1] A. Putman, et al, “A configurable fabric for accelerating

large-scale datacenter services,” in ISCA 2014, pp. 13-24.
[2] K. Tannir, “Optimizing Hadoop for MapReduce Publishing,”

Packt Publishing Ltd, 2014.
[3] K. Neshatpour, et al. "Energy-efficient acceleration of big

data analytics applications using fpgas." 2015 Big Data.
[4] T. Honio et. al., “Hardware acceleration of Hadoop

MapReduce,” in 2014 IEEE Int. Conf. Big Data, 2013.
[5] D. Jiang, et. al., “The performance of MapRedce: An in-

depth study, “ Proc. VLDB., vol. 3, no. 1-2.
[6] M. Malik, et. al, “System and Architecture Level

Characterization of Big Data Applications on Big and Little
Core Server Architectures,” 2015 IEEE Big Data.

[7] B. He, et. al, “Mars: a MapReduce framework on graphics
processors”, PACT 2008.

[8] J. A. Stuart and J.D. Owens, “Multi-GPU MapReduce on
GPU clusters,” 2011 IEEE IPDPS, 2011, pp. 1068-1079.

[9] K. Neshatpour, et al. "Accelerating big data analytics using
fpgas." IEEE FCCM 2015.

[10] K. Neshatpour, et al. “Big Biomedical Image Processing
Hardware Acceleration: a Case Study for K-means and
Image Filtering”, in ISCAS 2016.

[11] Y. Shan., et al. “FPMR: MapReduce framework on FPGA,”
in 2010 ACM/SIGDA Conf FPGA, pp. 93-102

[12] K. Neshatpour, et al. "Accelerating machine learning kernel
in hadoop using fpgas." IEEE/ACM CCGRID 2015.

[13] M. Malik , H. Homayoun. “Big data on low power cores: Are
low power embedded processors a good fit for the big data
workloads?” IEEE ICCD 2015.

[14] H. Homayoun. “Heterogeneous chip multiprocessor
architectures for big data applications”, ACM International
Conference on Computing Frontiers, 2016.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryList_V1
 qi2base

