

(Invited Paper)
Heterogeneous Chip Multiprocessor Architectures for

Big Data Applications
Houman Homayoun

George Mason University
hhomayou@gmu.edu

Abstract
Emerging big data analytics applications require a significant
amount of server computational power. The costs of building and
running a computing server to process big data and the capacity to
which we can scale it are driven in large part by those
computational resources. However, big data applications share
many characteristics that are fundamentally different from
traditional desktop, parallel, and scale-out applications. Big data
analytics applications rely heavily on specific deep machine
learning and data mining algorithms, and are running a complex
and deep software stack with various components (e.g. Hadoop,
Spark, MPI, Hbase, Impala, MySQL, Hive, Shark, Apache, and
MangoDB) that are bound together with a runtime software system
and interact significantly with I/O and OS, exhibiting high
computational intensity, memory intensity, I/O intensity and
control intensity. Current server designs, based on commodity
homogeneous processors, will not be the most efficient in terms of
performance/watt for this emerging class of applications. In other
domains, heterogeneous architectures have emerged as a promising
solution to enhance energy-efficiency by allowing each application
to run on a core that matches resource needs more closely than a
one-size-fits-all core. A heterogeneous architecture integrates cores
with various micro-architectures and accelerators to provide more
opportunity for efficient workload mapping. In this work, through
methodical investigation of power and performance measurements,
and comprehensive system level characterization, we demonstrate
that a heterogeneous architecture combining high performance big
and low power little cores is required for efficient big data
analytics applications processing, and in particular in the presence
of accelerators and near real-time performance constraints.

CCS Concepts
Computer systems organization → Heterogeneous (hybrid)
systems; Hardware → Hardware accelerators

Keywords
Heterogeneous Architectures; Performance; Power; Application
Characterization; Big Data; Accelerator

1. INTRODUCTION
Advances in various branches of technology – data sensing, data
communication, data computation, and data storage – are driving
an era of unprecedented innovation for information retrieval. The
world of Big Data is constantly changing and producing huge
amounts of data that creates challenges to process the applications
using existing solutions. Big data applications require computing
resources and storage subsystems that can scale to manage massive
amounts of diverse data. Individuals, businesses, governments, and
society as a whole now have access to enormous collections of big

data, empowering them to build their own analytics. Data centers
are therefore required to introduce more nodes to their
infrastructure or replace their existing hardware with more
powerful systems to respond to this growing demand. This trend
increases the infrastructure cost and power consumption. We
believe this is the right time to identify the right computing
platform for Big Data analytics processing that can provide a
balance between processing capacity and power efficiency.
Emerging big data analytics applications require a significant
amount of server computational power. The costs of building and
running a data center to process big data applications and the
capacity to which we can scale it are driven in large part by such
computational resources. However, big data applications, in
particular from web service domain, share many inherent
characteristics that are fundamentally different from traditional
desktop, parallel, and scale-out applications [1, 2]. Big data
analytics applications in these domains heavily rely on big-data-
specific deep machine learning and data mining algorithms, and
are running complex database software stack with significant
interaction with I/O and OS, and exhibit high computational
intensity, memory intensity, I/O intensity and control intensity. In
addition, unlike conventional CPU applications, big data
applications combine a high data rate requirement with high
computational power requirement, in particular for real-time and
near-time performance constraints.
This new set of characteristics is necessitating a change in the
direction of server-class microarchitecture to improve their
computational efficiency. However, while demand for data center
computational resources continues to grow as the size of data
grows, the semiconductor industry has reached its physical scaling
limits and is no longer able to reduce power consumption in new
chips. Physical design constraints, such as power and density, have
therefore become the dominant limiting factor for scaling out data
centers [3, 4, 5]. Current server designs, based on commodity
homogeneous processors, will therefore not be the most efficient in
terms of performance/watt to process big data applications [5, 6].
Big data applications require computing resources that can scale to
manage massive amounts of diverse data. As more clients,
consumer devices, and industrial equipment get connected through
the Internet of Things, the tsunami of data that is generated and the
opportunities to make decisions faster will make today’s
predominant server architecture, including their homogeneous
processing cores, obsolete.
In other domains, heterogeneous architectures have emerged as a
promising solution to enhance energy-efficiency by allowing each
application to run on a core that matches resource needs more
closely than a one-size-fits-all core [10]. A heterogeneous chip
architecture integrates cores with various microarchitectures (in-
order, out-of-order, varying cache and window sizes, etc.) or even
instruction set architectures (e.g., Thumb and x86) with on-chip
GPU or FPGA accelerators to provide more opportunity for
efficient workload mapping so that the application can find a better
match among various components to improve power efficiency [9,

CF ’16, May 16-19, 2016, Como, Italy
Copyright 2016 ACM 978-1-4503-4128-8/16/05....$15.00.
http://dx.doi.org/10.1145/2903150.2908078

400

10, 11, 12]. In this research we investigate whether heterogeneous
architectures are a good fit for energy-efficient processing of big
data applications. In exploring the choice of server architecture for
big data, in this paper, we present a comprehensive analysis of the
measurement of power and performance of big data applications
on two very distinct microarchitectures; a high performance big
Xeon core and another a low power embedded-like little Atom
core. These two types of servers represent two schools of thought
on server architecture design: using big core like Xeon, which is a
conventional approach to designing a high-performance server, and
the Atom, which is a new trajectory in server design that advocates
the use of a low-power core to address the dark silicon challenge
facing servers [6, 7, 8]. In addition to power and performance
study, we have also performed the Energy-DelayX Product (EDXP)
analysis to evaluate the trade-off between power and performance
to understand how near real-time performance constraints for big
data analytics affects the choice of big vs. little core server as a
more efficient architecture. This will provide us with insight
whether a heterogeneous architecture combining big and little
cores is a better fit for big data compared to traditional
homogeneous architectures.
As chips are hitting power limits, computing systems are moving
away from general-purpose designs and toward greater
specialization. Hardware acceleration through specialization has
received renewed interest in recent years, mainly due to the dark
silicon challenge. To find out the right architecture for big data
processing, it is important to understand how deploying an
accelerator, such as FPGA, would necessitate adapting the choice
of big vs. little cores. The post acceleration code characteristics are
important to find the right architecture for efficient processing of
big data applications. For this purpose, we analyze the choice of
big vs. little core-based servers for the code that remains for the
CPU after assuming the hotspots are offloaded to an accelerator,
compared with the choice of big vs. little before acceleration.
Overall, our measurement results demonstrates that a
heterogeneous architecture combining big and little cores is
required for efficient big data processing, and in particular in the
presence of hardware accelerators and near real-time performance
constraints. Therefore, to address the computing requirements of
big data, we envision a data-driven heterogeneous architecture for
next generation big data server platforms that leverage the power
of heterogeneity.
The rest of the paper is organized as follows. Section 2 provides
background for big data. Section 3 describes the studied big data,
scale-out and Traditional serial and parallel CPU benchmarks. Our
methodology and experimental setup details are presented in section
4. Section 5 presents the experimental results and provides system
level analysis along the micro-architectural characterization of big
data applications. Section 6 provides the related work. Lastly,
section 7 concludes the paper.

2. BACKGROUND ON BIG DATA
APPLICATIONS
 The “cloud” is a new platform that has been used to cost
effectively deploy an increasingly wide variety of applications. Vast
amount of data is now stored in a few places rather than distributed
across a billion isolated computers, therefore creates opportunities
to learn from the aggregated data. The rise of cloud computing and
cloud data storage, therefore, has facilitated the emergence of big
data applications. Big data applications are characterized by four
critical features, referred as the four “Vs”, shown in Figure 1 [35]:
volume, velocity, variety, and veracity. Big data is inherently large
in volume. Velocity refers to how fast the data is coming in and to
how fast it needs to be analyzed. In other words, velocity addresses
the challenges related to processing data in real-time. Variety refers
to the number and diversity of sources of data and databases, such
as sensor data, social media, multimedia, text, and much more.
Veracity refers to the level of trust, consistency, and completeness
of data. Traditionally, cloud servers mainly use high performance
CPU cores such as Xeon. However, low-power embedded cores
such as Atom are gradually entering the server market. Therefore, it
is important to characterize emerging big data applications on these
two different platforms to understand their computational needs.

3. DOMINANT BIG DATA WORKLOADS
The studied big data workloads in this paper are representative
applications from 15 different domains such as graph mining, data
mining, data analysis platform and pattern searching applications,
which are frequently used in the real world. We provide these
selected applications, along with their particular domain and data
type in Table 1. In addition we also studied scale-out, PARSEC and
SPEC CPU benchmark to understand how server architectures
behave differently for emerging big data applications compared to
more traditional benchmark suites.

4. MEASUREMENT TOOLS AND

Figure 1. Illustration of Four “Vs” of Big Data

Table 1. Studied Big Data Applications

401

METHODOLOGY
Figure 2 presents a methodology of our approach. We conduct our
study on two state-of-the-art servers, Intel Xeon and Intel Atom.
Intel Xeon E5 enclosed with two Intel E5-2420 processors that
includes six aggressive processor cores per node with three-level of
the cache hierarchy. Intel Atom C2758 has 8 processor cores per
node and a two-level cache hierarchy. The operating system used is
Ubuntu 13.10 with Linux kernel 3.11.
We analyze the architectural behavior using Intel VTune [13], a
performance-profiling tool that provides an interface to the
processor performance counters. We have used Watts up PRO
power meter to measure the power consumption of the servers.
Watts up power meter produces the power consumption profile
every one-second of an application under test. The power reading is
for the entire system, including core, cache, main memory, hard
disks and on-chip communication buses. We have collected the
average power consumption of the studied applications and
subtracted the system idle power to calculate the dynamic power
dissipation.

5. EXPERIMENTAL RESULTS AND
ANALYSIS
In this section, we discuss the system-level and micro-architecture-
level analysis of big and little cores, when running traditional CPU
benchmarks, parallel benchmarks, scale-out, and big data
applications. Due to space constraints, we are only reporting the
average results for SPEC, PARSEC and scale-out applications.
Moreover, we have conducted the data size sensitivity analysis of
Hadoop micro-benchmarks with the dataset of 10MB, 100MB, 1GB
and 10GB per node to understand the impact of the size of data per
server node on system-level parameters.
5.1 Performance Analysis
In this section, we analyze the performance measurements of big
data applications in term of IPC and compare it with the traditional
benchmarks. Figure 3.1 shows that the average IPC of big data is
1.65 times lower than the traditional CPU benchmarks on big core
and 1.21 times on little core. Therefore, noticeably more
performance drop (37%, on average) is observed for big data
applications compared to traditional CPU applications when
running on big core server compared to little core server. In
general, we observe lower IPC in big data applications compared
with the traditional benchmarks. Furthermore, little core-based
server is experiencing 1.43 times lower IPC in comparison to big
core server as Xeon can process up to 4 instructions simultaneously
while Atom is limited to 2 instructions per cycle. Figure 3.2 shows
the IPC of Hadoop micro-benchmarks for different data sizes. The
results are consistent with the results in Figure 3.1 showing lower
IPC on little core compared to big core across all data sizes. We
also observe that on little core, increasing the data size reduces the
IPC since the cache misses increases (mainly Icache miss). Little
core, due to its low processing capacity (issue width of 2), cannot
hide cache miss penalty as effective as big core. However, on big
core while for most cases, increase in data size per node reduces
the IPC, there are few exceptions where increasing the data size
from 100MB to 1000MB per node increases the IPC. This is
mainly due to higher cache locality as a result of larger and more
complex cache subsystem in big core, which results in reduction in
cache miss rates.
5.2 Power Characterization

Figure 4.1 shows the average dynamic power consumption of
the studied applications on big and little core servers. The idle
power of the servers is subtracted from the measured (run-time)
power. Note that the power results reported are for the entire

system, including core, cache, DRAM and on-chip communication
buses. Big core consumes on average 35 Watts of dynamic power
with the peak of 44 Watts in cluster application. Little core
consumes much lower dynamic power as expected, ranging from
0.9 to 6 Watts with an average of 4.8 Watts. Figure 4.2 shows that
the power consumption increases as the size of data per node
increases in most cases across both big and little architectures. This
is more noticeable in little core. While increasing in data size in
little core reduces the IPC and therefore core power, it increases
cache and off-chip traffic in DRAM and bus subsystem (see LLC
MPKI reported in Figure 10). Therefore, for low-end little core
where cache, DRAM and off-chip components are dominant power
consumer (unlike high performance Xeon core), a clear rise in
power consumption is observed as the size of data increases.
5.3 Energy-Efficiency Analysis
Based on the results of power consumption for both platforms, we
have evaluated the trade-off between power and performance by
investigating the EDP metric. Furthermore, we have explored the
ED2P and ED3P to understand the impact of near real-time
performance constraints on big data applications and how more
constraints on performance affects the choice of most efficient
server architecture. Figure 5.1 illustrates EDP, ED2P and ED3P ratio
for big vs little cores. The EDXP (X=1,2,3) results show that big
core-based server is noticeably more efficient for traditional CPU
applications compared with big data. Also, interestingly for scale
out benchmarks, little core is always more efficient than big core for
EDP, ED2P and ED3P metrics. For real-world big data applications
EDP results show that the little core-based server is almost always a
more efficient platform for CPU intensive applications. However,
for heavy I/O intensive applications such as sort and terasort, for
large data sizes (10000MB), the big core becomes more efficient
than the little core in terms of EDP. Complex memory subsystem in
big core along with higher processing capacity (2X more than little
core) allow big core to be more effective in hiding the cost of high
I/O communication in these applications and can explain why big
core-based server is more efficient. However, with more near real-
time performance constraints, i.e. for ED2P and ED3P metrics, big
core becomes more efficient compared to little cores across most
applications. Figure 5.2 presents the data sensitivity analysis of
Hadoop micro-benchmarks. The increase in the data size,
progressively makes the big core more efficient compared with little
core, however the point where big core becomes more efficient than
little core varies across applications and depends on the data size
and the performance constraint.

Figure 2. Methodology

402

The results illustrate that little core server is more efficient in terms
of EDP for big data applications with the smaller data sizes.
However, as the size of data increases and with more performance
constraints big core server becomes more efficient.

5.4 Performance Hotspot and Post-Acceleration

CPU code Characterization
As chips are hitting power limits, computing systems are moving
away from general-purpose designs and toward greater
specialization. Hardware acceleration through specialization has
received renewed interest in recent years, mainly due to the dark
silicon challenge. In addition to big, medium, and small cores, the
integration of domain-specific accelerators, such as GPUs and
FPGAs has become extensive.
To find out the right server architecture for big data processing, it
is important to understand how deploying an accelerator, such as
FPGA, would necessitate adapting the choice of CPU. The post
acceleration code characteristics are important to find the right
architecture for efficient processing of big data applications. In this
section, we analyze the choice of big vs. little core-based server for
the code that remains for the CPU after acceleration, compared
with the choice of big vs. little before acceleration.
A key research challenge for heterogeneous architecture that
integrates CPU and accelerator such as FPGA is workload
partitioning and mapping of a given application (which is
alternatively referred to as scheduling) to CPU and FPGA for
power, performance, and QoS. This is commonly referred as
hardware and software partitioning. A common method for
HW/SW partitioning is to profile the application to find the
performance hotspot region. These regions are candidates for
FPGA acceleration, as long as the overhead of communication

with CPU is not significant [15]. To perform hotspot analysis on
big data applications, we use Intel Vtune to select the common
hotspot modules of the applications running on big and little cores.
First, we identify and analyze hotspot modules based on their
execution time. Figure 6.1 shows the common hotspot modules of
big data applications and Figure 6.2 presents Hadoop micro-
benchmark hotspots with a data size of 1GB on Big and Little
cores, respectively. Map and Reduce tasks represent the
computation part to perform the task, such as grep, sort and etc.
Libz is performing the compression and decompression task
(library) for the Hadoop workload. Module dynamic contains
hotspot functions such as java-finalize to perform the completion
tasks of an object. Compiled java code includes the java.lang.string
class to represent character strings along with the system.array,
copy, math, abstractSringBuilder and object classes. Libpthread
contained functions like mutex lock/unlock for the thread creation
and protection and cond_wait functions to block on a condition
variable.
We have also collected the IPC for each of these hotspot functions.
Due to space limitation, we do not show the details of the IPC
results. The results show that the performance gap between big and
little cores for Map and Reduce task is 2X. This large gap shows
that big core has a clear advantage over little core to run these
hotspot functions.
Since the hotspot functions and their corresponding libraries are
taking up most of execution time, they are candidate for
acceleration, for instance with offloading mapper and reducer tasks
to FPGAs [16, 17]. Several recent works have demonstrated the
potential of offloading map and reduce tasks to FPGA platforms
[18, 19, 20]. To analyze post-accelerated code and the choice of
server architecture, we assume map and reduce tasks are offloaded
to an accelerator [18, 19, 20]. We do not make any assumption

Figure 3. IPC (3.1) Big Data workloads (3.2) Different configurations of Hadoop micro-benchmarks

Figure 4. Power Reading (4.1) Big Data workloads (4.2) Different configurations of Hadoop micro-benchmarks

Figure 5. EDP, ED2P and ED3P Analysis (5.1) Big Data Workloads (5.2) Different configurations of Hadoop micro-benchmarks

403

about the speedup gain on accelerator nor the cost of offloading to
the accelerator. By taking out the time it takes to run hotspot
function, we can study the remaining modules that are left for the
big or little core-based server to run.
Figure 7 shows the impact of post-accelerated code by
investigating the speed up - migrating from Atom to Xeon before
and after acceleration. We report the little vs big core speed up in
terms of

!"##$!!" =
(!"#$%&'#!"#$!"#$%&'#!"#$)!"#$%&%&'!!"#$!!"#$%!!""#$#%!&'()

(!"#$%&'#!"#$!"#$%&'#!"#$)!"#$%!!!""#$%!&$'(
!

(Exectime Atom / Exectime Xeon) remaining code after acceleration

represents the speed up obtained by migrating the post-accelerated
code from Atom to Xeon. (Exectime Atom / Exectime Xeon) entire

applications represents the speed up obtained by migrating the
application from Atom to Xeon before acceleration. Using this
equation, we can evaluate the impact of Atom over Xeon speedup
gain after acceleration compared to speed up before acceleration.
Most of the micro-benchmarks in Figure 7 have speed up less than
1 which indicates that speedup of Atom over Xeon after
acceleration reduces compared to speed up before acceleration. We
have also observed that most micro-benchmarks, with the increase
in data size the speedup after acceleration reduces compared to the
speedup before acceleration. However, there are several exceptions
to this trend, including GSP, RuleGrowth, Ecalt, WordCount, and
Spade where post acceleration code achieves higher speed up on
Xeon over Atom compared with pre-acceleration code. Overall,
Xeon provides a lower execution time, however, if speedup after
acceleration is very small then considering the power consumption
of Xeon, Atom-based will be a more efficient server to execute the
post-accelerated code. Results show that the choice of big vs. little
before and after accelerations is different. While most benchmarks
clearly favor little core post acceleration, in several applications
post accelerated code show higher speed up on big core-base
server over little core-base server compared to pre-acceleration.

6. RELATED WORK
Recently, there have been a number of efforts to benchmark and
characterize big data and cloud-scale applications, mainly on state-
of-the-art high performance server platform. In general, there are

two major approaches for benchmarking big data: A system
benchmarking and a component benchmarking. A system
benchmark is an end-to-end benchmarking, which includes the
entire database and application software stack, including data
preparation, data aggregation and data analytics [22]. A component
benchmark encloses only a portion of the entire end-to-end system
[22].
The most prominent big data benchmarks, include HiBench, Scale-
Out, BigDataBench, CloudCmp, and LinkBench. HiBench [24] is a
benchmark suite for Hadoop MapReduce. CloudCmp [25] use a
systematic approach to benchmark various components of the cloud
to compare cloud providers. LinkBench is a real-world database
benchmark for social network applications [26]. The Transaction
Procession Performance Council (TPC) has released a number of
benchmark suites in recent years, including TPC-C, TPC-E, and
TPC-DS for online transaction processing. BigDataBench [2] was
released very recently and includes online service and offline
analytics for web service applications. BigBench [27] is a new big
data benchmark that adopts TPC-DS as its basis and expands it for
offline analytics on Xeon high performance server. The CloudSuite
[3, 4] benchmark was developed for Scale-Out cloud workloads and
mainly includes small data sets, e.g., 4.5 GB for Naïve Bayes.
Several prior researches have characterized traditional CPU and
parallel applications such as SPEC2006, PARSEC, and NAS on
high performance server-class processors [21, 36]. It is important to
also compare the characteristics of big data application with these
traditional benchmark suites. We have included the SPEC
CINT2006, SPEC CFP2006 and PARSEC 2.1 benchmarks for the
comparison with BigData Workloads.
This work is different from all above benchmarking and
characterization work as it perform a comprehensive system-level
(power, performance, EDXP) analysis of various big data
applications and big data micro-benchmarks on two substantially
different platforms one with high performance big core and
another with low power little core to understand which of these
two architectures is the choice for efficient big data processing.
There has been also a number of research into application-specific
[28, 29] and domain-specific accelerators [30, 31, 32, 33]. Using
tightly integrated FPGA [27, 34] with CPU, and GPU with CPU
[1, 22], to accelerate big data processing have been proposed in
recent work. While deploying programmable accelerator is a new
and hot research topic, there has been little attention paid to how

Figure 6. Hotspot Analysis before acceleration (6.1) Big Data workloads (6.2) Hadoop micro-benchmarks

Figure 7: Speed up of Atom vs Xeon before and after acceleration (7.1) Big Data workloads (7.2) Hadoop micro-benchmarks

404

CPU designs should be adapted to this change. To the best of our
knowledge, the only work on this topic is by Arora [23], which
studied the role of the CPU for a CPU+GPU architecture. They
concluded that, in a CPU+GPU architecture, the CPU is running a
code that is significantly different from a CPU-only code. They
found that the post-GPU code has a lower ILP, higher branch miss
prediction rate, and larger number of load and stores, and benefits
less from multiple cores, as there is less TLP after GPU offloading.
In this paper, we demonstrated how deploying accelerator such as
FPGA for big data affects the choice of big vs. little core for
efficient processing.

7. CONCLUSIONS
Heterogeneous chip architectures have emerged as an effective
solution to address the power efficiency challenges the computer
industry is facing. This work studied whether this is true for
emerging big data applications. In this paper, we present a
comprehensive system level analysis of big data applications on two
distinct server platforms; the conventional server design approach,
using a high performance big Xeon core; and the new trajectory in
server design, using little Atom core, which advocates the use of a
low-power core to address the power challenge. The
characterization results show significantly larger performance drop
(37%, on average) for big data applications compared to traditional
CPU applications when running on big core server compared to
little core server. Big core-based server provides a high
performance, compared to little core, however, it is not as power
efficient. Little core-based server is more efficient in terms of EDP
for big data processing with small data sizes. However, as the size
of data increases and with performance constraints, big core
becomes an efficient choice. Overall the performance gap between
these two server architectures while it is large for traditional CPU
applications, it is becoming smaller for emerging big data
applications. In addition, we performed the post-acceleration CPU
code analysis to find out the most efficient server architecture to
process the remaining code of big data applications after
acceleration. The results show that there is a difference between the
choice of big vs. little core-based server before and after
accelerations. While most benchmarks clearly favor little core post
acceleration, several applications show higher speed up on big core
over little core post acceleration compared to pre-acceleration.
Overall, the results suggest that a heterogeneous architecture
combining big and little cores is required for efficient processing of
emerging big data analytics applications.

8. REFERENCES
[1] Wu, Ren, Bin Zhang, and Meichun Hsu. "GPU-accelerated large

scale analytics." IACM UCHPC (2009).
[2] Gao,W. “BigDataBench: a Big Data Benchmark Suite from Web

Search Engines”.ASBD 2013 in conjunction with ISCA 2013
[3] Ferdman, M., et al. "Clearing the clouds: a study of emerging scale-

out workloads on modern hardware." ACM SIGARCH Computer
 Architecture News40.1 (2012): 37-48.

[4] Ghazal, A. “Bigbench: Towards an industry standard benchmark for
big data analytics”. In: ACM SIGMOD Conference (2013)

[5] Gutierrez, A. et al. "Integrated 3D-stacked server designs for
increasing physical density of key-value stores." ASPLOS. 2014.

[6] Reddi, V. J., et al. "Web search using mobile cores: quantifying and
mitigating the price of efficiency." ACM SIGARCH Computer
Architecture News38.3 (2010): 314-325.

[7] Andersen, D. G. et al. “FAWN: A Fast Array of Wimpy Nodes”. In
the Proceedings of ACM SIGOPS 22nd SOSP, pages 1–14, 2009.

[8] Hardavellas, Nikos, et al. "Toward dark silicon in servers." IEEE
Micro 31.EPFL-ARTICLE-168285 (2011): 6-15.

[9] Neshatpour, Katayoun, et al. "Energy-efficient acceleration of big
data analytics applications using FPGAs." Big Data (Big Data), 2015
IEEE International Conference on. IEEE, 2015.

[10] Kumar, Rakesh, et al. "Heterogeneous chip multiprocessors."
Computer 11 (2005): 32-38.

[11] Kontorinis, Vasileios, et al. "Enabling dynamic heterogeneity through
core-on-core stacking." Proceedings of the 51st Annual Design
Automation Conference. ACM, 2014.

[12] Homayoun, Houman, et al. "Dynamically heterogeneous cores
through 3D resource pooling." High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on.

[13] Intel VTune Amplifier XE Performance Profiler.
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

[14] Homayoun, Houman, et al. "Reducing execution unit leakage power
in embedded processors." Embedded Computer Systems:
Architectures, Modeling, and Simulation. Springer, 2006. 299-308

[15] Nilakantan, S., et al. "Platform-independent analysis of function-level
communication in workloads." IISWC, IEEE, 2013.

[16] Neshatpour, Katayoun, Maria Malik, and Houman Homayoun.
"Accelerating machine learning kernel in hadoop using fpgas."
Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on. IEEE, 2015.

[17] James T Kukunas, et al. “High Performance ZLIB Compression on
Intel®Architecture Processors”, White paper, April 2014.

[18] Shan, Y., et al. “FPMR: Mapreduce framework on FPGA,” in Proc
ACM/SIGDA Int Symp Field Programmable Gate Arrays, 2010.

[19] Neshatpour, Katayoun, et al. "Accelerating big data analytics using
fpgas." Field-Programmable Custom Computing Machines (FCCM),
2015 IEEE 23rd Annual International Symposium on. IEEE, 2015.

[20] Z. Lin and P. Chow, “Zcluster: A zynq-based hadoop cluster,” in Int.
Conf. FPT, Dec 2013, pp. 450–453.

[21] T. K. Prakash et al. Performance Characterization of SPEC CPU2006
Benchmarks on Intel Core 2 Duo Processor. In Transactions on
Computers and Software Engineering, No. 1, Vol 2, pp. 36-41, 2008.

[22] Baru, C., et al. “Setting the Direction for Big Data Benchmark
Standards”,Lecture Notes in Computer Science

[23] Arora, Manish, et al. "Redefining the Role of the CPU in the Era of
CPU-GPU Integration." Micro, IEEE 32.6 (2012): 4-16.

[24] Huang, S., et al. "The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis." In the proc. of ICDEW, 2010

[25] Li,A.,et al. “CloudCmp: comparing public cloud providers.”
ACM,’10

[26] Armstrong, et al. "Linkbench: a database benchmark based on the
facebook social graph." Proceedings of the ACM SIGMOD, 2013.

[27] Xi Luo, Walid A. Najjar, Vagelis “Hristidis: Efficient near-duplicate
document detection using FPGAs”. BigData 2013

[28] YU, P., et al. “Scalable custom instructions identification for
instruction-set extensible processors”. In Proc. of the CASES’04.
ACM, New York.

[29] YU, P. et al. “Disjoint pattern enumeration for custom instructions
identification”. In Proceedings of the FPL’07, 273–278.

[30] ARNOLD, M. et al. “Designing domain-specific processors.” In
Proceedings of the 9th CODES. ACM 2001.

[31] Clark, N. T., et al. "Automated custom instruction generation for
domain-specific processor acceleration." Computers, IEEE
Transactions on 54.10 (2005): 1258-1270.

[32] Homayoun, Houman, and et. al. "ZZ-HVS: Zig-zag horizontal and
vertical sleep transistor sharing to reduce leakage power in on-chip
SRAM peripheral circuits.", 2008, ICCD, IEEE International
Conference on Computer Design.

[33] Arora, N, et al. "Instruction selection in asip synthesis using
functional matching." VLSI Design, 2010.

[34] Chung, E. S., et al. "Linqits: Big data on little clients." ACM
SIGARCH Computer Architecture News. Vol. 41. No. 3, 2013

[35] http://www.chipestimate.com/tech-talks/2013/07/16/Cadence-5-Emer
ging-DRAM-Interfaces-You-Should-Know-for-Your-Next-Design-

[36] S. Bird, et al. Performance Characterization of SPEC CPU
Benchmarks on Intel's Core Microarchitecture based processor, in
Proceedings of 2007 SPEC Benchmark Workshop, Jan 2007.

405

