
XPPE: Cross-Platform Performance Estimation of Hardware
Accelerators Using Machine Learning

Hosein Mohammadi Makrani, Hossein Sayadi, Tinoosh Mohsenin,
Setareh rafatirad, Avesta Sasan, Houman Homayoun

George Mason University
Fairfax, VA 22030

{hmohamm8,hsayadi,tmohseni,srafatir,asasan,hhomyou}@gmu.edu

ABSTRACT
The increasing heterogeneity in the applications to be processed
ceased ASICs to exist as the most efficient processing platform.
Hybrid processing platforms such as CPU+FPGA are emerging as
powerful processing platforms to support an efficient processing
for a diverse range of applications. Hardware/Software co-design
enabled designers to take advantage of these new hybrid platforms
such as Zynq. However, dividing an application into two parts that
one part runs on CPU and the other part is converted to a hardware
accelerator implemented on FPGA, is making the platform selec-
tion difficult for the developers as there is a significant variation
in the application’s performance achieved on different platforms.
Developers are required to fully implement the design on each
platform to have an estimation of the performance. This process is
tedious when the number of available platforms is large. To address
such challenge, in this work we propose XPPE, a neural network
based cross-platform performance estimation. XPPE utilizes the
resource utilization of an application on a specific FPGA to esti-
mate the performance on other FPGAs. The proposed estimation is
performed for a wide range of applications and evaluated against a
vast set of platforms. Moreover, XPPE enables developers to explore
the design space without requiring to fully implement and map
the application. Our evaluation results show that the correlation
between the estimated speed up using XPPE and actual speedup of
applications on a Hybrid platform over an ARM processor is more
than 0.98.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting;

KEYWORDS
Design space exploration, performance estimation, machine learn-
ing, accelerator

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’19, January 21–24, 2019, Tokyo, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00
https://doi.org/10.1145/3287624.3288756

ACM Reference Format:
Hosein Mohammadi Makrani, Hossein Sayadi, Tinoosh Mohsenin,, Setareh
rafatirad, Avesta Sasan, Houman Homayoun. 2019. XPPE: Cross-Platform
Performance Estimation of Hardware Accelerators Using Machine Learning.
In 24th Asia and South Pacific Design Automation Conference (ASPDAC ’19),
January 21–24, 2019, Tokyo, Japan. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3287624.3288756

1 INTRODUCTION
The end of Dennard Scaling era and the thrive to achieve high per-
formance led to evolution of new computer architecture designs[10].
ASICs persist to be no more the best executing hardware platform
due to the design complexity, involved costs and the time-to-market
challenges [1, 19].

New hybrid platforms such as CPU+FPGA systems are emerging
as the potential solution, despite the fact that FPGAs are nearly one
order magnitude slower than the specialized ASICs [9]. FPGAs en-
joy other benefits such as on-the-fly programmability, reconfigura-
bility, energy-efficiency, and the development of hardware/software
co-design platforms[2, 18]. This also facilitates engineers to perform
hardware design without requiring deeper insights into hardware
design [7].

As there exists a performance gap among the implementation of
an application on various FPGA devices (1×-1000×), it is important
for the developers to determine which of the FPGA platforms to
choose. This challenge is further complicated with the availability
of a large number of FPGA boards. To yield the high-performance
by running appropriate applications on FPGAs, it is important
to perform the design space exploration (DSE) [7] using timing
analysis provided by CAD tools. After that, the designer can decide
to implement an application on the suitable platform.

There are challenges associated with the static timing analysis
of digital systems designs [4]: The latest version of CAD tools
provided by Xilinx (Vivado), does not have the capability to report
the maximum frequency achievable for the corresponding code.
The user must request a target frequency, and the tool reports either
a "pass" or "fail" for its attempt to achieve this goal [5]. While there
are 25 optimization strategies predefined in the tool, applying them
sequentially, is extremely tedious and time consuming. Therefore,
the estimation of the achievable performance improvements will
aid the designer to choose faster and wisely among different FPGA
devices.

The performance estimation for choosing the platform to run the
application faces the challenges from the vast heterogeneity of exist-
ing type of applications and the FPGA devices. Most of the existing
works predict performance based on the application characteristics

https://doi.org/10.1145/3287624.3288756
https://doi.org/10.1145/3287624.3288756

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan H.M. Makrani et al.

and depending on the resource consumed [7–9, 16], but limited to
specific FPGAs. Moreover, these works lack a detailed comparison
of achieved performance benefits to the processor subsystems.

In this work, we classify FPGAs into three categories: low-end,
medium, and high-end FPGAs based on the available resources on
the FPGA. Furthermore, it has been shown that the performance
of an application can be enhanced by varying the parameters of
FPGA such as frequency, memory bandwidth [11, 13], and so on
[27]. As such, we explore the impact of different parameters and
the class of the FPGA on the performance of an application.

Based on the resource utilization of an application across dif-
ferent FPGA’s classes and the achieved performance (speedup),
we build a machine learning based cross platform performance
estimation (XPPE) tool. XPPE uses the resource utilization of an
application reporeted by Xilinx HLS tool and predicts the sped up
of that applications on different platforms. Our evaluation shows
the predicted speed up and the actual speedup over ARM Cortex
A-9 MPCore processor for different wide range of applications has
a correlation of R=0.98.

The main contributions of this work are:

• Design space exploration of different classes of FPGAs and
determine the parameters that have significant impact on
the performance w.r.t the type of application.

• Provide a cross-platform performance estimation tool (XPPE)
based on the machine learning model to determine the per-
formance improvement (acceleration) over a general purpose
processor (ARM Cortex A-9 MPcore in our experiments).

2 EXPERIMENTAL SETUP
The experimental setup for building a machine learning model,
and the methodology to determine the important parameters of
FPGAs for performance boosting is presented in this section. We
first require a dataset for training the model. Hence, we present our
benchmarks, FPGA devices, and the methodology of performing
our experiments to collect the required data.

2.1 Studied applications
In order to model the performance of applications, a dataset was
generated from popular HLS benchmark suits to make sure that
the diversity of benchmarks is comprehensive. The selected bench-
marks are fromMachsuit [17], S2CBench [23], CHStone [6], Rosetta
[29]. To increase the diversity and the size of dataset, we also used
a collection of 10 different image processing kernels from Xilinx
xfOpenCV. We totally covered 70 benchmarks which include a wide
range of domains from simple kernels to machine learning and real-
time video processing that they reflect the latest application trends.

Each application was implemented and verified for functional
correctness before analyzing across different FPGAs studied.

As a basis for comparison, all applications were run in a single-
threaded manner on an ARM A9 processor with a 650 MHz CPU
clock. The functions used for the software baseline were standard
functions that were not optimized for FPGA. The software utilized
for testing was the Xilinx SDSoC development suite, which uses
Vivado and Vivado HLS version 2017.2. as its underlying software.

Table 1: FGPA devices’ specification

Family Device Frequency Technology
DRAM

Classinterconnect
(MHz) speed

Zynq
XC7Z010 125 28 1866

Low-end

XC7Z020 200 28 1866
XC7Z045 200 28 1866

Artix-7
XC7A50T 200 28 1066
XC7A100T 200 28 1066
XC7200T 200 28 1066

Zynq Ultrascale+ XCZU9EG 300 16 2666

Medium

Virtex-7
XC7VX485T 300 28 1866
XC7VX690T 300 28 1866
XC7V2000T 400 28 1866

Ultrascale+ XCVU5P 300 16 2666
Zynq Ultrascale+ ZU19EG 300 16 2666

UltraScale XCVU065 300 20 2400
Ultrascale+ XCVU3P 300 16 2666

UltraScale XCVU095 300 20 2400

High-end

XCVU190 400 20 2400
Ultrascale+ XCVU11P 400 16 2666

UltraScale XCVU125 400 20 2400
XCVU440 400 20 2400

Ultrascale+ XCVU13P 400 16 2666

2.2 Hardware platforms
For selecting FPGA devices, we targeted three different class of
FPGAs such as Low-end, Medium-end, and High-end. We selected
all of our devices from Xilin. 20 different FPGA technologies were
tested to generate the dataset. Table 1 shows the FPGAs and their
classes. Devices from three main Xilinx families were chosen: Zynq,
Artix, and Virtex. Additionally, from the Zynq and Virtex family,
devices from among the 28nm, 20nm (UltraSCALE), and 16nm
(UltraSCALE+) were used. The FPGA devices are chosen based on
a wide array of available resources and technologies across the
spectrum of each family.

2.3 Performance measurement
We kept the hardware/software co-design relatively simple, with
only the data transceiver and hardware accelerator located in the
PL part. The source and destination data was transferred directly to
the accelerator via an AXI-4 data bus. This method of data transport
is considered directly into our timing model of hardware perfor-
mance as well as into the device utilization. Other parameters to
the accelerator functions (such as filter size specifications, tuning
parameters, etc.) were implemented as standard data ports to the
accelerator.

Tomeasure the performance, each applicationwas synthesized in
HLS for its respective device. Timing information for the estimated
hardware performance was gathered using the reported clock-cycle
count of the maximum latency of the accelerator and plus data
transceiver. In order to estimate the amount of time that was spent
in hardware and software for the co-design of each application,
applications are first evaluated on fully implementable SoCs from
the Zynq family (Steps 4-5 in Figure 1). A performance analysis was
executed on each application to determine the overall execution
time of the full design. This is used for estimating the total execution
time. Tough the tool provided a worst-case estimation, it provided a
trend that could be used for total execution time. (It should be noted,
however, the performance estimation by the tool had a tendency to

XPPE: Cross-Platform Performance Estimation of Hardware
Accelerators Using Machine Learning ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

C++ Application

code

Accelerator code: HW

specific optimization

and pragmas

Synthesize with HLS

Estimate performance

of full C++

application

Implement on board

and analyze

performance

1 2 3 4 5

Figure 1: Experimental FPGA design flow for obtaining per-
formance

Table 2: Average speed up of applications on 3 different FP-
GAs over Arm processor

Application
Type

High-End
(XCVU13P)

Medium-End
(XCZU9EG)

Low-End
(XC7Z010)

Machine Learning 26.27 19.02 5.51
Image/Video Processing 155.71 68.42 9.26

Cryptography 23.32 12.74 3.19
Mathematical 66.65 28.43 6.78

be more than 1.5-1.75× the execution time of an application tested
on a fully implemented design.)

A ratio of the time spent in Programmable Logic (PL) vs Processor
System (PS) was then calculated using the synthesis reports from
HLS and the overall performance estimations. The calculated ratios
for different Zynq boards varied only by about 1-2%, so these ratios
could be used with decent confidence for the remainder of the
technologies tested. These ratios were then applied to the hardware
execution times for the FPGA technologies that were not available
as SoC platforms. Table 2 presents achieved acceleration compared
to ARM A9 processor for different types of applications on three
FPGA devices. This table is important as it shows interesting trends
that we will discuss it in section 4.

2.4 Data collection
To build a dataset, we first require to extract all possible features
that we can get from HLS reports. HLS related features consist the
inputs of our machine learning model. Table 3 shows the features
that we can extract from HLS reports. As it is not wise to determine
the importance of each feature in advance, we extract as many
relevant features as possible (total 183 features). We do not use prin-
cipal component analysis to reduce the dimensionality of features.
Because if there is a correlation between an additional feature and
the target variable, the model can learn it. If there is no correlation,
the model learns to ignore. Therefore, more features are at least as
good as a model with only a subset of the same features. However,
too many features may lead to the over-fitting problem. Hence,
we address this issue later in this paper. Moreover, the machine
learning model will be trained to estimates performance speed
up of application if implemented on various FPGA devices. For
cross-validation of the accuracy of the machine learning model
and according to the accepted practice in data analytics, we set the
testing size a quarter of the size of the dataset.

3 XPPE
We introduce XPPE (cross-platform performance estimator), an
automated performance prediction tool to estimate the speedup
of an application when implemented as a hardware accelerator on
FPGA devices. The estimation is based on the resource utilization
report by HLS Vivado tool, available resources on target FPGA,

Table 3: Description of features

Category Brief Description Number of features

Performance Requested clock period, estimated
clock period by HLS, Uncertainty 3

Resources Utilization and availability of
LUT, FF, DSP, and BRAM 36

Logic and
arithmetic operation Bitwidth/resource statistics of operations 132

Memory Number of memory words/banks/bits; 8
Multiplexer Multiplexer input size/bitwidth 4

and application’s characteristics. The promising part of XPPE is
that it is enabled to estimate the speed up of accelerator on any
other FPGA devices when the resource information of that FPGA is
available. We anticipate p rogrammers will use this tool in the HLS
development process. Note that our tool does not predict how to
port a code to FPGA, but how much speedup is achievable if ported
onto different FPGA devices.

Overview: Figure 2 illustrates the overview of the tool. XPPE
is written in MATLAB and uses a neural network to estimate the
speedup of an application for a target FPGA over ARM processor.
XPPE gets HLS report as an input and extracts the information of
the FPGA used for synthesize, and the resource utilization on that
FPGA. Moreover, the user must provide the specification of a target
FPGA. There is no limit on the specification of the target FPGA.
Therefore, XPPE can be used for future FPGA devices and gives an
insight to designers.

Artificial Neural Networks (ANNs) are a class of machine learn-
ing models that can map a set of input parameters to a set of target
values. The model used in this tool is a 3-layer fully connected
neural network with 900 hidden neurons. The inputs are available
resources on target FPGA, resource utilization of application re-
ported by HLS (extracted features as in Table 3), and characteristics
of the application for cross-platform speedup estimation. The out-
put is the speedup estimation for on the target FPGA over ARM
A-9 processor.

F1 F2 F3 F4 Speedup over A9

Training
Data

Features

HLS
report

Estimated
Speedup for
target FPGA
device

Machine
learning

tool

XPPE

Kernels

Specification
of target

FPGA device

Figure 2: Overall flow of XPPE

Training and validation: MATLAB’s Neural Net Fitting tool
has been used for building the model. We trained the network with
Levenberg-Marquardt algorithm. Figure 3 shows the correlation of
output of network and the target value for different datasets namely,
train, validate and the test data. The obtained correlation between
the estimated and actual speedup for the test data is R=0.97. Figure
4 shows the histogram of error.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan H.M. Makrani et al.

0 500 1000

Target

0

200

400

600

800

1000

1200

1400

O
u

tp
u

t
~=

 0
.9

7*
T

ar
g

et
 +

 9
.3

Training: R=0.98629

Data
Fit
Y = T

200 400 600 800 1000 1200

Target

200

400

600

800

1000

1200

O
u

tp
u

t
~=

 0
.9

9*
T

ar
g

et
 +

 2
2

Validation: R=0.9984

Data
Fit
Y = T

0 500 1000

Target

0

200

400

600

800

1000

1200

1400

O
u

tp
u

t
~=

 1
*T

ar
g

et
 +

 -
70

Test: R=0.97833

Data
Fit
Y = T

0 500 1000

Target

0

200

400

600

800

1000

1200

1400

O
u

tp
u

t
~=

 0
.9

8*
T

ar
g

et
 +

 4
.8

All: R=0.98513

Data
Fit
Y = T

Figure 3: Neural network performance

To evaluate the accuracy of the estimator, we use equation (1) to
calculate the percentage RMSE (Root Mean Squared Error) between
the predictions and the real measurements.

RelativeRMSE =

√√√
1
N

N∑
n=1

(
pi − ai
ai

)2 × 100 (1)

where N is the number of samples, and pi and ai are the pre-
dicted and actual values of the sample, respectively. We want the %
relative RMSE to be as low as possible. RMSE is a standard metric in
regression which is sensitive to scalability. For example, an RMSE
of 1 s in runtime prediction is not acceptable if the actual runtime is
2 s, but can be acceptable if the actual runtime is 1000 s. Expressing
the error as a percentage of the actual value solves this issue. The
proposed neural network architecture has an mean square error of
5.1%. The model has an accuracy of 91%, 98%, and 95% for training,
validation and testing respectively.

Assessment of Neural Network: Figure 4 shows how the num-
ber of hidden neurons changes the average accuracy of speed up
estimation. Based on the results, we decided to fix the number
hidden neurons to 900 for XPPE where the prediction accuracy is
nearly 94.9% on Average.

4 DESIGN SPACE EXPLORATION
The goal of High-Level Synthesis design is to reduce the complexity
of developing hardware accelerator and to increase the usage of
reconfigurable devices in different domains. HLS helps a software
developer to convert the high level code into hardware language
without having deep knowledge of hardware. But, there exists a

0

10

20

30

40

50

60

70

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 k 1 . 1 k 1 . 2 k 1 . 3 k

N e u r o n s

R
e
la

ti
v
e

 R
M

S
E

 (
%

)

Mathematical Img/Vid Proc.

Cryptography Machine Learning

Figure 4: Error of neural network

decision making gap between a hardware design and its implemen-
tation on FPGA device. As various FPGA devices provide different
capability and as a result different speedup. As software developers
may don’t have enough knowledge about choosing the best device
for their implementation, it is a crucial step to first perform a design
space exploration.

In this section, we show how XPPE can be used to explore the
design space of hardware acceleration. To this goal, we first use
XPPE to estimate the speedup of different applications on various
types of FPGAs. In order to shed insight on the raw results, we
analyze the importance of FPGA parameters on the acceleration
speedup of applications.

In order to determine the importance of FPGAs’ parameters, we
employed linear regression on our date gathered from XPPE to
extract the relation between different FPGA parameters and the
speedup of applications. The coefficient of each FPGA parameter
determines the impact of that parameter on the speedup (perfor-
mance) of the accelerator. The FPGA parameters selected to build
the relation for speedup are FPGA frequency, the number of logic
cells, look-up-tables (LUTs), flip-flops (FF), Block RAMs (BRAMs),
DSPs, and bandwidth of the interconnect between FPGA andDRAM.
Figure 5 illustrates the visualization of coefficients. The observa-
tion reveals that different parameters of FPGA, depending on the
application type, plays a crucial role in improving the accelerator’s
speed up.

To correctly interpret the results, we have to first understand the
characteristics of each application. In our experiments, we observed
that applications can be data-intensive, have multistage computa-
tion, or could be highly parallel. We consider an application as
data-intensive if it several times transfers a large amount of data
from DRAM to PL part through DMAs (direct memory access) or
vice versa. Moreover, we refer to dependent kernels of an appli-
cation that cannot work in parallel as multistage computation. To
accelerate these part of an application, pipeline strategy or high
level parallelism such as multiple instances of such kernels can be
used. On the other hand, some kernels in an application can be
implemented in a fully parallel manner and we can unroll those
compute units to increase the throughput at the cost of LUTs/FFs.
these kernels are called highly parallel kernels. We note that differ-
ent HLS optimizations employed based on the target FPGA size.

The aforementioned characteristics directly impact on the re-
source requirements of an application. Therefore, the effectiveness

XPPE: Cross-Platform Performance Estimation of Hardware
Accelerators Using Machine Learning ASPDAC ’19, January 21–24, 2019, Tokyo, Japan

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Machine Learning Image/Video Processing Cryptography Mathematical

N
o
rm

a
liz

e
d

 C
o
e

ff
ic

ie
n

ts

FPGA Frequency LogicCell/LUT/FF Memory Blocks DSP DRAM Bandwidth

Figure 5: Parameter importance based on regression

of FPGAs’ parameters on the performance improvement of accel-
eration depends on these characteristics in the applications. We
identified these characteristics in each class of application and Table
4 illustrates them.

Table 4: Characteristics of applications

Application
Type

Data
Intensive

Multistage
Computation

Highly
Parallel

Machine Learning ✓✓✓ ✓✓
Image/Video Processing ✓✓ ✓✓✓

Cryptography ✓ ✓✓✓ ✓
Mathematical ✓ ✓✓

For machine learning applications, we observe that FPGA fre-
quency and DRAM Bandwidth are the most important parameters.
However, other parameters related to the number of resources is
not crucial. DRAM Bandwidth is important for machine learning
applications as they repeatedly read and write data from/to main
memory. Therefore, the DRAM bandwidth becomes the bottleneck
of the system. Moreover, the functionality of machine learning ker-
nels implemented in the programmable logic is mostly sequential.
Hence, there is no significant performance gain to use unrolling
or multiple instances. As a result, the abundance of resources such
as LUT or FF is not beneficial. In this case, one of the approaches
to increase the speed up of the accelerator is to use the pipeline
strategy that can improve the throughput of ML kernels. In the
pipeline strategy, the period of the clock cycle is important for better
throughput. Therefore, a faster FPGA with higher clock frequency
outperforms other FPGAs in terms of performance in machine
learning applications.

Unlike machine learning applications, resources such as LU/FF
are the main contributors to the speed up of image and video
processing applications. The functionality of these applications
is mostly to apply a simple kernel or filter on the matrix of in-
put data. As these tasks are independent, the process can be done
concurrently on all part of input using multiple instances of such
kernels and at the same time, it is possible to use the unrolling
technique to process a larger chunk of data if the resource of FPGA
allows. Moreover, these applications require to have data inside the
programmable logic part that causes to use more memory blocks.
Hence, this parameter is also important. Similar to the machine
learning applications, image and video processing applications have
a stream of data transfer to DRAM that causes contention in the

memory interconnect. Therefore, we observe that DRAM band-
width is again another important parameter in the performance of
these type of accelerators.

The result shows FPGA frequency is the dominant parameter
in determining the speed up of cryptography accelerators. These
applications are mostly sequential and have multiple stages to com-
pute the output results. The similar approach for machine learning
applications can be applied here which is to use pipeline strategy
and memory partitioning. We can use the same explanation here
to justify why FPGA frequency is the most important parameter
for the speed up these accelerators.

Eventually, for mathematical kernels, logic resources, memory
blocks, and DSP units are the most influential parameters on the
speed up. Because these kernels are mostly simple and parallel-able
that extra resources can be used to improve the performance.

Discussion: Given the results and discussions provided in table
2 and Figure 5, respectively, following trends are observed with
respect to application’s characteristics and FPGA platform’s con-
figuration: Applications that have the potential of parallelism can
benefit more from logical resources such as logic cells, LUTs, and
FFs as directives (e.g. unrolling) can enhance the speed up. There-
fore, we observed that a high-end FPGA improves the performance
of image and video processing applications 17 times more than low-
end FPGA. Moreover, applications that have more sophisticated
computation kernels such as machine learning and cryptography
benchmarks require a high frequency FPGA to increase the through-
put. In this case, the amount of resources is not crucial and results
show that a high-end FPGA only improves the performance 1.6×
over medium-end FPGA on average. Applications that require to
frequently access to data in DRAM have potential to easily saturate
the memory bandwidth as the abundance of resources in FPGAs
opens space for more computing units which increases the demand
for data to feed in. Hence, for data intensive applications, it is im-
portant to balance the number of computing units as accelerators in
PL part and DRAM bandwidth to prevent it becomes the bottleneck
of the system.

5 RELATEDWORK
The work in [24] proposed Aladdin, a pre-RTL, power-performance
accelerator modeling framework and demonstrated its application
to system-on-chip (SoC) simulation. Aladdin highlights impact
of system-level parameters on accelerator design trade-offs when
integrated with a standard cache and DRAM simulator and removes

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan H.M. Makrani et al.

synthesis and reuses optimization across a large design space for
fast exploration among ASIC accelerators.

In [9], the performance prediction for Zynq-SoC is proposed
which estimates the performance based on the execution time of
an application on the FPGA. This is primarily used for partitioning
the task onto hardware during hardware-software co-design. The
authors in this work primarily presents a performance parallel
heterogeneous estimation for systems for hardware/software co-
design and run-time heterogeneous task scheduling.

The RC Amenability test (RAT) methodology proposed in [8]
performs the performance prediction by exploiting the common
algorithmic and architectural features of the application and FPGA.
Although RAT supports the rapid exploration and prediction of
strategic design trade-offs during the formulation stage of applica-
tion development, it is confined to single-FPGA systems. In order
to address this shortcoming, RATSS methodology [7] is proposed
as an extension RAT that is applicable to multi-FPGA systems.

Vivado HLS will provide a very large range of cycles for variable
loops, and the exact performance after each optimization becomes
difficult to predict making the cycle analysis difficult. It is possible
to estimate the performance of applications with variable bounds
based on the software simulation flow as proposed in HLScope
[2, 3]. The work in [3] proposes HLScope+ framework which is
a high-level cycle estimation methodology for input-dependent
FPGA designs using the HLS software simulation process.

The work in [28] analyzing the underlying architecture and com-
mon algorithmic features might not be feasible all the time. There
are others work that looked into other aspects of hardware accel-
erators such as [14, 15]. Additionally, works in [12, 20–22, 25, 26]
used machine learning to solve other issues in computer design. In
contrast to the existing works, our proposed methodology (XPPE)
predicts the performance of hardware accelerator that accounts for
both the application characteristics and the FPGA platform param-
eters for prediction while it is not limited to any specific FPGA. In
addition, the performance prediction of existing works [16] is based
on a detailed analysis of application and architectural information
of FPGA which reduces their usability, since extracting such infor-
mation is time-consuming and also requires a deep knowledge of
FPGA’s architecture and hardware design.

6 CONCLUSIONS
We introduced XPPE, a neural network based tool for estimating the
performance of an application on a different FPGA platform over
ARM processor. Our evaluation results show that the correlation
of estimated performance and actual speed up is more than 0.97.
Moreover, we used XPPE to perform a design space exploration
(DSE) of the FPGAs to determine the impact of FPGA parameters
on the performance of diverse types of applications. It has been
observed that applications that have the potential of parallelism can
benefit more from logical resources on the high-end FPGAs. More-
over, applications that have more multistage computing kernels
such as machine learning and cryptography benchmarks require
a high frequency FPGA to increase the throughput. We observed
that date-intensive kernels in applications can easily saturate the

memory bandwidth. Hence, it is important to use medium or high-
end FPGAs to prevent it becomes the bottleneck of the system for
such applications.

7 ACKNOWLEDGEMENT
This material is based upon work supported by the National Science
Foundation under Grant No. 152691.

REFERENCES
[1] Kimia Zamiri Azar et al. 2019. SMTAttack: Next Generation Attack onObfuscated

Circuits with Capabilities and Performance Beyond the SAT Attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2019).

[2] Y. Choi and J. Cong. 2017. HLScope: High-Level Performance Debugging for
FPGA Designs. In FCCM.

[3] Young-kyu Choi et al. 2017. HLScope+: Fast and accurate performance estimation
for FPGA HLS. In ICCAD.

[4] Steve andothers Dai. 2018. Fast and Accurate Estimation of Quality of Results in
High-Level Synthesis with Machine Learning. In FCCM.

[5] Farnoud Farahmand et al. 2017. Minerva: Automated hardware optimization tool.
In ReConFig.

[6] Yuko Hara et al. 2008. Chstone: A benchmark program suite for practical c-based
high-level synthesis. In ISCAS.

[7] Brian Holland and et.al. 2011. An Analytical Model for Multilevel Performance
Prediction of Multi-FPGA Systems. ACM Trans. Reconfigurable Technol. Syst. 4, 3
(Aug 2011), 27:1–27:28.

[8] Brian Holland, Karthik Nagarajan, and Alan D. George. 2009. RAT: RC Amenabil-
ity Test for Rapid Performance Prediction. ACM Trans. Reconfigurable Technol.
Syst. 1, 4 (Jan 2009), 22:1–22:31.

[9] Daniel Jiménez-González and et.al. 2015. Coarse-Grain Performance Estimator for
Heterogeneous Parallel Computing Architectures like Zynq All-Programmable
SoC. InternationalWorkshop on FPGAs for Software Programmers (2015).

[10] David Koeplinger et al. 2016. Automatic generation of efficient accelerators for
reconfigurable hardware. In ISCA.

[11] Hosein Mohammadi Makrani et al. 2018. Compressive Sensing on Storage Data:
An Effective Solution to Alleviate I/0 Bottleneck in Data-Intensive Workloads. In
IEEE ASAP.

[12] Hosein Mohammadi Makrani et al. 2018. Energy-aware and Machine Learning-
based Resource Provisioning of In-Memory Analytics on Cloud. In SoCC.

[13] Hosein Mohammadi Makrani and Houman Homayoun. 2017. MeNa: A memory
navigator for modern hardware in a scale-out environment. In IISWC.

[14] Katayoun Neshatpour et al. 2018. Architectural considerations for FPGA acceler-
ation of Machine Learning Applications in MapReduce. In SAMOS.

[15] Katayoun Neshatpour et al. 2018. Design Space Exploration for Hardware Accel-
eration of Machine Learning Applications in MapReduce. In FCCM.

[16] Craig P Steffen. 2007. Parametrization of algorithms and FPGA accelerators to
predict performance. Proc. Reconfigurable System Summer Institute (2007).

[17] Brandon Reagen et al. 2014. Machsuite: Benchmarks for accelerator design and
customized architectures. In IISWC.

[18] S. Rezaei and et.al. 2016. Data-rate-aware FPGA-based acceleration framework
for streaming applications. In ReConFig.

[19] Shervin Roshanisefat et al. 2018. SRCLock: SAT-Resistant Cyclic Logic Locking
for Protecting the Hardware. In GLSVLSI.

[20] Hossein Sayadi et al. 2017. Machine learning-based approaches for energy-
efficiency prediction and scheduling in composite cores architectures. In ICCD.

[21] Hossein Sayadi et al. 2018. Customizedmachine learning-based hardware-assisted
malware detection in embedded devices. In TrustCom/BigDataSE.

[22] Hossein Sayadi et al. 2018. Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification. In DAC.

[23] Benjamin Carrion Schafer et al. 2014. S2CBench: Synthesizable SystemC bench-
mark suite for high-level synthesis. IEEE Embedded Systems Letters (2014).

[24] Y. S. Shao et al. 2014. Aladdin: A pre-RTL, power-performance accelerator
simulator enabling large design space exploration of customized architectures.
In ISCA.

[25] J. Stangl et al. 2018. A Fast and Resource Efficient FPGA Implementation of Secret
Sharing for Storage Applications. In DATE.

[26] Ashkan Vakil et al. 2019. IR-ATA: IR Annotated Timing Analysis, A Flow for
Closing the Loop Between PDN design, IR Analysis Timing Closure. InASP-DAC.

[27] Guanwen Zhong et al. 2017. Design Space exploration of FPGA-based accelerators
with multi-level parallelism. In DATE.

[28] G. Zhong and et al. 2016. Lin-Analyzer: A high-level performance analysis tool
for FPGA-based accelerators. In DAC.

[29] Yuan Zhou et al. 2018. Rosetta: A Realistic High-Level Synthesis Benchmark
Suite for Software Programmable FPGAs. In FPGA.

	Abstract
	1 Introduction
	2 Experimental Setup
	2.1 Studied applications
	2.2 Hardware platforms
	2.3 Performance measurement
	2.4 Data collection

	3 XPPE
	4 Design Space Exploration
	5 Related Work
	6 Conclusions
	7 ACKNOWLEDGEMENT
	References

