
Heterogeneous Memory Management for 3D-DRAM and

external DRAM with QoS

Le-Nguyen Tran, Fadi J. Kurdahi, Ahmed M. Eltawil
EECS, University of California Irvine

Irvine, CA, USA

Email: {ltran15,kurdahi,aeltawil}@uci.edu

Houman Homayoun
George Mason University

Fairfax, Virginia, USA

Email: hhomayou@eng.ucsd.edu

Abstract—This paper presents an innovative memory management
approach to utilize both 3D-DRAM and external DRAM (ex-DRAM). Our
approach dynamically allocates and relocates memory blocks between the
3D-DRAM and the ex-DRAM to exploit the high memory bandwidth
and the low memory latency of the 3D-DRAM as well as the high
capacity and the low cost of the ex-DRAM. Our simulation shows that
in workloads that are not memory intensive, our memory management
technique transfers all active memory blocks to the 3D-DRAM which runs
faster than the ex-DRAM. In memory intensive workloads, our memory
management technique utilizes both the 3D-DRAM and the ex-DRAM
to increase the memory bandwidth to alleviate bandwidth congestion.
Our approach supports Quality of Service (QoS) for “latency sensitive”,
“bandwidth sensitive”, and “insensitive” applications. To improve the
performance and satisfy a certain level of QoS, memory blocks of different
application types are allocated differently. Compared to the scratchpad
memory management mechanism, the average memory access latency of
our approach decreases by 19% and 23%, while performance improves
by up to 5% and 12% in single threaded benchmarks and multi-threaded
benchmarks respectively. Moreover, using our approach, applications do
not need to manage memory explicitly like in the scratchpad case. Our
memory block relocation comes with negligible performance overhead,
particularly for applications which have high spatial memory locality.

I. INTRODUCTION

Microprocessor architecture has entered the multicore and many-

core era to overcome the exponentially growing power consumption

problem. One major obstacle of the multi-core architecture is the

“memory wall”. Because the memory bandwidth is quite limited and

is shared by all cores, it typically creates a congestion bottleneck.

Moreover, memory latency will also be affected if the bandwidth

becomes congested. According to the well-known “queuing theory”

latency will increase exponentially when the bandwidth utilization

is increased. Currently, the memory latency is already as high as

hundreds of clock cycles and highly impacts the performance of the

entire system. If memory latency continues to increase, the benefit

of multi-core processor architecture will be diminished. In addition

to performance, DRAM power is also of great concern especially

for mobile systems and servers. To improve DRAM performance,

architects have been increasing the number of memory modules and

their densities. However, these approaches increase power consump-

tion and therefore operating temperature of DRAM to an extent

that existing DRAM modules now operate at 95 ◦C under some

workloads[13].

Prior research [1,9,10,11,12,22] has shown that 3D-DRAM pro-

vides significant advantages in terms of performance while enabling

energy-efficient computing. 3D-DRAM has a number of superior

characteristics namely high bandwidth, low latency, and low power

consumption. For example, a single Hybrid Memory Cube (HMC)

[15,20] can provide more than 15× the performance of a DDR3

module while utilizing 70% less energy per bit than conventional

DDR3 DRAM technologies. Although 3D-DRAM accelerates the

thermal challenges because of the higher thermal resistivity resulting

from vertical stacking, innovative cooling methods [21] may be used

to solve this issue.

Although 3D-DRAM has a number of advantages, access to ex-

DRAM is indispensable in many applications. In general, the capacity

of the 3D-DRAM chip is not as high as the capacity of the external

DRAM and it is also not cost efficient to manufacture at the current

time. As a result, our approach combines the 3D-DRAM and the ex-

DRAM to create a heterogeneous memory to achieve high bandwidth,

low latency, high capacity, and low cost systems.

In this paper, a memory management mechanism utilizing both

3D-DRAM and ex-DRAM as a heterogeneous memory system is

proposed. Our memory management mechanism integrates the OS

virtual to physical address translation so that applications use 3D-

DRAM and/or ex-DRAM transparently. In other words, applications

do not need to manage the memory explicitly (like scratchpad

memory mechanism). To improve system performance, applications

should utilize the 3D-DRAM which has small memory latency

and high memory bandwidth. Therefore, our memory management

mechanism allocates memory blocks so that many actively access

memory blocks are in the 3D-DRAM. Because applications change

their memory access pattern dynamically, our approach provides a

memory relocation mechanism to relocate memory blocks between

the 3D-DRAM and the ex-DRAM. To relocate memory blocks, a

monitoring unit is used to measure the memory utilization rate of

both the 3D-DRAM and the ex-DRAM periodically. Due to the strong

correlation between the memory latency and the memory utilization

rate (queuing theory), measuring the memory utilization rate can be

used to estimate memory latency. On one hand, if the 3D-DRAM

memory utilization rate is low which is the case when latency is

small and bandwidth is available, the relocation mechanism moves

some ex-DRAM memory blocks to the 3D-DRAM. On the other

hand, if the 3D-DRAM memory utilization rate is very high (which

is the case when it is congested) and latency is high and ex-DRAM

memory utilization rate is low, the relocation mechanism moves some

3D-DRAM memory blocks to the ex-DRAM. Moreover, applications

are classified into three types namely “latency sensitive”, “bandwidth

sensitive”, and “insensitive” with priority. Our memory management

mechanism not only provides Quality of Service (QoS) for application

types [2] but also reserves the 3D-DRAM which is superior to the

ex-DRAM for applications having higher priority.

The structure of this paper is as follows. In section II, we introduce

some related works. In section III, we present our heterogeneous

memory architecture. Then we introduce and analyze our QoS-aware

memory management mechanism in section IV. The dynamic memory

allocation and relocation mechanisms are presented in section V. In

section VI, we present the simulation results. Finally, conclusions are

drawn in section VII.

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

8B-2

663

Notice: This paper was presented at ASP-DAC 2013 but not by one of the authors.

II. RELATED WORK

3D-DRAM is a state-of-art technology which has been proposed

recently to lower the power consumption of the memory subsys-

tem [16]. Several design specifications of 3D DRAM have been

standardized recently. For instance, JEDEC has already created the

specification for Wide IO DRAM targeting low power memory [17].

In this case, 3D-DRAM is planned to be used as the main memory

or combined with LPDDR2 DRAM as the scratchpad memory. As

discussed previously, because the capacity of 3D-DRAM is limited,

this technique can only be beneficial for some special applications.

Moreover, developing software for scratchpad memory is a challeng-

ing problem.

3D-DRAM is proposed to be used as the main memory in [4]. The

key idea is to remove the L2 cache so that many simple processor

cores can be integrated into the same die. The proposed approach

then uses 3D-DRAM to provide very high memory bandwidth for

the cores. This architecture is targeting high multi-threading server

applications.

3D-DRAM is also proposed to be used as cache and main memory

in [5]. In this paper, the authors realized that the latencies of large L2

SRAM caches are high, mainly due to the large access latency of H-

tree. The authors proposed to use TSV to interconnect the processor

cores and the caches. This will help the 3D-DRAM cache to be as fast

as the SRAM cache. However, as presented in [6], the performance

improvement of using 3D-DRAM as the Last Level Cache (LLC)

is not comparable with the performance improvement of using the

heterogeneous memory system. Therefore, in this paper, our approach

is compared with the scratchpad memory method (using both 3D-

DRAM and ex-DRAM) instead of using 3D-DRAM as the LLC.

The related work which is closest to our proposed system is

presented in [6]. This research also utilizes both 3D-DRAM and

ex-DRAM as a heterogeneous memory system and implements a

memory migration to exchange memory blocks between them. Com-

pared with our work, this approach does not provide QoS for various

application types. Moreover, the memory migration mechanism is

very complex and comes with a large overhead. It requires the size

of memory pages to be large (4MB) to reduce the total number of

memory pages to control. Because many Operating Systems (OS) use

small memory block sizes (4KB), the authors have to add one more

address translation layer which translates the physical address to the

real memory address. The latency of this address translation is two

clock cycles, which affects all memory requests. In our work, we

propose a simple approach utilizing small memory block size (4KB)

which can integrate into the OS virtual address to physical address

translation and does not incur any latency overhead for memory

accesses. Moreover, for memory block assignment our approach is

adapted based on the application type to optimize the performance

of the whole system.

In contemporary systems, it is common that many applications

run simultaneously, with different requirements for memory band-

width and memory access latency[19]. Therefore, the performance

of the system can be improved if a QoS mechanism is provided.

Differentiating application types to provide QoS for homogeneous

memory systems is presented in [7]. Our approach is different as it

targets heterogeneous memory systems, a more challenging problem

in today’s complex architecture.

III. HETEROGENEOUS MEMORY ARCHITECTURE

Our baseline architecture is shown in Fig. 1. There are two

distinct memory channels: one connecting to 3D-DRAM and the

other connecting to ex-DRAM. 3D-DRAM has two independent

memory controllers. Each memory controller has three queues for

SoC

Processor
cores

Combined
memory

controller

Latency sensitive queue

Bandwidth sensitive queue

Insensitive queue

Latency sensitive queue

Bandwidth sensitive queue

Insensitive queue

Latency sensitive queue

Bandwidth sensitive queue

Insensitive queue

3D-DRAM
memory

controller 1

3D-DRAM
memory

controller 2

ex-DRAM
memory

controller

3D-DRAM

ex-DRAM

Monitoring
unit

Relocation unit
CAMMRUFree

space
Memory

block keeper

Fig. 1. Baseline architecture.

memory requests of different application types. The memory requests

from the processor cores are pushed into the combined memory con-

troller. Then the combined memory controller will translate virtual to

physical address, specify the corresponding controller and queue, and

then push the request to the queue. To implement a memory relocation

mechanism, a monitoring unit measures the memory utilization rate

of the memory controllers. When the monitoring unit detects that the

system does not operate under the optimum performance condition

(for instance the memory bandwidth is congested), it signals the

relocation unit. The relocation unit relocates a single memory block

between the ex-DRAM and 3D-DRAM.

Without loss of generality, similar to [14] we assume in this paper

that the bandwidth of the 3D-DRAM is two times higher than the

bandwidth of the ex-DRAM and use two memory controllers for the

3D-DRAM. Because the latency of 3D-DRAM is smaller, we assume

that the read latency of the ex-DRAM and the 3D-DRAM are 12 and

8 memory clock cycles respectively. The write recovery latency of

the 3D-DRAM is also 4 clock cycles smaller than the write recovery

latency of the ex-DRAM. The other latency parameters are the same.

In addition to controlling memory requests, memory controllers

also support QoS for different application types. Applications are

classified into three types, namely “latency sensitive”, “bandwidth

sensitive” and “insensitive”. Application classification needs to be

implemented by programmers in advance. “Latency sensitive” is

the type of applications whose performances are highly affected

by long memory latency. Many general purpose applications belong

to this type [3]. “Bandwidth sensitive” describes those applications

whose performances are slightly affected by long memory latency

but highly affected by limited memory bandwidth. Many multimedia

applications belong to this type [3]. Finally, “insensitive” applica-

tions’ performances are slightly affected by both long latency and

limited bandwidth. They are often not memory intensive applications.

Each memory controller has tree queues to support three application

types. To provide QoS, the memory controllers have a special priority

mechanism which will be presented in the next section.

The monitoring unit measures the memory utilization rates of

the memory controllers for our relocation mechanism. Because the

latency and bandwidth utilization rate are highly correlated, measur-

ing the memory bandwidth utilization rate can estimate the memory

latency. Measuring the memory bandwidth utilization is simple. There

is one counter attached to each memory controller. During a certain

period of time, the counter measures the number of clock cycles

in which the controller is used. These values correspond to the

bandwidth utilization. If our system operates under the optimum

performance condition (for example the memory access latency is

8B-2

664

small and the memory bandwidth is sufficient), no memory block

relocation is needed. Otherwise, the monitoring unit will signal the

relocation unit to relocate memory blocks.

Inside the relocation unit, Most Recently Used (MRU) policy is

employed to select the memory blocks to be relocated. MRU registers

record the MRU addresses for three application types and both the

3D-DRAM and the ex-DRAM. The values of MRU registers are valid

only for a certain period of time (MRU lifetime which start from

the time the register with the MRU address is updated). At the end

of MRU lifetime, the MRU address is invalidated. Note that within

an MRU lifetime if the MRU address changes, the MRU register is

updated with the new MRU address.

To transfer the MRU block to the 3D-DRAM or the ex-DRAM

free spaces are needed. With the help of the OS, our free space

registers store the addresses of one free space memory block of the

3D-DRAM and one free space memory block of the ex-DRAM. If

there is no more free space in the ex-DRAM and memory blocks need

to be transferred to the ex-DRAM, some blocks are moved from the

ex-DRAM to the hard drive. If there is no more free space in the 3D-

DRAM and memory blocks need to be transferred to the 3D-DRAM,

some memory blocks which have not been accessed recently are

moved from the 3D-DRAM to the ex-DRAM. Content Addressable

Memory (CAM) is used to specify the “un-accessed” blocks. The

mechanism is as follows. Each memory block of the 3D-DRAM

corresponds to one bit in the CAM unit. When one 3D-DRAM block

is accessed, its bit in the CAM unit is set. After a certain period of

time, for example 1M cycles, the CAM array is checked to find “L”,

for example 64, un-accessed blocks whose CAM bit is “0”. Then

their addresses are recorded to a smaller CAM. After that the big

CAM array is reset. Similarly, the small CAM array bit is set when

its corresponding memory block is accessed. To find the un-accessed

memory blocks the small CAM array is checked for value “0” .

Because our approach supports QoS, a priority mechanism for

different application types is implemented. The order of priority

from high to low is: “latency sensitive”, “bandwidth sensitive”, and

“insensitive”. Therefore, when one memory block needs to be moved

from the ex-DRAM to the 3D-DRAM, and when there is no free

space and no un-accessed block in the 3D-DRAM, the ex-DRAM

block is swapped with a 3D-DRAM memory block whose priority

is lower. The memory block keeper unit stores the addresses of

one “bandwidth sensitive” block and one “insensitive” block of 3D-

DRAM for memory relocation.

When memory blocks are relocated, the TLB is updated for address

translation. That is done by hardware and the OS. When memory

blocks are relocated or swapped between 3D-DRAM and ex-DRAM

cache data which uses a physical address (physical index or physical

tag) is also updated. Note that for caches, which use a physical tag,

only the tag needs to be updated. On the other hand, for caches, that

use a physical index, the cache data needs to be evicted. Updating

the tag and/or evicting cache data is implemented by hardware.

IV. QOS-AWARE MEMORY MANAGEMENT

In this section our QoS-aware memory management policy is

explained. Our QoS-aware memory management policy optimizes the

system to improve performance and reduce power.

A. Queuing theory observation
In this section we study the impact of memory bandwidth utiliza-

tion on memory access latency based on the well-known queuing

theory. Fig. 2 shows our simulation results for the total memory

access latency as a function of bandwidth utilization and for a number

of requesting cores (active cores that are running a thread). The result

indicates that when the memory throughput is small (throughput

Fig. 2. Relation between the total memory access latency and the memory
bandwidth utilization.

= utilization x Max available bandwidth), the total memory access

latency is quite linear. This is in fact due to the negligible queuing

effect, which results in a somewhat constant average memory latency.

On the other hand, when the bandwidth utilization is almost 100%,

the queuing effect is very high and therefore the average memory

latency increases significantly. At the same bandwidth utilization

rate, as the number of requesting cores increases the memory access

latency becomes larger.

Based on the results shown in Fig. 2. the memory bandwidth

utilization rate is divided into three regions, namely “low memory

utilization region” (in brief LMU-region), “high memory utilization

region” (HMU-region), and “congested region” (C-region) (shown in

Fig. 2). LMU-region represents a case where the queuing effect is

small. In this region, increasing the memory bandwidth utilization

does not noticeably change the average memory access latency.

Therefore, working in this region is preferable, because one can

increase the memory throughput with only slightly impacting the

memory latency. In the HMU-region, the queuing effect is high.

Compared to the LMU-region, in the HMU-region a slight increase in

the memory throughput is accompanied by a large rise in the average

memory latency. Working in this region is acceptable because the

memory throughput can still increase at the cost of high average

memory access latency. In the C-region the memory bandwidth is

congested. Working in this region is undesirable because slightly

increasing the memory throughput would significantly impact the

memory access latency. In our simulation, 80% and 95% memory

bandwidth utilization are chosen as the thresholds between the LMU-

region, the HMU-region, and the C-region, respectively.

B. Application classification and priority
As mentioned previously, applications are classified into three

types, namely “latency sensitive”, “bandwidth sensitive”, and “insen-

sitive” applications. We now consider the priority of these applica-

tions. It is clear that “insensitive” applications should have low prior-

ity because long memory latency and limited memory bandwidth only

slightly affect their performance. Moreover, the “latency sensitive”

applications are often general purpose applications and the “band-

width sensitive” applications are often multi-media applications. We

assume that the general purpose applications are more important than

the multi-media applications (multi-media applications can run at

smaller memory bandwidth with low quality). Thus, the priorities

of the “latency sensitive”, “bandwidth sensitive”, and “insensitive”

applications are very high, high, and low respectively.

Our approach implements the priority mechanism for memory

request handling and memory allocation/relocation. As shown in Fig.

1, each memory controller has three queues for three application

type requests. Normally, the “first come first served” mechanism

8B-2

665

is implemented for the memory controllers. However, when two or

three memory requests coming from different queues are available

simultaneously, the request coming from the “latency sensitive” queue

will be processed for the first “M” times. Then round-robin technique

is used to grant requests coming from “bandwidth sensitive” and

“insensitive” queues. Once the controller grants the first request

coming from the “bandwidth sensitive” queue, it processes up to

“N” consecutive requests from the same queue. For the memory al-

location/relocation priority mechanism, the 3D-DRAM is reserved for

applications having higher priority. For example, on one hand, when

the 3D-DRAM operates under the LMU-region, memory blocks of

high priority applications are considered moving from the ex-DRAM

to the 3D-DRAM. On the other hand, when the 3D-DRAM operates

under the C-region, memory blocks of low priority applications are

considered moving from the 3D-DRAM to the ex-DRAM.

V. MEMORY ALLOCATION/RELOCATION MECHANISMS

Memory allocation/relocation mechanism is the key point of our

approach to optimize the operation of our system. As mentioned

previously, our memory management mechanism integrates with the

OS virtual to physical address translation to manage the hetero-

geneous memory system so that applications can access memory

transparently. To improve the performance of the system, applications

should utilize the 3D-DRAM to benefit from reduced memory access

latency and high bandwidth. When new memory blocks are allocated,

our approach attempts to utilize the 3D-DRAM first. If the 3D-DRAM

controllers operate under the LMU-region and the 3D-DRAM has free

space, the new blocks are allocated to the 3D-DRAM. Otherwise,

they are allocated to the ex-DRAM. The monitoring unit periodically

measures the memory utilization rate of the 3D-DRAM and ex-

DRAM controllers for the memory relocation mechanism. If the

3D-DRAM controllers operates under LMU-region, one ex-DRAM

MRU memory block is transferred to the 3D-DRAM. When there

are more than one ex-DRAM MRU blocks available, the one having

highest priority (for example “latency sensitive” MRU block) will be

selected. If the 3D-DRAM controllers operate under HMU-region,

the 3D-DRAM is reserved for applications having high priority only.

Our approach swaps the 3D-DRAM MRU memory block having

low priority and the ex-DRAM MRU memory block having higher

priority.

Our simulation results show that swapping memory blocks im-

proves the 3D-DRAM memory access latency. As shown in Fig. 2,

at the same memory bandwidth utilization, the memory access latency

can decrease if there are fewer active cores. Swapping memory

blocks for different application types allows the 3D-DRAM to be

used only for high priority applications. Hence, the number of active

cores accessing the 3D-DRAM decreases.Finally, If the 3D-DRAM

controllers operates under C-region, our approach first swaps the 3D-

DRAM MRU memory block having low priority and the ex-DRAM

MRU memory block having high priority. Then if the ex-DRAM

controller operates under LMU-region, one 3D-DRAM MRU mem-

ory block is transferred to the ex-DRAM. When there are multiple

3D-DRAM MRU blocks available, the one having lowest priority

is selected. Fig. 3 shows the flowchart of our allocation/relocation

mechanism.

For memory relocation, free space is needed. As mentioned pre-

viously, memory blocks can be moved from the ex-DRAM to the

hard drive to free up space. For the 3D-DRAM if there is no free

space,one memory block can be dumped from the 3D-DRAM to the

ex-DRAM. Initially, the CAM is used to check for the un-accessed

blocks. Then the memory blocks of the low priority applications can

be dumped for the high ones.

Fig. 3. Flowchart of the memory relocation mechanism.

VI. SIMULATION RESULTS

To prove our concept the SMTSIM simulator [18] is used. The ex-

DRAM is modelled based on Micron DDR3-1600 specification. For

the 3D-DRAM, we shorten the read and write latency to two thirds

of the ex-DRAM’s latencies and double its bandwidth. There are

two independent memory controllers that access interleaving memory

space of the 3D-DRAM. In the processor model, we use infinite

length for the queues of the memory controllers. Therefore, our

model is not accurate when the memory bandwidth is congested

(in this case the number of memory requests inside the queues

is very large). As a result, we do not get simulation results in

the congested cases. To simulate with different bandwidth, the ex-

DRAM bus is set to 64, 128, and 256 bits (3D-DRAM bus is always

double) (cases in Fig. 4,5,6,7,8,9 imply the ex-DRAM bus wide).

We run benchmark simulation for our heterogeneous memory system

using our memory management mechanism, scratchpad memory

mechanism (3D-DRAM scratchpad memory + ex-DRAM), in the

best case (access all memory inside 3D-DRAM) and the worst case

(access all memory inside ex-DRAM).

Based on the SPEC2006, we select 13 benchmarks as the workload

for our simulation. The workloads are “lbm 06”, “swim”, “lucas”,

“applu”, “bwave 06”, “lib quantum 06”, “mgrid”, “gcc 06 typeck”,

“art 470”, “vpr route”, “gap”, “bzip2 source”, and “galgel”. They

are listed in order of memory bandwidth utilization decrement.

We assume that all of these benchmarks are “latency sensitive”

applications. We run simulation in different scenarios. First of all,

we simulate each benchmark as single thread applications. Then

we simulate 2 and 4 benchmarks simultaneously. These simulations

show the performance of the multi-threaded applications. Table 1

summarizes our simulation benchmark workload. Fig. 4 and Fig. 5

shows the average latencies of these cases. As we can see our memory

management mechanism provides the equivalent average latency

compared to the best case of the scratchpad memory mechanism.

That is understandable because our memory management mechanism

brings all accessed memory blocks to 3D-DRAM when its memory

controllers operate under the LMU-region. Compared to the worst

case of the scratchpad memory mechanism, the average latency of

our approach decreases 19% and 23% for the single threaded and

multi-threaded benchmarks respectively. Fig. 6 and Fig. 7 show the

weighted speedup of our memory management compared to the worst

case of the scratchpad memory mechanism (performances of our

memory management mechanism and the best case of scratchpad

memory mechanism are equivalent). There are four simulation cases

8B-2

666

TABLE I
SIMULATION BENCHMARK WORKLOAD

Single thread workload

1T0 lbm 06 1T7 gcc 06 typeck

1T1 swim 1T8 art 470

1T2 lucas 1T9 vpr route

1T3 applu 1T10 gap

1T4 bwave 06 1T11 bzip2 source

1T5 lib quantum 06 1T12 galgel

1T6 mgrid

Two thread workload

2T0 lbm 06+swim 2T6 mgrid+gcc 06 typeck

2T1 swim+lucas 2T7 gcc 06 typeck+art 470

2T2 lucas+applu 2T8 art 470+vpr route

2T3 applu+bwave 06 2T9 vpr route+gap

2T4 bwave 06+lib quantum 06 2T10 gap+bzip2 source

2T5 lib quantum 06+mgrid 2T11 bzip2 source+galgel

Four thread workload

4T0 lbm 06+swim+lucas+applu

4T1 swim+lucas+applu+bwave 06

4T2 lucas+applu+bwave 06+lib quantum 06

4T3 applu+bwave 06+lib quantum 06+mgrid

4T4 bwave 06+lib quantum 06+mgrid+gcc 06 typeck

4T5 lib quantum 06+mgrid+gcc 06 typeck+art 470

4T6 mgrid+gcc 06 typeck+art 470+vpr route

4T7 gcc 06 typeck+art 470+vpr route+gap

4T8 art 470+vpr route+gap+bzip2 source

4T9 vpr route+gap+bzip2 source+galgel

90

100

110

120

130

140

150

160

170

180

190

1T0 1T1 1T2 1T3 1T4 1T5 1T6 1T7 1T8 1T9 1T10 1T11 1T12

Our approach-64 bit Our approach-128 bit Our approach-256 bit

Worst case scratchpad-64 bit Worst case scratchpad-128 bit Worst case scratchpad-256 bit

Best case scratchpad-64 bit Best case scratchpad-128 bit Best case scratchpad-256 bit

Average of our approach Average of worst case scratchpad

Fig. 4. Average latencies in clock cycles of single threaded benchmarks.

90
100
110
120
130
140
150
160
170
180
190

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T7 4T8 4T9

Our approach-64 bit Our approach-128 bit Our approach-256 bit

Worst case scratchpad-64 bit Worst case scratchpad-128 bit Worst case scratchpad-256 bit

Best case scratchpad-64 bit Best case scratchpad-128 bit Best case scratchpad-256 bit

Average of our approach Average of worst case scratchpad
370 254206

Fig. 5. Average latencies in clock cycles of multi-threaded benchmarks.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1T0 1T1 1T2 1T3 1T4 1T5 1T6 1T7 1T8 1T9 1T10 1T11 1T12

64 bit 128 bit 256 bit Average

Fig. 6. Weighted speedup of our approach compared to the worst case of
scratchpad memory for single threaded benchmark.

in which the memory bandwidth is congested (not shown in the

figures). Compared to the worst case of the scratchpad memory

mechanism, the average of the performance improvement of our

approach is 5% and 12% for the single threaded and multi-threaded

benchmarks respectively.

To verify our QoS mechanism and test the performance of the

proposed memory mechanism in the high memory workload scenario,

we run single thread benchmarks with a blocker. The blocker is

the “bandwidth sensitive” application accessing consecutive memory

addresses at a constant rate. The blocker occupies 63% memory band-

width of the 3D-DRAM. In this case, our mechanism is compared to

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T7 4T8 4T9

64 bit 128 bit 256 bit Average

Fig. 7. Weighted speedup of our approach compared to the worst case of
scratchpad memory for multi-threaded benchmark.

100

110

120

130

140

150

160

170

1T0 1T1 1T2 1T3 1T4 1T5 1T6 1T7 1T8 1T9 1T10 1T11 1T12

Our approach-64 bit Our approach-128 bit Our approach-256 bit

Best case scratchpad-64 bit Best case scratchpad-128 bit Best case scratchpad-256 bit

Average of our approach Average of best case scratchpad

Fig. 8. Average latencies in clock cycles of single threaded benchmarks with
blocker.

0.99

1

1.01

1.02

1.03

1.04

1.05

1T0 1T1 1T2 1T3 1T4 1T5 1T6 1T7 1T8 1T9 1T10 1T11 1T12

64 bit 128 bit 256 bit Average

Fig. 9. Weighted speedup of our approach compared to the best case of
scratchpad memory for single threaded benchmark with blocker.

the best case of the scratchpad memory mechanism only (the worst

case of the scratchpad memory mechanism is congested). To see

the difference between our memory management and the scratchpad

mechanisms, we change the threshold values between the LMU-

region, HMU-region, and C-region to 55% and 80% respectively. Fig.

8 and Fig.9 show the average latency and weighted speedup in these

cases. As shown, the proposed mechanism offers smaller memory

access latency. This is because our QoS mechanism transfers one part

of the access memory of the blocker to the ex-DRAM (it has lower

priority). However, the improvement is small. That is understandable

because the difference of the average latencies in the LMU-region is

small (for example the difference of latencies of 55% and 80% of

memory utilization rate is small).

Our simulation results can be explained as follows. For single

threaded and multi-threaded benchmarks, there are some benchmarks

requiring high memory bandwidth like 1T0, 4T2. For these bench-

marks, the latency decreases when the memory bus is extended and

the improvement of our approach performance is also significantly

high because of our high memory bandwidth and low latency of

3D-DRAM. Other benchmarks like 1T10, 2T10 do not require large

memory bandwidth. As a result, extending memory bandwidth does

not reduce memory latency significantly and the improvement of

our approach performance comes from low latency of 3D-DRAM

only. For the blocker simulation cases, our approach offer signifi-

cantly higher performance than the best case of scratchpad memory

8B-2

667

250

270

290

310

330

350

370

0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86

Fig. 10. Average latencies in clock cycles when the values of threshold 1
and 2 are adjusted (X-axis is threshold 1).

mechanism for benchmarks requiring high memory bandwidth like

1T0. The reason is that our approach move more blocker workload

to the ex-DRAM. The performances of our approach and the best

case of scratchpad memory mechanism are similar for benchmarks

requiring low memory bandwidth like 1T10 because memory access

latency changes slightly if the memory utilization rates are within the

LMU-region. Moreover, because the blocker always occupies 63%

memory bandwidth of the 3D-DRAM, extending memory bandwidth

decreases memory access latency only for benchmarks requiring high

memory bandwidth.

Finally, we run simulations to test how the proposed mechanism

distributes the memory access workload to both the 3D-DRAM and

the ex-DRAM in a high workload scenario. We simulate 5 threads:

lbm 06+swim+lucas+applu+swim for the system using 32 bit ex-

DRAM bus and 64 bit 3D-DRAM bus. In this case, the scratchpad

memory mechanism is congested in both the best and the worst

cases. Therefore, only the average latency of our mechanism is

shown in Fig. 10. To adjust the distribution of the memory access

workload, we change the threshold value between the LMU-region

and HMU-region (Threshold1) from 0.73 to 0.86. The threshold

value between the HMU-region and the C-region (Threshold2) is

changed according to the following formula.

Threshold2 =

{
Threshold1 ∗ 0.95/0.8 if Threshold1 ≤ 0.8,

0.75 + Threshold1/4 if Threshold1 > 0.8.

It is noted that selecting an optimum value for the thresholds is a

challenging task for two reasons. First, the optimum threshold values

depend highly on the memory access pattern of the applications.

Second, we have to consider the memory block relocation overhead.

Therefore, we currently use the static threshold values which are

chosen heuristically. We plan to extend our algorithm to use dynamic

threshold values in future research.

VII. CONCLUSIONS

This paper proposes an innovative dynamic memory management

approach with QoS to exploit the high bandwidth low latency of

the 3D-DRAM and high capacity of the ex-DRAM. The dynamic

memory management approach measures the memory bandwidth

utilization and balances the workload for the heterogeneous memory

system. It is shown to be very effective in alleviating memory

congestion for multi-core processor systems. The proposed system

is very simple to implement. A hardware unit is used to monitor the

memory state to generate interrupts only when relocation is needed.

Moreover, our approach integrates our mechanism to the virtual-

physical address translation so that there is no additional latency to

determine the memory location. In addition, our QoS mechanism

further improves the performance of the system. It allocates memory

space adaptively depending on the application type. Simulation results

prove that the performance of our approach is equivalent to or

superior to the best case of the scratchpad memory mechanism in

many cases. Compared to the worst case of the scratchpad memory

mechanism, the average performance improvement of the proposed

approach is 5% and 12% for the single threaded and multi-threaded

benchmarks respectively. While the accuracy of the proposed model

does not allow for congestion based simulation, it is clear that the

performance of our mechanism is superior to the performance of the

scratchpad memory mechanism in the congested cases because our

approach can utilize both the 3D-DRAM and the ex-DRAM to have

higher memory bandwidth.

REFERENCES

[1] A. B. Kahng, and V. Srinivas, Mobile System Considerations for SDRAM
Interface Trends. IEEE System Level Interconnect Prediction, 2011.

[2] T. Lin, K. Lee, and C. Jen, Quality-aware memory controller for multi-
media platform SoC. IEEE Signal Processing Systems SIPS, 2003.

[3] Murphy R, On the Effects of Memory Latency and Bandwidth on Super-
computer Application Performance. IEEE Workload Characterization
IISWC, 2007.

[4] Taeho Kgil, Ali Saidi, Nathan Binkert, Steve Reinhardt, Krisztian Flaut-
ner, and Trevor Mudge, PicoServer: Using 3D stacking technology to
build energy efficient servers. ACM Journal on Emerging Technologies
in Computing Systems (JETC), 2008.

[5] Sun H., Liu J., Anigundi R., Zheng N., Lu J., Ken R., and Zhang T,
Design of 3D DRAM and Its Application in 3D Integrated Multi-Core
Computing Systems. IEEE Design & Test of Computer, 2009.

[6] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, Simple but Effective
Heterogeneous Main Memory with On-Chip Memory Controller Support.
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010.

[7] T. Lin, K. Lee, and C. Jen, Quality-aware memory controller for multi-
media platform SoC. IEEE Signal Processing Systems SIPS, 2003.

[8] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller, Energy management for commercial servers. IEEE Computer,
2003.

[9] Christianto C. Liu, Ilya Ganusov, Martin Burtscher, and Sandip Tiwari,
Bridging the Processor-Memory Performance Gap with 3D IC Technol-
ogy. IEEE Design and Test of Computers, 2005.

[10] Qi Wu, Ken Rose, Jian-Qiang Lu, and Tong Zhang, Impacts of Though-
DRAM Vias in 3D Processor-DRAM Integrated Systems. IEEE 3D
System Integration, 2009.

[11] U. Kang, H. Chung, S. Heo, D. Park, H. Lee, J. Kim, S. Ahn, S. Cha, J.
Ahn, D. Kwon, J. Lee, H. Joo, W. Kim, Member, IEEE, D. Jang, N. Kim,
J. Choi, T. Chung, J. Yoo, J. Choi, C. Kim, Senior Member, IEEE, and
Y. Jun, 8 Gb 3-D DDR3 DRAM Using Through-Silicon-Via Technology.
IEEE Journal of Solid-State Circuits, 2010.

[12] H. Sun, N. Zheng, J. Liu, R. S. Anigundi, J. Lu, K. Rose, and T. Zhang,
3D DRAM Design and Application to 3D Multicore Systems. IEEE
Design and Test Computers, 2009.

[13] Q. Zhu, X. Li, and Y. Wu, Thermal management of high power memory
module for server platforms. ITHERM’08.

[14] D. Woo, N. Seong, D. Lewis, and H.-H. S. Lee, An Optimized
3DStacked Memory Architecture by Exploiting Excessive, High-Density
TSV Bandwidth . Proceedings of the International Symposium on High
Performance Computer Architecture, 2010.

[15] Joe Jeddeloh, and Brent Keeth, Hybrid memory cube new DRAM
architecture increases density and performance. IEEE Symposium on
VLSI Technology (VLSIT), 2012.

[16] Jie Meng, Daniel Rossell, and Ayse K. Coskun, 3D Systems with On-
Chip DRAM for Enabling Low-Power High-Performance Computing.
IEEE High Performance Embedded Computing, 2011.

[17] JEDEC, Wide I/O single data rate (WIDE I/O SDR). JEDEC standard
JESD229, 2011.

[18] D.M. Tullsen, Simulation and Modeling of a Simultaneous Multi-
threading Processor. the 22nd Annual Computer Measurement Group
Conference, 1996.

[19] Benny Akesson and Kees Goossens, SDRAM Controllers for Mixed
Time-Criticality Systems. CODES+ISSS, 2011.

[20] Online, Hybrid Memory Cube. http://www.hybridmemorycube.org/.
[21] A. Coskun, Jie Meng, D. Atienza, and M. M. Sabry, Attaining Single-

Chip, High-Performance Computing through 3D Systems with Active
Cooling. IEEE Micro, 2011.

[22] Houman Homayoun, Vasileios Kontorinis, Ta-Wei Lin, Amirali Shayan
and Dean M. Tullsen, Dynamically heterogeneous cores through 3D
resource pooling. International Symposium on High-Performance Com-
puter Architecture, HPCA 2012.

8B-2

668

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

