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Abstract—Resistive Computation was suggested by [6] as an idea for tacking the power wall by replacing conventional CMOS
logic with Magnetic Tunnel Junction (MTJ) based Look-Up Tables (LUTs). Spin Transfer Torque RAM (STTRAM) is an emerging
CMOS-compatible non-volatile memory technology based on Magnetic Tunnel Junctions as a memory bit [3]. The principal
advantage of STTRAM is that it is leakage-resistant, which is an important characteristic beyond the 45nm technology node,
where leakage concerns are becoming a limiting factor in microprocessor performance. Although STTRAM is a good candidate
for replacing SRAM for on-chip memory, we argue in this article MTJ-based LUTs are unnecessarily expensive in terms of area,
power, and performance when implementing fixed combinational logic that does not require the reprogramming ability provided by
MTJs.

Index Terms—Resistive computation, magnetic-tunnel junctions, spin transfer torque RAM, MRAM, dynamic current-mode logic,
leakage power.
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1 INTRODUCTION

WITH the scaling of CMOS technology, leakage power
has emerged as a major barrier to high performance

computing circuits and high density SRAM arrays [4]. Spin
Transfer Torque RAM (STTRAM) has emerged as an alter-
native to conventional CMOS SRAM that offers significant
leakage power reduction since the information is stored in
the form of a programmable resistance represented by a
Magnetic Tunneling Junction (MTJ) rather than by electron
charge [3]. The use of MTJs has recently been explored for
building low power programmable Look-Up Tables (LUT)
used in Field Programmable Gate Arrays (FPGA) [9], [11]. In
both memory and FPGA applications, re-configurability is a
key requirement and exploits the programmability of MTJs.
Hybrid CMOS-STTRAM FPGA solutions are particularly
attractive because the write operation, which is a high
power operation in STTRAM, happens very infrequently
in FPGAs [9]. To fully exploit the benefits of MTJs in this
type of FPGA, additional circuitry and optimizations were
found to be necessary [9].

There have been attempts to use MTJs for building logic
circuits with the hope of exploiting the leakage benefit of
MTJs in order to reduce circuit power. However, due to
the significant energy involved in changing the state of
an MTJ, circuit styles that rely on changing the state in
response to input changes do not show any power and
performance benefit [10]. An alternative to this approach
has been to realize logic in memory by using LUTs that
are built based on MTJs [6]. A LUT, such as those used in
FPGAs, offers programmability and includes write circuitry
for changing the state of the MTJs. However, if the LUT is
used for implementing fixed combinational logic, there is no
need for the write circuitry, so it can be eliminated to simplify
the circuit. In [6], such read-only MTJ-based LUTs are used
to replace custom CMOS logic with the hope of achieving
low power. In this article, we argue that for a fixed logic
implementation in LUT circuits, the MTJs can be replaced
by short or open circuits, and this replacement will always

Fig. 1: 3-input MTJ-based LUT [6] [11].

improve the circuit power and performance. Moreover, we
show that the leakage reduction of these LUT styles, which
was mistakenly attributed to MTJs in [6], is in fact due to
the stacking of transistors in this style. In fact, replacing the
MTJs with short and open results in lower leakage too.

The replacements of MTJs with short or open circuits will
also create opportunities for simplification of the LUT circuit
for additional performance improvement. By replacing an
MTJ that is at a high state with an open circuit, the transistors
in the path above it can also be eliminated, and by shorting
the low state MTJs, some paths could possibly be merged,
resulting in a reduced number of transistors.

2 RESISTIVE COMPUTATION VIA MTJ-BASED LUTS

Fig. 1 shows the schematic of a 3-input MTJ-based LUT
that was used in [6]. This LUT was obtained by eliminating
the write circuitry from the original design in [11]; hence,
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it is a read-only LUT. The read-only nature of this design
requires that the state of the MTJs be initialized during
manufacturing. An MTJ is selected by using the pull-down
NMOS selection tree, and the current of the dynamic current
source is divided between the selected MTJ and the reference
resistor, resulting in a low swing differential voltage on nodes
DEC and REF during the evaluation phase when the clock
(CLK) is high. This low swing voltage is then amplified
using a sense amplifier stage to achieve full voltage swing
outputs (Z and Z’).

3 REDUCING CIRCUIT COMPLEXITY

In principle, the resistance of the reference tree (Fig. 1) should
be in between the high and low values of the resistance of
the selected path on the selection tree. Moreover, the larger
the difference between these two resistances, the greater are
the robustness and performance of the circuit against noise
and process variations. Hence, we can argue that the higher
the resistance of the high state of the MTJ or the lower the
resistance of the low MTJ state, the better are the performance
and reliability of the circuit. Therefore, we propose to replace
a high state MTJ with an open circuit (infinite resistance) and
a low state MTJ with a short circuit (zero resistance). This will
enhance the current differential between the left and the right
hand side trees (Fig. 1), resulting in reduced delay. Moreover,
the open path will eliminate the current of the path, resulting
in reduced switching and leakage power. The shorted path,
on the other hand, will slightly increase the leakage of the
path. However, this increase is not as much as the reduction
obtained by opening a high resistance path, because the
current is limited by the chain of the transistors in the path.
Also, the current is limited by the NMOS clocked transistor
that acts like a power gating switch, and the leakage is not
very sensitive to the MTJ resistance. Fig. 2 shows the plots of
power, delay, and energy for LUT sizes ranging from 2 inputs
to 8 inputs. Each LUT is examined under four scenarios of
high and low MTJ resistance states (RH and RL). This data is
obtained for the cases where 50% of the MTJs are at the high
state, and the remaining 50% at the low state. Simulations
are performed in a 32nm predictive technology [1], where
the expected RH and RL values are at 6.25KΩ and 2.5KΩ,
respectively [6]. It is evident that replacing a high state MTJ
(RH) with an open circuit and low state MTJ (RL) with short
is beneficial in all aspects of power, delay, and energy. The
power and leakage benefit will be more substantial when
more MTJs are at the high state. After replacing a high state
MTJ with an open circuit, the transistors above it in the
selection tree can be eliminated, resulting in area reduction
(Fig. 2(e)).

4 ADDITIONAL CIRCUIT SIMPLIFICATIONS

After the replacement of MTJs with short or open circuits,
the NMOS pull-down tree can be optimized to minimize
the number of transistors and hence further improve the
performance. The results presented in the previous section
do not include these optimizations. Consider the example
of a 3-input AOI gate shown in Fig. 3. Fig. 3(a) shows
the implementation using the original MTJ-based LUT. The
AOI functionality is realized by manufacturing the three
rightmost MTJs at the low resistance state (RL) and the
rest at the high resistance state (RH). Fig. 3(b) shows the
LUT after the replacement of each RH with an open circuit

(a) (b)

(c) (d)

(e)
Fig. 2: Power, leakage, performance, and area
results of LUTs with high and low state
MTJs (RH, RL), replaced with open and
short, respectively.

(a) (b)

(c) (d)

(e)
Fig. 3: Implementation of logic function
Z=A+BC in (a) MTJ-Based LUT (b) MTJ-less
LUT (c) Minimized tree LUT (d) DCML (e)
Static CMOS.
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and each RL with a short circuit (MTJ-less LUT). As can
be seen, the NMOS selection tree can now be reduced in
size by eliminating the open and/or redundant paths, which
results in the circuit shown in Fig. 3(c) (minimized tree LUT).
Replacing the reference tree with the dual of the minimized
tree, and removing the sense-amp, will result in the already
known Dynamic Current Mode Logic (DCML) style [2] which
has low voltage swing outputs (Fig. 3(d)).

The DCML circuit style was originally presented in [2]
and compared against static CMOS. It was shown in [2] that
while this style shows better speed than static CMOS due
to its dynamic operation, its power consumption is higher
except for very complex functions such as high fan-in XOR
gates. Hence in this paper, we will not repeat this comparison
and only focus on comparing the original MTJ LUT style
Fig. 3(a), the MTJ-less LUT style Fig. 3(b), and the simplified
MTJ-less (min-tree) LUT style Fig. 3(c), with the static CMOS
Fig. 3(e).

Table 1 shows the simulation results of the above circuit
styles for logic gates of various complexity implemented
in a predictive 32nm technology [1]. All the results are
normalized to the corresponding results for a static CMOS
implementation. The capacitance of the dynamic current
supply of the MTJ-based LUT style (Fig. 1) is optimized
to achieve the minimum Power-Delay Product (PDP). The
same capacitance is kept for other logic styles.

It is clear that the MTJ-based LUT style is not competitive
with the MTJ-less styles irrespective of the circuit complexity
or the metric. The MTJ-less LUT outperforms the MTJ-based
LUT in all metrics and for all logic gates and the simplified
(min-tree) LUT shows even better results. The power results
for the LUT styles included the clock power as well as
the sense amplifier power. Also, we notice that the LUT
styles have maximum output switching activity of 200%
irrespective of the data switching pattern. That is because
in every cycle the differential output of the LUT style will
make two sightings (one high-to-low in the precharge phase
and one low-to-high in the evaluation phase), irrespective
of the input pattern. This high switching activity results
in excessively high active power for the LUT styles at
low output switching activity factors. The static CMOS is
the fastest logic style and shows the lowest active power
consumption. The static CMOS style shows better energy
per output switching results as compared to the MTJ-based
LUT style.

Except in the cases of high fan-in NAND and NOR gates,
the LUT styles show lower standby leakage than the static
CMOS counterpart. In the high fan-in NAND and NOR
gates, there is a long chain of series connected transistors that
supress the leakage significantly due to the stacking effect [8].
In these cases, the LUT styles show more leakage due to
extra leakage on the sense amplifier stage. On the other hand,
high fan-in NAND and NOR gates are delay inefficient when
implemented in single stage in static CMOS [7], and therefore,
this leakage advantage of static CMOS will disappear if these
gates are implemented in a multi-stage fashion by cascading
NAND/NOR gates of lower fan-in.

Why are the LUT styles low leakage? In [6], low leakage
property of the MTJ based LUTs is attributed to the use of
MTJs. However, our results clearly show that MTJs play no
useful role in leakage reduction. In fact, by eliminating the
MTJs (replacing them with short or open circuits), the leakage
is further reduced (Table 1). The leakage reduction observed

for LUT circuits, as compared with static complementary
CMOS style, is because of the stacking of transistors [8] that
occurs due to the addition of the clocked transistors in the
NMOS pull-down (dynamic current supply) and the clocked
PMOS in the sense amplifier.

To better understand this, consider the static CMOS circuit
that implements Z’=A+BC with the leakage paths shown
for the input state A=B=C=0 in Fig. 3(e). There are two
leakage paths as show in Fig. 3(e). Notice that the NMOS A
leaks significantly because it has maximum drain to source
voltage of Vdd. The same circuit in LUT style with its leakage
paths is shown in Fig. 3(a). The leakage paths are shown
again assuming CLK=A=B=C=0 in the standby mode. Notice
CLK’=Vdd in the standby mode, and hence the lower NMOS
in the dynamic current supply is ON and discharging the
capacitance to zero volts. The leakage of the logic stage is
now limited to a single clocked NMOS leakage regardless
of the complexity of the logic function, and this leakage
is reduced because this transistor has less drain-to-source
voltage (VDS=Vdd-Vt). The threshold voltage (Vt) drop is
caused by the NMOS evaluation tree (or reference tree),
because the NMOS transistors cannot charge their source
voltage beyond the gate voltage (Vdd) minus the threshold
voltage [7]. The leakage of the sense amplifier is also small
because of the stacking effect (two OFF PMOSes in series).

5 CASE STUDY: 3-BIT ADDER EXAMPLE

We use a 3-bit adder as a test case to compare the alternative
circuit styles presented in the previous sections. The 3-bit
static CMOS adder was implemented using a ripple-carry
scheme with a first-stage half adder followed by two full
adders. The half adder and full adders were implemented
in the static complementary CMOS style. The MTJ and MTJ-
less LUT styles were implemented by using four LUTs to
produce each output from the six inputs. The first output
bit is only a function of the least significant bits of the input
operands and hence realized by a 2-input LUT. The second
output bit is a function of the two least significant bits of the
input operands and hence implemented by a 4-input LUT.
The last sum output bit and carry output bit are functions of
all the inputs and hence implemented using 6-input LUTs.
Since sum outputs are not on the critical path (i.e. carry
generation path), the capacitance of the dynamic current
sources for the sum LUTs are minimized for low power,
whereas the capacitance of the carry LUT is optimized for
minimum power-delay product. Sense amplifiers are preset
at the outputs of each LUT to produce full-swing outputs
and their power and delay overhead is counted.

Table 2 shows the results of the 3-bit adder implemented
in the alternative logic styles. All results are normalized
to the corresponding results for the static CMOS style. The
active power results are measured by applying random input
stimuli. It is observed again that MTJs provide no advantage
and irrespective of the metric used MTJ-less and simplified
(minimum tree) LUTs offer better results. The only advantage
of the MTJ-based LUT over CMOS is less standby power,
and that is not caused by MTJs as explained before. In
fact the standby power is further reduced in the MTJ-less
and min-tree LUTs. Overall static CMOS style is the best
solution, except in terms of leakage power. The delay of the
minimum tree LUT style is better than static CMOS due to
its dynamic operation. By using static CMOS circuits instead
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of MTJ-based LUTs, area is reduced by a factor of 3.89X,
active power by a factor of 5.2X, and delay by a factor of
2.84X. These results clearly indicate that there is no benefit
associated with the use of MTJs for implementing fixed logic
and the leakage advantage is not attributed to the use of
MTJs and rather the stacking of transistors created in this
logic style.

6 OTHER ISSUES WITH MTJ-BASED LUTS

Dynamic logic styles are generally less robust and more sus-
ceptible to noise and Process, Voltage, and Temperature (PVT)
variations as compared to the static CMOS counterpart [5],
and the LUT styles are no exception. The last row in Table 2
shows the normalized delay sensitivity to threshold voltage
(Vth) variation. The results are obtained by applying 30 mV
of inter-die shift in Vth. The results show that the LUT styles
are more sensitive to process variations.The comparative
voltage sensitivity results are expected to be similar to the
Vth sensitivity results because the performance of a circuit (or
current of a transistor) depends on Vdd-Vth, and therefore,
a circuit with higher Vth sensitivity is expected to also show
higher voltage (Vdd) sensitivity. The temperature sensitivity
will depend on the combined effect of the temperature
sensitivities of MTJ resistance and transistor performance.
Robustness is one of the major limitations for use of dynamic
logic styles in general and this issue gets worse in nano-scale
due to increased process variations [5]. Besides reliability
issues, dynamic logic styles are not supported by electronic
design automation tools in an automated design flow and
this further limits the usefulness of MTJ-based LUT styles.

7 CONCLUSIONS

We have shown that there is no advantage associated with the
use of MTJs for realizing fixed logic in read-only STTRAM-
based LUTs. In fact, a custom solution based on the static
CMOS easily outperforms the MTJ-based LUTs in all metrics
except leakage power. The leakage power saving of MTJ-
based LUT is not attributed to the MTJs and rather the
stacking of transistors in this logic style, and in fact further
leakage reduction is observed by replacing the fixed MTJs
with short and open circuits. The use of MTJs is viable for
large memory arrays (STTRAM) and writeable LUTs that
are needed for implementing reconfigurable functional units
and FPGAs. Existing research shows the benefits of MTJs in
STTRAM and reprogrammable FPGAs.
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TABLE 1: Comparison of circuit style alternatives
(α: output switching activity).

MTJ MTJ Min Static
Gate Metric Based Less Tree

LUT LUT LUT CMOS
(Fig 3a) (Fig 3b) (Fig 3c) (Fig 3e)

Delay 6.46 5.19 4.69 1
NAND2 Active Power(α=10%) 90.35 51.65 51.9 1

Active Power(α=30%) 30.12 17.22 17.3 1
Standby Power 0.48 0.45 0.45 1

Energy per Switching 58.36 26.8 24.34 1
Delay 4.49 2.99 2.61 1

NAND4 Active Power(α=10%) 76.73 43.86 43.71 1
Active Power(α=30%) 25.57 14.62 14.57 1

Standby Power 0.96 0.86 0.83 1
Energy per Switching 34.45 13.11 11.4 1

Delay 2.49 1.50 1.40 1
NAND8 Active Power(α=10%) 34.53 14.75 14.32 1

Active Power(α=30%) 11.51 4.91 4.77 1
Standby Power 8.05 5.23 3.79 1

Energy per Switching 8.59 2.21 2 1
Delay 4.85 3.86 3.52 1

NOR2 Active Power (α=10%) 80.2 53.35 53.15 1
Active Power(α=30%) 26.73 17.78 17.71 1

Standby Power 0.51 0.48 0.48 1
Energy per Switching 38.89 20.59 18.7 1

Delay 3.06 2.01 1.77 1
NOR4 Active Power(α=10%) 24.25 13.98 14.18 1

Active Power(α=30%) 8.08 4.66 4.72 1
Standby Power 1.06 0.95 0.93 1

Energy per Switching 7.42 2.8 2.5 1
Delay 1.51 0.90 0.84 1

NOR8 Active Power(α=10%) 17.1 7.37 7.1 1
Active Power(α=30%) 5.7 2.45 2.36 1

Standby Power 10.83 7.03 5.14 1
Energy per Switching 2.58 0.66 0.59 1

Delay 4.95 4.03 3.89 1
XOR2 Active Power(α=10%) 22.45 17.45 17.5 1

Active Power(α=30%) 7.48 5.81 5.83 1
Standby Power 0.13 0.12 0.12 1

Energy per Switching 11.11 7.03 6.8 1
Delay 4.18 3.17 2.95 1

XOR4 Active Power(α=10%) 90.06 73.25 71.18 1
Active Power(α=30%) 30.02 24.41 23.72 1

Standby Power 0.04 0.04 0.04 1
Energy per Switching 37.64 23.22 21 1

Delay 3.12 2.55 2.10 1
XOR8 Active Power(α=10%) 63.93 55.06 34.06 1

Active Power(α=30%) 21.31 18.35 11.35 1
Standby Power 0.03 0.02 0.01 1

Energy per Switching 19.94 14.04 7.15 1

TABLE 2: Comparison of 3-bit adder results in alternatives styles.

Metric MTJ-Based MTJ-Less Min-Tree Static
LUT LUT LUT CMOS

Delay 2.84 2.13 0.86 1.00
Active Power 5.2 4.25 3.87 1.00

Standby Power 0.17 0.15 0.14 1.00
PDP 14.77 9.05 3.33 1.00
Area 3.89 3.89 1.67 1.00

Delay sensitivity to Vth variation 1.16 1.22 1.32 1.00
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