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ABSTRACT 
In this paper, we present the implementation of big data analytics 
applications in a heterogeneous CPU+FPGA accelerator 
architecture. We develop the MapReduce implementation of K-
means, K nearest neighbor, support vector machine and Naive 
Bayes in a Hadoop Streaming environment that allows developing 
mapper/reducer functions in a non-Java based language suited for 
interfacing with FPGA-based hardware accelerating environment. 
We present a full implementation of the HW+SW mappers on the 
Zynq FPGA platform. A promising speedup as well as energy-
efficiency gains of upto 4.5X and 22X is achieved, respectively, 
in an end-to-end Hadoop implementation. 

1. INTRODUCTION 
Emerging big data analytics applications require a significant 
amount of server computational power. However, these 
applications share many inherent characteristics that are 
fundamentally different from traditional desktop, parallel, and 
scale-out applications [6,13,14]. They heavily rely on specific 
deep machine learning and data mining algorithms. The 
characteristics of big data applications necessitate a change in the 
direction of server-class microarchitecture, to improve their 
computational efficiency. However, while demand for data center 
computational resources continues to grow with the growth in the 
size of data, the semiconductor industry has reached scaling limits 
and is no longer able to reduce power consumption in new chips. 
Thus, current server designs based on commodity homogeneous 
processors, are no longer efficient in terms of performance/watt to 
process big data applications [6,13,14]. 
To address the energy efficiency problem, heterogeneous 
accelerator architectures have emerged to allow each application 
to run on a core that best matches its resource needs, than a one 
size-fits-all processing node. A heterogeneous chip architecture 
integrates cores with various micro-architectures with on-chip 
GPU or FPGA accelerators, so that the application can find a 
better match among various components to improve energy 
efficiency. Most recent work on hardware acceleration of big data 
analytics have focused on the implementation of an entire 
particular machine learning application, or offloading an entire 
phase of MapReduce to the FPGA hardware [10,11,12]. While 
these approaches provide performance benefit, their 
implementations require excessive hardware resources and 
extensive design effort. As an alternative, hardware+software 
(HW+SW) co-design trades some speedup at the benefit of less 
hardware and more design automation using high-level synthesis 
(HLS) tools. To understand the potential performance gain of 
HW+SW co-design to accelerate analytics applications in 
MapReduce, in our most recent work [3,9,10,12] including this 

paper we present a full end-to-end implementation of big data 
analytics applications in a heterogeneous CPU+FPGA 
architecture, taking into account various communication and 
computation overhead in the system. The rest of the paper 
presents the result of our latest effort on big data acceleration. 

2. SYSTEM ARCHITECTURE 
Fig. 1 shows the system architecture of a single-node, multi-core 
heterogeneous accelerator platform studied in this paper. While in 
a general purpose CPU, mapper/reducer slots are mapped to a 
single core, in a heterogeneous accelerator architecture depicted in 
Fig. 1, each mapper/reducer slot is mapped to a core that is 
extended with an FPGA accelerator. In a homogenous 
architecture, the cores are connected together through their 
shared-memory distributed interconnect. On the other hand, in a 
heterogeneous accelerator architecture the interconnection 
interface between the FPGA and CPU, is the main overhead in 
this architecture. However, given the tight integration between 
FPGA and CPU, the acceleration of the mapper/reducer slots, 
with the FPGA, introduces no significant off-chip data transfer 
overhead. For implementation purposes, we compare two types of 
general-purpose core architectures; low-power little Intel Atom 
C2758 core, and high-performance big Intel Xeon E5 core. Note 
that the general-purpose core is required for job scheduling as 
well as HDFS management. Each FPGA shown in Fig. 1 is a low 
cost Xilinx Artix-7. The integration between the core and the 
FPGA is compatible with the advanced micro-controller bus 
architecture (AMBA) and utilizes the Advanced eXtensible 
Interface (AXI)-interconnect. Fig. 2 shows the system architecture 
of a multi-node cluster. The architecture consists of a 
homogeneous CPU as the NameNode, which is connected to 
several DataNodes with heterogeneous accelerators. The 
NameNode is responsible for job scheduling and workload 
distribution between all DataNodes. The number of map/reduce 
slots on each DataNode is based on its number of cores.  

3. METHODOLOGY 
This paper characterizes the FPGA acceleration potential for big 
data analytics applications. Accordingly, we develop MapReduce 
implementation of data mining and machine applications as 
examples of big data analytics applications. Subsequently, we 
accelerate the map/reduce function through HW+SW co-design.   
It should be noted that Hadoop applications are mostly 
implemented in Java; however, the FPGA+CPU platforms allow 
hardware acceleration of C-based applications. However, Hadoop 
Streaming allows any executable or script to be used as the 
mapper and/or reducer function in the Hadoop. Our methodology 
for HW acceleration includes two levels of profiling.  
1) Profiling of the entire application in MapReduce: MapReduce 
platform is comprised of several execution phases; we use the 
timing information to calculate the execution time of each phase 
of the entire MapReduce before the acceleration. 
2) Profiling of the map/reduce functions: Since only the 
map/reduce functions are accelerated, we profile these functions 
in order to find out the execution time of different sub-functions 
within the map/reduce and select the sub-functions with the 
highest execution time (hotspot) to offload to the FPGA for 
acceleration. To estimate the execution time after the acceleration 
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accurately, we fully implement the map/reduce functions on the 
Zedboards, featuring XC7Z020 Zynq, which integrates ARM 
Cortex-A9 with an Artix-7 FPGA. The connections between the 
core and the FPGA is established through the AXI interconnect. 
Subsequently, based on the information about the execution time 
of each phase, and the speedup of the map/reduce functions, we 
perform a comprehensive analysis to find out how acceleration of 
the map/reduce functions contribute to the acceleration of the 
entire application on Hadoop MapReduce. 
4. PARAMETER TUNING 
The execution time, power and energy-efficiency of MapReduce, 
both before and after acceleration, is affected by various 
parameters at the system, architecture and application-level. We 
describe the major parameters briefly in the sequel.  
1) Size of HDFS block size: Hadoop stores data in highly fault-
tolerant distributed file system (HDFS). The size of the HDFS 
block size is optimized to account for the requirements of the 
Hadoop architecture. On one hand, reading and writing data at 
high volume (granularity) is efficient, as it improves performance 
by decreasing the amount of metadata that is tracked in the file 
system, and allows memory access latency to be amortized over a 
large volume of data. On the other hand, lower granularity allows 
better exploitation of parallelism and resources.  
2) Number of mapper/reducer slots: An important criteria while 
making architectural decisions is the restrictions on the number of 
mapper/reducer slots. The MapReduce programmer decides the 
number of map and reduce tasks. First, the input data is divided 
into data splits. Then, based on the data split size, the number of 
map tasks is derived. However, the number of tasks that are 
executed in parallel depends on the hardware resources, namely 
mapper/reducer slots.	   Experiments show that for performance 
optimization the number of slots is best to be tuned in a range of 
(0.95-1.75)× the number of available cores [2]. 
3) Core architecture: The general-purpose core used for job 
scheduling and HDFS management greatly affects the 
acceleration benefits. While the acceleration could improve the 
speed more significantly in one architecture (little core), it could 
enhance the energy-efficiency more in the other (big core).  
It should be noted that the optimal configuration for performance, 
energy or a trade-off of both is a function of all above parameters, 
thus, we carry-out real experiments for various corners to find the 
optimal solution for a given optimization goal. In the results 
section we show the results with the lowest post acceleration time.  

5. RESULTS 
Table 1 shows the results of the HW+SW acceleration of the 
mapper functions using the FPGA and interconnect resources in 
the Zynq platform. The non-accelerated parts of the mapper 
functions remain on the Atom and Xeon cores. Based on the 
results in the table the mapper function shown to gain more 
performance improvement on Atom. Table 2 and Table 3 show 
the execution time and power of the studied applications. Results 
show that an acceleration of upto 4.5X can be achieved. Moreover 
the speedup values are higher on Atom than Xeon. This is due to 
the fact that in Atom a higher portion of the execution time is 
spent in the accelerated phases (map/reduce). However, both 
before and after the acceleration, Xeon outperforms Atom. The 
power results show that the power consumption mostly increases 
after the acceleration of Atom, which is expected, as Atom cores 
are designed to be low power. However the acceleration shows 
potential for power reduction on Xeon. Based on the results from 
Table 2 and Table 3, the hardware acceleration improves the 
speed more on Atom while reducing power on Xeon. Overall the 
Energy-Delay Product (EDP), which is an indication of energy- 

 
Fig. 1. Single-node heterogeneous accelerator architecture. 

 
Fig. 2. Multi-node heterogeneous accelerator architecture. 
 
efficiency, improves significantly in both architectures. The 
energy-efficiency gain varies significantly across applications and 
architectures. While in Naïve Bayes a 22X EDP gain is achieved, 
in SVM the energy-efficiency gain show to be only 8%. 
5.1 Scalability in a Multi-node Architecture 
In order to understand the scalability of our proposed acceleration 
method, we study HW+SW acceleration in a multi-node cluster 
and across a large range of input data size. We use a 12-node (1 
NameNode and 11 DataNodes) cluster, each with dual Intel Xeon 
E5 allowing upto 176 mapper/reducer slots to run simultaneously. 
We execute the applications for various data sizes. It should be 
noted that as the input data size increases, the execution time does 
not increase linearly with the size of data. Thus, in Fig. 3 we show 
the execution time for each GB of data for various data sizes (for 
all applications except SVM as there is no significant performance 
benefit). The dashed line shows the time after the acceleration. 
The figure shows that as the size of data increases beyond 20GB, 
the execution time per 1GB of data converges to fixed values for 
each application both before and after acceleration. However with 
acceleration, this happens earlier, at a smaller data size. In fact 
acceleration increases the role of communication overhead in 
deciding the overall performance. Also increasing the data size 
increases the amount of intra-node communication and therefore 
makes the hardware acceleration less effective. 

6. RELATED WORK  
The performance and bottlenecks of Hadoop MapReduce, as a de 
facto standard for big data analysis, have been extensively studied 
in recent work [4,5,6,13]. To enhance the performance of 
MapReduce and based on the performance bottlenecks found, 
hardware accelerators are finding their ways in cloud scale system 
architectures. MARS [7], a MapReduce framework on an 
NVIDIA G80 GPU and Cluster GPU MapReduce [8] are 
examples of the GPU-based accelerator platforms. However, GPU 



Table 1.	  Acceleration and resource utilization of HW+SW 
acceleration of mapper functions 

Resources Available  Utilization (%) 

  SVM K-means KNN NB 
FF 35200 7.57 6.38 4.07 4.28 
LUT 17600 12.03 11.98 7.13 8.66 
Memory LUT 6000 1.23 2.03 1.14 1.23 
BRAM 60 59.29 37.86 47.5 62.14 
DSP48 80 2.27 9.55 0 0 
BUFG 32 3.13 3.13 3.13 3.13 
Mapper acceleration on Atom 1.028 4.2 2.51 8.99 
Mapper acceleration on Xeon 1.042 7.9 3.9 18.52 

Table 2. Execution time and speedup of the end-to-end 
MapReduce after acceleration of the map phase 

Application Core time[s] Accel time [s] Speedup 
Naïve Bayes Atom 1256.32 275.48 4.561 

Xeon 756.59 182.68 4.142 
K-means Atom 60.22 18.60 3.238 

Xeon 41.34 23.19 1.783 
KNN Atom 707.14 332.66 2.126 

Xeon 369.87 240.45 1.538 
SVM Atom 51.90 50.44 1.029 

Xeon 35.19 34.89 1.008 
Table 3. Power of the end-to-end MapReduce before and after 

the acceleration of the map phase 
Application Core Initial 

power [w] 
Accel 
power [w] 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑝𝑜𝑤𝑒𝑟  
𝑎𝑐𝑐𝑒𝑙  𝑝𝑜𝑤𝑒𝑟

 EDP 
ratio 

Naïve Bayes Atom 5.94 11.2 0.53 11.04 
Xeon 38.37 29.65 1.29 22.20 

K-means Atom 3.65 7.49 0.49 5.11 
Xeon 12.99 14.33 0.91 2.88 

KNN Atom 3.53 5.29 0.67 3.02 
Xeon 27.69 25.33 1.09 2.48 

SVM Atom 3.56 3.52 1.01 1.07 
Xeon 26.05 24.81 1.05 1.08 

 
Fig. 3. The execution time per 1GB of the MapReduce for 
various input sizes on a 12-node cluster. 
-based work mostly target performance optimizations at the cost 
of more power, therefore are not the most energy-efficient 
solution. Alternatively, FPGAs, by allowing hardware 
customizations to match application demands, have been used as a 
more energy-efficient solution. Examples of FPGA acceleration 
platforms for big data is Microsoft’s composable fabric used to 
accelerate portions of large-scale software services, which 
consists of 6x8 2-D torus of Stratix V FPGAs embedded into a 
half-rack of 48-node machine [1]. Heterogeneous architecture 
research platform (HARP), is another example designed for server 
architectures that uses HW+SW acceleration by integrating Intel 
CPU with Altera FPGAs. These work mainly rely on high 
performance, high cost FPGAs with a fast dedicated 
interconnection network to improve performance. However, in 
our recent work [3,9,12] including this work we use a low cost, 
small FPGA fabric to improve performance of Hadoop 
MapReduce applications which makes it a cost-effective and 
scalable solution for big data analytics in cloud architectures. 
Given the importance of MapReduce for big data analytics, recent 

work [4,11] have used hardware accelerators to improve the speed 
of MapReduce on heterogamous platforms by offloading an entire 
MapReduce application on the accelerator. While these work have 
mainly focused on the implementation of an entire phase of 
MapReduce on the hardware and for particular applications, their 
implementations require excessive hardware resources and is not 
automated. As an alternative, in our work [3,9,10,12,14] the map 
phase in MapReduce is accelerated through HW+SW co-design, 
which trades some speedup at a benefit of less hardware and more 
automation. Moreover, we focus on the acceleration for non-Java 
based map and reduce functions, which makes it a favorite choice 
for hardware programming. C/C++ definition of such functions in 
Hadoop streaming allows a flexible partitioning of them between 
the FPGA and CPU core on platforms that allow their on-chip 
integration such as Xilinx Zynq and Altera Arria. This is the first 
step towards a full-automated solution [3,9,12]. 

7. CONCLUSION 
In this paper, we presented a full end-to-end implementation of 
big data analytics applications in a heterogeneous CPU+FPGA 
architecture. We developed the MapReduce parallel 
implementation of K-means, KNN, SVM and naive Bayes in a 
Hadoop Streaming environment. We accelerated the mapper 
functions through HW+SW co-design with full implementations 
on the Zynq FPGA platform. Overall, the experimental results 
show that a low cost embedded FPGA platform, programmed 
using our proposed HW+SW co-design method, yields 
performance and energy efficiency gains for MapReduce 
computing in cloud-based architectures, significantly reducing the 
reliance on large number of big high-performance cores for high 
performance designs. 
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