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Abstract 
Emerging big data analytics applications require a significant 
amount of server computational power. The costs of building and 
running a computing server to process big data and the capacity to 
which we can scale it are driven in large part by those 
computational resources. However, big data applications share 
many characteristics that are fundamentally different from 
traditional desktop, parallel, and scale-out applications. Big data 
analytics applications rely heavily on specific deep machine 
learning and data mining algorithms, and are running a complex 
and deep software stack with various components (e.g. Hadoop, 
Spark, MPI, Hbase, Impala, MySQL, Hive, Shark, Apache, and 
MangoDB) that are bound together with a runtime software system 
and interact significantly with I/O and OS, exhibiting high 
computational intensity, memory intensity, I/O intensity and 
control intensity.  Current server designs, based on commodity 
homogeneous processors, will not be the most efficient in terms of 
performance/watt for this emerging class of applications.  In other 
domains, heterogeneous architectures have emerged as a promising 
solution to enhance energy-efficiency by allowing each application 
to run on a core that matches resource needs more closely than a 
one-size-fits-all core. A heterogeneous architecture integrates cores 
with various micro-architectures and accelerators to provide more 
opportunity for efficient workload mapping. In this work, through 
methodical investigation of power and performance measurements, 
and comprehensive system level characterization, we demonstrate 
that a heterogeneous architecture combining high performance big 
and low power little cores is required for efficient big data 
analytics applications processing, and in particular in the presence 
of accelerators and near real-time performance constraints. 

CCS Concepts 
Computer systems organization → Heterogeneous (hybrid) 
systems; Hardware → Hardware accelerators 

Keywords 
Heterogeneous Architectures; Performance; Power; Application 
Characterization; Big Data; Accelerator 

1. INTRODUCTION 
Advances in various branches of technology – data sensing, data 
communication, data computation, and data storage – are driving 
an era of unprecedented innovation for information retrieval. The 
world of Big Data is constantly changing and producing huge 
amounts of data that creates challenges to process the applications 
using existing solutions. Big data applications require computing 
resources and storage subsystems that can scale to manage massive 
amounts of diverse data. Individuals, businesses, governments, and 
society as a whole now have access to enormous collections of big 

data, empowering them to build their own analytics. Data centers 
are therefore required to introduce more nodes to their 
infrastructure or replace their existing hardware with more 
powerful systems to respond to this growing demand. This trend 
increases the infrastructure cost and power consumption. We 
believe this is the right time to identify the right computing 
platform for Big Data analytics processing that can provide a 
balance between processing capacity and power efficiency.     
Emerging big data analytics applications require a significant 
amount of server computational power. The costs of building and 
running a data center to process big data applications and the 
capacity to which we can scale it are driven in large part by such 
computational resources. However, big data applications, in 
particular from web service domain, share many inherent 
characteristics that are fundamentally different from traditional 
desktop, parallel, and scale-out applications [1, 2].  Big data 
analytics applications in these domains heavily rely on big-data-
specific deep machine learning and data mining algorithms, and 
are running complex database software stack with significant 
interaction with I/O and OS, and exhibit high computational 
intensity, memory intensity, I/O intensity and control intensity. In 
addition, unlike conventional CPU applications, big data 
applications combine a high data rate requirement with high 
computational power requirement, in particular for real-time and 
near-time performance constraints. 
This new set of characteristics is necessitating a change in the 
direction of server-class microarchitecture to improve their 
computational efficiency. However, while demand for data center 
computational resources continues to grow as the size of data 
grows, the semiconductor industry has reached its physical scaling 
limits and is no longer able to reduce power consumption in new 
chips. Physical design constraints, such as power and density, have 
therefore become the dominant limiting factor for scaling out data 
centers [3, 4, 5]. Current server designs, based on commodity 
homogeneous processors, will therefore not be the most efficient in 
terms of performance/watt to process big data applications [5, 6].  
Big data applications require computing resources that can scale to 
manage massive amounts of diverse data. As more clients, 
consumer devices, and industrial equipment get connected through 
the Internet of Things, the tsunami of data that is generated and the 
opportunities to make decisions faster will make today’s 
predominant server architecture, including their homogeneous 
processing cores, obsolete. 
In other domains, heterogeneous architectures have emerged as a 
promising solution to enhance energy-efficiency by allowing each 
application to run on a core that matches resource needs more 
closely than a one-size-fits-all core [10]. A heterogeneous chip 
architecture integrates cores with various microarchitectures (in-
order, out-of-order, varying cache and window sizes, etc.) or even 
instruction set architectures (e.g., Thumb and x86) with on-chip 
GPU or FPGA accelerators to provide more opportunity for 
efficient workload mapping so that the application can find a better 
match among various components to improve power efficiency [9, 
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10, 11, 12]. In this research we investigate whether heterogeneous 
architectures are a good fit for energy-efficient processing of big 
data applications. In exploring the choice of server architecture for 
big data, in this paper, we present a comprehensive analysis of the 
measurement of power and performance of big data applications 
on two very distinct microarchitectures; a high performance big 
Xeon core and another a low power embedded-like little Atom 
core. These two types of servers represent two schools of thought 
on server architecture design: using big core like Xeon, which is a 
conventional approach to designing a high-performance server, and 
the Atom, which is a new trajectory in server design that advocates 
the use of a low-power core to address the dark silicon challenge 
facing servers [6, 7, 8].  In addition to power and performance 
study, we have also performed the Energy-DelayX Product (EDXP) 
analysis to evaluate the trade-off between power and performance 
to understand how near real-time performance constraints for big 
data analytics affects the choice of big vs. little core server as a 
more efficient architecture. This will provide us with insight 
whether a heterogeneous architecture combining big and little 
cores is a better fit for big data compared to traditional 
homogeneous architectures. 
As chips are hitting power limits, computing systems are moving 
away from general-purpose designs and toward greater 
specialization. Hardware acceleration through specialization has 
received renewed interest in recent years, mainly due to the dark 
silicon challenge. To find out the right architecture for big data 
processing, it is important to understand how deploying an 
accelerator, such as FPGA, would necessitate adapting the choice 
of big vs. little cores. The post acceleration code characteristics are 
important to find the right architecture for efficient processing of 
big data applications. For this purpose, we analyze the choice of 
big vs. little core-based servers for the code that remains for the 
CPU after assuming the hotspots are offloaded to an accelerator, 
compared with the choice of big vs. little before acceleration. 
Overall, our measurement results demonstrates that a 
heterogeneous architecture combining big and little cores is 
required for efficient big data processing, and in particular in the 
presence of hardware accelerators and near real-time performance 
constraints. Therefore, to address the computing requirements of 
big data, we envision a data-driven heterogeneous architecture for 
next generation big data server platforms that leverage the power 
of heterogeneity.  
The rest of the paper is organized as follows. Section 2 provides 
background for big data. Section 3 describes the studied big data, 
scale-out and Traditional serial and parallel CPU benchmarks. Our 
methodology and experimental setup details are presented in section 
4. Section 5 presents the experimental results and provides system 
level analysis along the micro-architectural characterization of big 
data applications. Section 6 provides the related work. Lastly, 
section 7 concludes the paper.   

2. BACKGROUND ON BIG DATA 
APPLICATIONS 
  The “cloud” is a new platform that has been used to cost 
effectively deploy an increasingly wide variety of applications. Vast 
amount of data is now stored in a few places rather than distributed 
across a billion isolated computers, therefore creates opportunities 
to learn from the aggregated data. The rise of cloud computing and 
cloud data storage, therefore, has facilitated the emergence of big 
data applications. Big data applications are characterized by four 
critical features, referred as the four “Vs”, shown in Figure 1 [35]: 
volume, velocity, variety, and veracity. Big data is inherently large 
in volume. Velocity refers to how fast the data is coming in and to 
how fast it needs to be analyzed. In other words, velocity addresses 
the challenges related to processing data in real-time. Variety refers 
to the number and diversity of sources of data and databases, such 
as sensor data, social media, multimedia, text, and much more. 
Veracity refers to the level of trust, consistency, and completeness 
of data. Traditionally, cloud servers mainly use high performance 
CPU cores such as Xeon. However, low-power embedded cores 
such as Atom are gradually entering the server market. Therefore, it 
is important to characterize emerging big data applications on these 
two different platforms to understand their computational needs.  

3. DOMINANT BIG DATA WORKLOADS 
The studied big data workloads in this paper are representative 
applications from 15 different domains such as graph mining, data 
mining, data analysis platform and pattern searching applications, 
which are frequently used in the real world. We provide these 
selected applications, along with their particular domain and data 
type in Table 1. In addition we also studied scale-out, PARSEC and 
SPEC CPU benchmark to understand how server architectures 
behave differently for emerging big data applications compared to 
more traditional benchmark suites. 

4.  MEASUREMENT TOOLS AND 

 
Figure 1. Illustration of Four “Vs” of Big Data 

Table 1. Studied Big Data Applications 

 

401



    

METHODOLOGY 
Figure 2 presents a methodology of our approach. We conduct our 
study on two state-of-the-art servers, Intel Xeon and Intel Atom. 
Intel Xeon E5 enclosed with two Intel E5-2420 processors that 
includes six aggressive processor cores per node with three-level of 
the cache hierarchy. Intel Atom C2758 has 8 processor cores per 
node and a two-level cache hierarchy. The operating system used is 
Ubuntu 13.10 with Linux kernel 3.11. 
We analyze the architectural behavior using Intel VTune [13], a 
performance-profiling tool that provides an interface to the 
processor performance counters. We have used Watts up PRO 
power meter to measure the power consumption of the servers. 
Watts up power meter produces the power consumption profile 
every one-second of an application under test. The power reading is 
for the entire system, including core, cache, main memory, hard 
disks and on-chip communication buses. We have collected the 
average power consumption of the studied applications and 
subtracted the system idle power to calculate the dynamic power 
dissipation.  

5.  EXPERIMENTAL RESULTS AND 
ANALYSIS 
In this section, we discuss the system-level and micro-architecture-
level analysis of big and little cores, when running traditional CPU 
benchmarks, parallel benchmarks, scale-out, and big data 
applications. Due to space constraints, we are only reporting the 
average results for SPEC, PARSEC and scale-out applications. 
Moreover, we have conducted the data size sensitivity analysis of 
Hadoop micro-benchmarks with the dataset of 10MB, 100MB, 1GB 
and 10GB per node to understand the impact of the size of data per 
server node on system-level parameters. 
5.1 Performance Analysis 
In this section, we analyze the performance measurements of big 
data applications in term of IPC and compare it with the traditional 
benchmarks. Figure 3.1 shows that the average IPC of big data is 
1.65 times lower than the traditional CPU benchmarks on big core 
and 1.21 times on little core. Therefore, noticeably more 
performance drop (37%, on average) is observed for big data 
applications compared to traditional CPU applications when 
running on big core server compared to little core server.  In 
general, we observe lower IPC in big data applications compared 
with the traditional benchmarks. Furthermore, little core-based 
server is experiencing 1.43 times lower IPC in comparison to big 
core server as Xeon can process up to 4 instructions simultaneously 
while Atom is limited to 2 instructions per cycle. Figure 3.2 shows 
the IPC of Hadoop micro-benchmarks for different data sizes. The 
results are consistent with the results in Figure 3.1 showing lower 
IPC on little core compared to big core across all data sizes. We 
also observe that on little core, increasing the data size reduces the 
IPC since the cache misses increases (mainly Icache miss). Little 
core, due to its low processing capacity (issue width of 2), cannot 
hide cache miss penalty as effective as big core. However, on big 
core while for most cases, increase in data size per node reduces 
the IPC, there are few exceptions where increasing the data size 
from 100MB to 1000MB per node increases the IPC. This is 
mainly due to higher cache locality as a result of larger and more 
complex cache subsystem in big core, which results in reduction in 
cache miss rates. 
5.2 Power Characterization 

Figure 4.1 shows the average dynamic power consumption of 
the studied applications on big and little core servers. The idle 
power of the servers is subtracted from the measured (run-time) 
power. Note that the power results reported are for the entire 

system, including core, cache, DRAM and on-chip communication 
buses. Big core consumes on average 35 Watts of dynamic power 
with the peak of 44 Watts in cluster application. Little core 
consumes much lower dynamic power as expected, ranging from 
0.9 to 6 Watts with an average of 4.8 Watts. Figure 4.2 shows that 
the power consumption increases as the size of data per node 
increases in most cases across both big and little architectures. This 
is more noticeable in little core. While increasing in data size in 
little core reduces the IPC and therefore core power, it increases 
cache and off-chip traffic in DRAM and bus subsystem (see LLC 
MPKI reported in Figure 10). Therefore, for low-end little core 
where cache, DRAM and off-chip components are dominant power 
consumer (unlike high performance Xeon core), a clear rise in 
power consumption is observed as the size of data increases. 
5.3 Energy-Efficiency Analysis  
Based on the results of power consumption for both platforms, we 
have evaluated the trade-off between power and performance by 
investigating the EDP metric. Furthermore, we have explored the 
ED2P and ED3P to understand the impact of near real-time 
performance constraints on big data applications and how more 
constraints on performance affects the choice of most efficient 
server architecture. Figure 5.1 illustrates EDP, ED2P and ED3P ratio 
for big vs little cores. The EDXP (X=1,2,3) results show that big 
core-based server is noticeably more efficient for traditional CPU 
applications compared with big data. Also, interestingly for scale 
out benchmarks, little core is always more efficient than big core for 
EDP, ED2P and ED3P metrics. For real-world big data applications 
EDP results show that the little core-based server is almost always a 
more efficient platform for CPU intensive applications. However, 
for heavy I/O intensive applications such as sort and terasort, for 
large data sizes (10000MB), the big core becomes more efficient 
than the little core in terms of EDP. Complex memory subsystem in 
big core along with higher processing capacity (2X more than little 
core) allow big core to be more effective in hiding the cost of high 
I/O communication in these applications and can explain why big 
core-based server is more efficient. However, with more near real-
time performance constraints, i.e. for ED2P and ED3P metrics, big 
core becomes more efficient compared to little cores across most 
applications. Figure 5.2 presents the data sensitivity analysis of 
Hadoop micro-benchmarks. The increase in the data size, 
progressively makes the big core more efficient compared with little 
core, however the point where big core becomes more efficient than 
little core varies across applications and depends on the data size 
and the performance constraint. 

Figure 2. Methodology 
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The results illustrate that little core server is more efficient in terms 
of EDP for big data applications with the smaller data sizes. 
However, as the size of data increases and with more performance 
constraints big core server becomes more efficient.  
 
5.4 Performance Hotspot and Post-Acceleration 

CPU code Characterization 
As chips are hitting power limits, computing systems are moving 
away from general-purpose designs and toward greater 
specialization. Hardware acceleration through specialization has 
received renewed interest in recent years, mainly due to the dark 
silicon challenge. In addition to big, medium, and small cores, the 
integration of domain-specific accelerators, such as GPUs and 
FPGAs has become extensive. 
To find out the right server architecture for big data processing, it 
is important to understand how deploying an accelerator, such as 
FPGA, would necessitate adapting the choice of CPU. The post 
acceleration code characteristics are important to find the right 
architecture for efficient processing of big data applications. In this 
section, we analyze the choice of big vs. little core-based server for 
the code that remains for the CPU after acceleration, compared 
with the choice of big vs. little before acceleration.  
A key research challenge for heterogeneous architecture that 
integrates CPU and accelerator such as FPGA is workload 
partitioning and mapping of a given application (which is 
alternatively referred to as scheduling) to CPU and FPGA for 
power, performance, and QoS. This is commonly referred as 
hardware and software partitioning. A common method for 
HW/SW partitioning is to profile the application to find the 
performance hotspot region. These regions are candidates for 
FPGA acceleration, as long as the overhead of communication 

with CPU is not significant [15]. To perform hotspot analysis on 
big data applications, we use Intel Vtune to select the common 
hotspot modules of the applications running on big and little cores. 
First, we identify and analyze hotspot modules based on their 
execution time. Figure 6.1 shows the common hotspot modules of 
big data applications and Figure 6.2 presents Hadoop micro-
benchmark hotspots with a data size of 1GB on Big and Little 
cores, respectively. Map and Reduce tasks represent the 
computation part to perform the task, such as grep, sort and etc. 
Libz is performing the compression and decompression task 
(library) for the Hadoop workload.  Module dynamic contains 
hotspot functions such as java-finalize to perform the completion 
tasks of an object. Compiled java code includes the java.lang.string 
class to represent character strings along with the system.array, 
copy, math, abstractSringBuilder and object classes. Libpthread 
contained functions like mutex lock/unlock for the thread creation 
and protection and cond_wait functions to block on a condition 
variable.  
We have also collected the IPC for each of these hotspot functions. 
Due to space limitation, we do not show the details of the IPC 
results. The results show that the performance gap between big and 
little cores for Map and Reduce task is 2X. This large gap shows 
that big core has a clear advantage over little core to run these 
hotspot functions.   
Since the hotspot functions and their corresponding libraries are 
taking up most of execution time, they are candidate for 
acceleration, for instance with offloading mapper and reducer tasks 
to FPGAs [16, 17]. Several recent works have demonstrated the 
potential of offloading map and reduce tasks to FPGA platforms 
[18, 19, 20].  To analyze post-accelerated code and the choice of 
server architecture, we assume map and reduce tasks are offloaded 
to an accelerator [18, 19, 20].  We do not make any assumption 

    
Figure 3. IPC (3.1) Big Data workloads                        (3.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 4. Power Reading (4.1) Big Data workloads                (4.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 5. EDP, ED2P and ED3P Analysis (5.1) Big Data Workloads (5.2) Different configurations of Hadoop micro-benchmarks 
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about the speedup gain on accelerator nor the cost of offloading to 
the accelerator. By taking out the time it takes to run hotspot 
function, we can study the remaining modules that are left for the 
big or little core-based server to run. 
Figure 7 shows the impact of post-accelerated code by 
investigating the speed up - migrating from Atom to Xeon before 
and after acceleration. We report the little vs big core speed up in 
terms of 
 

!"##$!!" =
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! 

 
(Exectime Atom / Exectime Xeon) remaining code after acceleration 

represents the speed up obtained by migrating the post-accelerated 
code from Atom to Xeon. (Exectime Atom / Exectime Xeon) entire 

applications represents the speed up obtained by migrating the 
application from Atom to Xeon before acceleration. Using this 
equation, we can evaluate the impact of Atom over Xeon speedup 
gain after acceleration compared to speed up before acceleration. 
Most of the micro-benchmarks in Figure 7 have speed up less than 
1 which indicates that speedup of Atom over Xeon after 
acceleration reduces compared to speed up before acceleration. We 
have also observed that most micro-benchmarks, with the increase 
in data size the speedup after acceleration reduces compared to the 
speedup before acceleration. However, there are several exceptions 
to this trend, including GSP, RuleGrowth, Ecalt, WordCount, and 
Spade where post acceleration code achieves higher speed up on 
Xeon over Atom compared with pre-acceleration code. Overall, 
Xeon provides a lower execution time, however, if speedup after 
acceleration is very small then considering the power consumption 
of Xeon, Atom-based will be a more efficient server to execute the 
post-accelerated code. Results show that the choice of big vs. little 
before and after accelerations is different. While most benchmarks 
clearly favor little core post acceleration, in several applications 
post accelerated code show higher speed up on big core-base 
server over little core-base server compared to pre-acceleration. 

6. RELATED WORK 
Recently, there have been a number of efforts to benchmark and 
characterize big data and cloud-scale applications, mainly on state-
of-the-art high performance server platform. In general, there are 

two major approaches for benchmarking big data: A system 
benchmarking and a component benchmarking. A system 
benchmark is an end-to-end benchmarking, which includes the 
entire database and application software stack, including data 
preparation, data aggregation and data analytics [22]. A component 
benchmark encloses only a portion of the entire end-to-end system 
[22].  
The most prominent big data benchmarks, include HiBench, Scale-
Out, BigDataBench, CloudCmp, and LinkBench. HiBench [24] is a 
benchmark suite for Hadoop MapReduce. CloudCmp [25] use a 
systematic approach to benchmark various components of the cloud 
to compare cloud providers. LinkBench is a real-world database 
benchmark for social network applications [26]. The Transaction 
Procession Performance Council (TPC) has released a number of 
benchmark suites in recent years, including TPC-C, TPC-E, and 
TPC-DS for online transaction processing. BigDataBench [2] was 
released very recently and includes online service and offline 
analytics for web service applications. BigBench [27] is a new big 
data benchmark that adopts TPC-DS as its basis and expands it for 
offline analytics on Xeon high performance server. The CloudSuite 
[3, 4] benchmark was developed for Scale-Out cloud workloads and 
mainly includes small data sets, e.g., 4.5 GB for Naïve Bayes.  
Several prior researches have characterized traditional CPU and 
parallel applications such as SPEC2006, PARSEC, and NAS on 
high performance server-class processors [21, 36]. It is important to 
also compare the characteristics of big data application with these 
traditional benchmark suites. We have included the SPEC 
CINT2006, SPEC CFP2006 and PARSEC 2.1 benchmarks for the 
comparison with BigData Workloads. 
This work is different from all above benchmarking and 
characterization work as it perform a comprehensive system-level 
(power, performance, EDXP) analysis of various big data 
applications and big data micro-benchmarks on two substantially 
different platforms one with high performance big core and 
another with low power little core to understand which of these 
two architectures is the choice for efficient big data processing. 
There has been also a number of research into application-specific 
[28, 29] and domain-specific accelerators [30, 31, 32, 33]. Using 
tightly integrated FPGA [27, 34] with CPU, and GPU with CPU 
[1, 22], to accelerate big data processing have been proposed in 
recent work. While deploying programmable accelerator is a new 
and hot research topic, there has been little attention paid to how 

    
Figure 6. Hotspot Analysis before acceleration (6.1) Big Data workloads (6.2) Hadoop micro-benchmarks 

 
Figure 7: Speed up of Atom vs Xeon before and after acceleration (7.1) Big Data workloads (7.2) Hadoop micro-benchmarks 
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CPU designs should be adapted to this change. To the best of our 
knowledge, the only work on this topic is by Arora [23], which 
studied the role of the CPU for a CPU+GPU architecture. They 
concluded that, in a CPU+GPU architecture, the CPU is running a 
code that is significantly different from a CPU-only code. They 
found that the post-GPU code has a lower ILP, higher branch miss 
prediction rate, and larger number of load and stores, and benefits 
less from multiple cores, as there is less TLP after GPU offloading. 
In this paper, we demonstrated how deploying accelerator such as 
FPGA for big data affects the choice of big vs. little core for 
efficient processing. 

7. CONCLUSIONS 
Heterogeneous chip architectures have emerged as an effective 
solution to address the power efficiency challenges the computer 
industry is facing. This work studied whether this is true for 
emerging big data applications. In this paper, we present a 
comprehensive system level analysis of big data applications on two 
distinct server platforms; the conventional server design approach, 
using a high performance big Xeon core; and the new trajectory in 
server design, using little Atom core, which advocates the use of a 
low-power core to address the power challenge. The 
characterization results show significantly larger performance drop 
(37%, on average) for big data applications compared to traditional 
CPU applications when running on big core server compared to 
little core server. Big core-based server provides a high 
performance, compared to little core, however, it is not as power 
efficient. Little core-based server is more efficient in terms of EDP 
for big data processing with small data sizes. However, as the size 
of data increases and with performance constraints, big core 
becomes an efficient choice. Overall the performance gap between 
these two server architectures while it is large for traditional CPU 
applications, it is becoming smaller for emerging big data 
applications. In addition, we performed the post-acceleration CPU 
code analysis to find out the most efficient server architecture to 
process the remaining code of big data applications after 
acceleration. The results show that there is a difference between the 
choice of big vs. little core-based server before and after 
accelerations. While most benchmarks clearly favor little core post 
acceleration, several applications show higher speed up on big core 
over little core post acceleration compared to pre-acceleration. 
Overall, the results suggest that a heterogeneous architecture 
combining big and little cores is required for efficient processing of 
emerging big data analytics applications. 
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