
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011 2081

Reducing Power in All Major CAM and SRAM-Based
Processor Units via Centralized, Dynamic

Resource Size Management
Houman Homayoun, Member, IEEE, Avesta Sasan, Student Member, IEEE, Jean-Luc Gaudiot, Fellow, IEEE, and

Alex Veidenbaum, Member, IEEE

Abstract—Power minimization has become a primary concern
in microprocessor design. In recent years, many circuit and micro-
architectural innovations have been proposed to reduce power in
many individual processor units. However, many of these prior ef-
forts have concentrated on the approaches which require consid-
erable redesign and verification efforts. Also it has not been in-
vestigated whether these techniques can be combined. Therefore
a challenge is to find a centralized and simple algorithm which can
address power issues for more than one unit, and ultimately the en-
tire chip and comes with the least amount of redesign and verifica-
tion efforts, the lowest possible design risk and the least hardware
overhead. This paper proposes such a centralized approach that
attempts to simultaneously reduce power in processor units with
highest dissipation: reorder buffer, instruction queue, load/store
queue, and register files. It is based on an observation that utiliza-
tion for the aforementioned units varies significantly, during cache
miss period. Therefore we propose to dynamically adjust the size
and thus power dissipation of these resources during such periods.
Circuit level modifications required for such resource adaptation
are presented. Simulation results show a substantial power reduc-
tion at the cost of a negligible performance impact and a small
hardware overhead.

Index Terms—Cache miss driven, CAM unit, centralized low
power technique, dynamic resource resizing, SRAM unit.

I. INTRODUCTION

L EAKAGE and dynamic power has grown significantly
and is a major challenge in microprocessor design. In

particular, in deep sub-micrometer technology (65 nm and
below) high power dissipation become a major concern. For
many individual processor units, several power reduction
techniques have been proposed in the literature. Attempts
have been made to either design new power-efficient units or
to make current architectures more power-aware. However,

Manuscript received December 25, 2009; revised April 28, 2010; accepted
July 11, 2010. Date of publication September 16, 2010; date of current version
September 14, 2011. This work was supported in part by the U.S. National Sci-
ence Foundation under Grant CCF-0541403 and Grant CCF-0811882.

H. Homayoun is with the Department of Computer Science, UCI, Irvine, CA
92617 USA.

A. Sasan is with the Department of Electrical Engineering and Computer Sci-
ence, UCI, Irvine, CA 92617 USA.

J.-L. Gaudiot is with the Department of Electrical and Computer Engineering,
University of California at Irvine, Irvine, CA 92697 USA.

A. Veidenbaum is with the Department of Computer Science, University of
California at Irvine, Irvine, CA 92697-3425 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2010.2064185

the prior efforts have resulted in approaches which require
considerable redesign and verification efforts. Further, it is not
clear that these techniques can be combined, and, if they can
be combined, that the power and energy-delay savings would
still be considerable and whether the cumulative performance
degradation and complexity they individually introduce would
still be negligible. The challenge is thus to find a centralized
and simple mechanism which can reduce power for more than
one unit (and ultimately the entire chip) and comes with the
least amount of redesign and verification efforts, the lowest
possible design risk (which comes with any new design) and
the least hardware overhead. Current industry trends towards
deploying multisimple cores on a single chip (multicore chips)
emphasize the demand for such simple centralized solutions
for power conservation rather than complex mechanisms. An
example is the next generation Intel processor, Nehalem, a
multicore processor with up to eight cores. In Intel Nehalem
a new block is introduced referred to as power control unit or
in brief PCU to implement a centralized power optimization
mechanism [50].

In recent years, several efforts have sought such a central-
ized algorithm through two major approaches: either dynami-
cally adapting the data-path resources for power conservation
[18], [20], [21], [29] or dynamically adapting the voltage and
frequency level at a fine granularity or for the entire chip [2],
[4], [5]. These techniques have several drawbacks. First, many
of these techniques are unable to meet the performance require-
ments of high-end computing; for instance a 8.5% and a 20%
performance loss were reported in [2] and [18], respectively.
Second, many of these techniques introduce significant com-
plexity and overhead: for instance cycle-by-cycle monitoring
of program instruction per cycle (IPC), floating-point IPC, re-
source utilizations, commit rate, or a combination of these [18],
[20], [21], [29], which make them difficult to implement in prac-
tice. In addition, circuit assist to deploy such architectural ap-
proaches are studied less. This is particularly important for ap-
proaches using resource size adaptation since their effectiveness
is influenced by the power/delay transition overhead associated
with resizing resources. Such transition overhead is largely de-
termined by the circuit implementation.

The research presented in this paper falls into the first cate-
gory and investigates dynamic recourses adaptation for power
reduction. Unlike previous approaches which require contin-
uous cycle-by-cycle monitoring of resource occupancy to pre-
dict future resource needs, our approach is deterministic rather

1063-8210/$26.00 © 2010 IEEE

2082 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

than predictive. It relies on the fact that processor resource uti-
lization varies deterministically significantly when cache misses
occur, especially the L2 cache misses. There is thus no need for
expensive cycle-by-cycle monitoring of processor resource oc-
cupancy. In addition, our technique requires minimal hardware
modification.

The approach proposed in this paper aims to reduce power
in the reorder buffer (ROB), the instruction queue (IQ), the load
queue (LQ), and store queue (SQ), the integer register file (IRF),
and the floating-point register file (FRF) at the same time but
with minimal hardware changes. Novel circuit techniques are
presented to accomplish the proposed architectural strategy. It
is based on the observation that processor performance drops
significantly after an L2 cache miss. Similarly, a considerable
performance reduction occurs during any period in which mul-
tiple L1 misses are pending. Indeed, during cache miss periods,
the processor needs significantly lower issue/wakeup width, but
a larger ROB and register files. Thus we propose to dynamically
adjust the issue/wake up width, and the size of the reorder buffer,
LQ, SQ, and of the IRF and FRF. Such resource adaptation does
not come free and impacts performance in some benchmarks.

This paper makes the following five major contributions.
• It demonstrates a substantial, deterministic increase in pro-

cessor resource utilization when one or more L2 cache
misses or at least three L1 cache misses are pending (the
cache miss period) as compared to when none of these con-
ditions are present.

• It presents a centralized control algorithm based on cache
miss information to dynamically adjust the size of these
units during cache miss periods for power conservation.

• It proposes to reduce the issue/wake up width, the number
of entries of load/store queue, reorder buffer and register
file dynamically during cache miss period.

• It shows the minimal required hardware modifications to
dynamically adjust the size of these units.

• It presents SPICE simulation results for the instruction
queue and the load/store queue (using CACTI 4.0 for ROB
and register files) and shows a substantial reduction in both
leakage and dynamic power at negligible or no perfor-
mance cost.

The rest of this paper is organized as follows. Related work
and background are described in Section II. Section III presents
the motivation for proposed architectural techniques. Section IV
describes our proposed architectural technique. We describe the
issue/wakeup mechanism, ROB, LQ, SQ, and register files func-
tionality and their major sources of complexity and power con-
sumption. We also discuss the circuit modification required to
implement our architectural algorithm. Evaluation methodology
is described in Section V, experimental results in Section VI and
the conclusion in Section VII.

II. RELATED WORK AND BACKGROUND

There is a significant body of work on the design of the in-
struction queue, load/store queue, of the ROB, and of the register
file. Indeed, several techniques have been proposed to reduce
their power expenditure. Yet, as we shall show, much improve-
ment can still be achieved by our technique.

A. Instruction Queue

The Instruction Queue is a CAM+RAM-like structure which
holds instructions until they can be issued. The following four
possible actions are associated with it:

1) set an entry for a new dispatched instruction;
2) read an entry to issue an instruction to a functional unit;
3) wakeup instructions waiting in the IQ once a result is ready;
4) select instructions for issue when the instructions available

exceed the processor issue limit (to which we refer as issue
width or IW for short).

The main complexity of the Instruction Queue stems from the
associative search during the wakeup process. All above tasks
are energy demanding and make the Instruction Queue one of
the major energy consumers in the processor as shown in [12],
[22], [30], [33]–[37], and [51].

B. Reorder Buffer

The reorder buffer is a multiported SRAM structures with the
following many functions:

1) setting entries for up to IW instructions in each cycle;
2) releasing up to IW entries during commit stage in a cycle;
3) flushing entries during the branch recovery.
It is easy to recognize that, combined, these functions have

high power dissipation (estimated to dissipate as much as 27%
and 16%, respectively, of the total chip power [17]).

C. Register File

The pipeline of an out-of-order processor is capable of
fetching, decoding, renaming several instructions per processor
clock cycle. The processor can also execute and later commit
up to as many instructions in each cycle as the issue width.
This type of out-of-order multiple-issue processor accesses the
register file very frequently. Up to IW reads and IW writes
can be issued to the register file per clock cycle. The physical
register file is typically designed as a SRAM structure with
as many write and twice as many read ports as the maximum
number of instructions the processor can issue in each cycle.
Thus the register file is one of the most active components in a
processor.

Such frequent accesses make the register file one of the hottest
units in a processor due to the large power that is dissipated in
a small size SRAM structure [45]–[47]. This makes the register
file prone to “heat stroke” [49]. Heat stroke occurs when the
temperature of any of processor units exceeds beyond a critical
limit. To reduce the chances of a heat stroke it is crucial to reduce
the power of the register file.

D. Load/Store Queue

The load/store queue is a CAM+RAM structure that supports
simultaneous associative searches for maintaining memory
consistency and memory dependency. Conventionally store
queue is searched associatively to perform in-flight load store
forwarding. The following three possible actions are associated
with load queue and store queue and store queue:

1) set an entry and keep the order of newly dispatched load/
store instructions;

2) associative search of the store queue for a possible load-
store forwarding and find the most recent store value;

HOMAYOUN et al.: REDUCING POWER IN ALL MAJOR CAM AND SRAM-BASED PROCESSOR UNITS 2083

3) associative searches of the load queue to find and squash
premature loads (when there is a store-load order viola-
tion).

The main complexity of the load queue and store queue stems
from the associative search. This has been reported in several
recent works [38]–[42].

E. Power Reduction

There has been a significant body of work on reducing power
in a single processor component such as Instruction Queue, the
ROB, and the register file. Most recently, Canal and Gonzalez
[22] have proposed a scheme which schedules instructions
based on their expected issue time. Homayoun et al. introduced
the idea of lazy instructions and propose to selectively wakeup
them once predicted [12]. Unlike the above algorithms which
require substantial modifications or even complete redesign,
our proposed architecture requires only minimal modification
of a conventional instruction queue logic. It uses gated-Vdd
transistor to power gate the match lines appropriately, and yet
it is highly effective in reducing instruction queue power.

In [51], Aggarwal et al. proposed to decrease wakeup width
such that it is smaller than the machine width. This is based
on the observation that the full processor width is rarely being
used for instruction wakeup process. They present a detailed cir-
cuit-level modification required to implement reduced wakeup
width design. While our circuit level solution to implement re-
duced wakeup width is similar to their approach, unlike their
approach where wakeup width is statically reduced, we dynam-
ically adjust the wakeup width based on benchmark behavior
and thus have more flexibility.

In [16], it has been proposed to partition the ROB into in-
dependent units, each with a separate precharge, sense amp,
input and output drivers, and the ability to activate or deactivate
each based on a continuous monitoring of the processor IPC.
Our approach adaptively resizes the ROB, but does not require
continuous monitoring of IPC (and thus does not require addi-
tional hardware and associated power overhead). Second, our
proposed circuit requires minimal hardware modifications; an
AND logic and a couple of pass transistors and a gated VSS tran-
sistor. [16] required a separate sense amp, peripheral drivers,
and precharge units which means considerable modifications.
Last but not least, the performance loss associated with our pro-
posed technique is less than that in [16].

Past work on the design of the register file mostly either at-
tempt to limit the number of ports or limit its size [7]–[9], [11],
[17], [19]. In [17], it has been proposed to bypass the register
data that will be used from the fetch stage to the decode stage,
hence putting unused registers into the low power mode in the
early pipeline stage. To avoid substantial performance penalty,
the registers had to be put back to high power mode one cycle
before being accessed. There are also proposals for reducing
the number of ports at the cost of additional arbitration hard-
ware. These techniques require substantial modifications to the
pipeline. Borch et al. have discussed problems associated with
reducing the number of register file ports [6]. Further, banked
register files, caching registers, and using two-level register files

have been investigated to reduce the number of registers and ac-
cordingly the required power [6], [11], [24], [38], [39]. In a re-
cent paper [31], Alastruey et al. proposed adding an auxiliary off
core register file to support speculative register renaming. Re-
laxing physical register file release before the commit stage and
before all its consumers have read it has been studied in [7] and
[32]. Many of these techniques are based on speculation. The
drawback of these techniques is in the complexity that specula-
tion adds and more specifically the complexity they introduce
on handling the coherency in register caches and banking con-
flicts.

There have also been some recent projects dealing with cen-
tralized techniques which tackle power reduction in multiple
data-path components, either by dynamically adapting the data-
path resources for power conservation [18], [20], [21], [29] or
dynamically adapting the voltage and frequency level at a fine
granularity or at the entire chip level [2], [4], [5].

Ponemarev et al. [18], [29] proposed to monitor processor
resource occupancies (infrequently) on which they base an es-
timate for future requirements. In fact, this does not always re-
sult in correct estimation and thus it can incur a performance
penalty. Indeed, mispredictions mostly occur when an L2/mul-
tiple L1 cache miss/es occur during which processor resource
occupancy grows significantly (as we will show in this paper)
and is not necessarily correlated to its past behavior. This re-
sults in a significant performance degradation for benchmarks
with high L2 cache miss rate such as vortex and applu (8% and
14% performance loss reported in [18] and [29], respectively).
Thus it is important to take L1 and L2 cache miss rate into con-
sideration for resource adaptation.

Bahar and Manne [21] studied resource adaptation for a mul-
ticlustered Compaq 21264 processor for which the dispatch rate
can vary between 2, 4, and 6 to allow the unused clustered
to be shut off. Such variations are triggered when the overall
and floating-point IPC pass a threshold and require a significant
overhead of cycle by cycle monitoring of dispatch unit, IPC, etc.
The power reduction of reorder buffer has not been explored in
this work.

Li et al. have proposed to apply voltage scaling during L2
cache-miss service time [5]. In fact, applying voltage scaling
for such small period is not practical. For instance, as reported
in [10] applying voltage scaling to the Intel Xscale requires 20

s which translates to thousands of processor cycles. This is far
more than a few hundred cycles of L2 cache miss service time.

There are also several works that have attempted to reduce
the power dissipation of the load/store queue by reducing the
number of associative searches. Sethumadhavan et al. [40] pro-
posed using Single-bit hash tables via Bloom filters to reduce
the number of searches. Chrysos et al. [41] proposed using a
store-set predictor to reduce the search requirements. Park et
al. used similar methodology and implemented a load buffer
for out-of-order loads that reduces the number of load queue
searches and increasing the size of the load queue and store
queue by using segmentation. Sethumadhavan et al. [42] pro-
posed to allocate entries in the LQ and SQ at issue instead of
decode stage. They reduced the size of the load/store queue, but
their technique requires new algorithm to handle overflows. Sev-
eral works have developed techniques to reduce the pressure on

2084 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

the Store Queue based on speculative memory bypassing SMB
[43]. However, a design that predicts all store-load forwardings
[43], [44] requires a non-associative store queue.

III. MOTIVATION

A load instruction missing in a cache (DL1 or L2) prevents
any dependent instruction from being issued. Dependent in-
structions thus fill up the reorder buffer, the instruction queue,
the register files, and/or the load and store queues (LQ/SQ)
until the miss returns. Let us briefly consider the ROB, the
instruction queue and the register file behavior during such
period for baseline architecture. At each cycle, up to IW (in
our case 4) instructions are dispatched to the ROB and up to
IW physical registers are being allocated out of the pool of free
registers. To allocate new instructions, the processor releases up
to IW committed-instruction physical registers and their ROB
entries. This is being done in program order to handle precise
interrupts. When a cache miss occurs, the load miss instruction
stays on top of the ROB and does not allow any subsequent
instruction to be committed. As a result, the allocated ROB
and register files entries for subsequent instructions cannot
be released. Thus, while the processor dispatched up to IW
instructions at each cycle, it cannot release the ROB and the
register file entries for the subsequent instructions until the miss
returns. This will gradually increase the occupancy of the ROB
and of the register files and consequently reduce the processor
issue rate. The same scenario occurs for LQ/SQ and IQ: the
subsequent dependent instruction to the load cache miss cannot
be issued due to the data dependency. Such instructions reside
in the IQ until the miss returns. Accordingly, the IQ occupancy
increases but due to data dependencies, very few out of these
can be issued.

Given the long cache miss service time (20 cycles for DL1
and 300 cycles for L2 in our architecture which is similar to
Intel Core 2 Duo processor), the above scenario can happen
quite frequently. In the event of a L2 miss, due to the long
service time, either ROB, LQ/SQ, or instruction queue fills up
with subsequent instructions and the processor ends up stalled
issue rate until the miss is serviced. We refer to this as

scenario I.
In the event of a DL1 miss, the service time is much smaller

than for L2 and it is less likely that any of RF, LQ/SQ, ROB, and
IQ (all referred to as queues) fill up before the cache miss is ser-
viced. Note that when a DL1 cache miss occurs, its dependent
instructions cannot be issued and that all the subsequent instruc-
tions cannot be committed as discussed above.1 This reduces the
issue rate and increases the occupancy of the aforementioned
queues. In the presence of many pending DL1 cache misses, the
impact on the issue rate could be large. Also, the occupancy
of queues increases significantly. We refer to the case where at
least three DL1 misses are pending as scenario II (one or two
pending DL1 miss/es does not necessarily increase RF, LQ/SQ,
ROB, and IQ occupancy as well as issue rate noticeably). We
refer to the period during which one or more L2 miss/misses

1Out-of-order processors use speculative techniques such as load-hit specula-
tion to improve performance [52], [53]. While in this environment a dependent
instruction to a DL1 miss can be issued the overall observation made in this sec-
tion regarding reduction in processor issue rate remains valid.

Fig. 1. Percent issue rate decrease for scenario I and II relative to normal pe-
riod.

and/or multiple DL1 misses are pending as the “cache miss pe-
riod,” and to the rest of program execution time as the “normal
period.”

It should be noted that the two scenarios discussed above
would occur when the missed load is part of a correctly pre-
dicted path, otherwise after the correct path has been identi-
fied, the missed load instruction will be flushed and will release
ROB/IQ/LQ/SQ entries so that program execution can continue
(return to the normal period).

We studied processor units occupancies during cache miss pe-
riod for a 4-wide processor with 15 stages of pipeline, 128-entry
reorder buffer and register file, 64-entry instruction queue, and
a separate 32-entry load and 32-entry store queue (more infor-
mation is presented in Section V). Fig. 1 and Tables I–III, show
statistics for the structures discussed above during a cache miss
period for SPEC2K benchmarks. We measured ROB, RF, IQ,
LQ, and SQ occupancy as well as issue rate during scenario I (at
least one pending L2 miss), scenario II (at least three pending
DL1 misses), non-scenario I (no pending L2 miss) and non-sce-
nario II (zero, one or two pending DL1 misses). Fig. 1, presents
the issue rate reduction for scenario I compared to when there
is no pending L2 miss and issue rate reduction for scenario II
compared to the period where there are less than 3 pending
DL1 misses. The issue rate decreases significantly in both cases.
Across all benchmarks, the issue rate drops by more than 80%
for scenario I. For the case of 3 DL1 misses, the reduction across
benchmarks varies significantly; from 60% for facerec to around

1% for gcc and swim. The average is a 22% reduction for in-
teger benchmarks and 32.6% reduction for floating-point bench-
marks.

The reduction in issue rate during a cache miss period, as
shown above, results in a gradual increase in the occupancy of
ROB (reported in Table I). For integer benchmarks, the ROB
occupancy grows substantially; 98.2% for scenario I and 61.4%
for scenario II. This growth is less significant for floating-point
benchmarks: 30.5% for scenario I and 25% for scenario II. This
in fact is due to the larger average occupancy of FP benchmarks
compare to INT benchmarks as presented in Table I. As ex-
pected, for most benchmarks, the ROB occupancy is smaller
for scenario II compared to I. This is consistent with the results
in Fig. 1: the reduction in issue rate results in the ROB occu-
pancy increase. Table II reports the relative load queue (LQ)

HOMAYOUN et al.: REDUCING POWER IN ALL MAJOR CAM AND SRAM-BASED PROCESSOR UNITS 2085

TABLE I
PERCENT ROB OCCUPANCY INCREASE DURING CACHE MISS PERIOD RELATIVE TO NORMAL PERIOD

TABLE II
PERCENT LQ OCCUPANCY INCREASE DURING CACHE MISS PERIOD RELATIVE

TO NORMAL PERIOD

TABLE III
PERCENT SQ OCCUPANCY INCREASE DURING CACHE MISS PERIOD RELATIVE

TO NORMAL PERIOD

occupancy increase during cache miss period. The occupancy
increase is large during both scenarios. We also present the oc-
cupancy increase of store queue (SQ) during cache miss period
in Table III. The occupancy increases noticeably but at a lower
rate compare to load queue. In most benchmarks during scenario
I where an L2 miss is pending, both LQ and SQ occupancy in-
crease more compare to scenario II where multiple L1 misses
are pending. Similar behavior was observed for ROB. A larger

TABLE IV
AVERAGE INTEGER REGISTER FILE OCCUPANCY DURING CACHE MISS PERIOD

(SCENARIOS I AND II) AND NORMAL PERIOD

miss penalty of L2 cache compare to L1 data cache could ex-
plain such occupancy difference.

We also present the average IRF and FRF occupancies for
scenarios I and II and also the normal period (see Tables IV and
V). As the results show, the IRF occupancy always grows for
both scenarios when experimenting with integer benchmarks.
There is also a similar case for FRF when running floating-
point benchmarks and only during scenario II. For the remaining
cases, there is significant variation across benchmarks (98% de-
creases to 580% increases). This is particularly the case for IRF
with floating-point benchmarks and for FRF with integer bench-
marks.

2086 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

TABLE V
AVERAGE FLOATING POINT REGISTER FILE OCCUPANCY DURING CACHE MISS

PERIOD (SCENARIOS I AND II) AND NORMAL PERIOD

Based on the results shown, in the next section we propose
a simple algorithm to reduce the power dissipation in the ROB,
LQ, SQ, the register files, and the issue/wakeup units.

IV. PROPOSED CENTRALIZED APPROACH

The approach proposed in this paper aims at reducing the dy-
namic and static power dissipation of the ROB, LQ, SQ, the
register files, and the instruction queue, by adaptive resizing.
Reducing the size of each of these units will require different
hardware modifications (at extra power/area cost) which are de-
termined by the resizing scheme. In order to minimize the hard-
ware cost and complexity, we propose a simple resizing scheme
that goes from normal to half size and back. While this is not
the most optimal resizing scheme for individual units it is the
simplest one in terms of hardware modifications.

We propose to reduce the issue and the wakeup width of the
processor only during L2 miss service times (scenario I). The
results in Fig. 1 show that the issue width for scenario II is also
reduced but not as significantly as it would have been in sce-
nario I. We are thus trying not to impact the IPC by reducing
the issue width for scenario II. Our experimental results con-
firm this conjecture and show that the performance degradation
is not negligible.

Based on a significant increase in ROB, LQ, and SQ occu-
pancies during cache miss periods, we propose to increase their
size during such periods (during both scenarios I and II). During
normal periods, we keep the ROB, LQ, and SQ size at half its
possible size.

Fig. 2. Circuit implementation of instruction queue.

The dynamic adaptation of register file requires more cau-
tion since the FRF and IRF behave differently for integer and
floating-point benchmarks. Based on the above discussion for
IRF we propose to increase its size during both scenarios I and
II and when running integer benchmarks. We propose to apply
a similar technique for FRF when running floating point bench-
mark. In addition, the IRF occupancy when running floating
point benchmarks is relatively small. Thus we can reduce its
size when running floating point benchmarks. A similar case is
true for FRF when running integer benchmarks. To distinct the
integer and floating point benchmarks we can use the floating
point register file occupancy. A small floating point register file
occupancy, for instance below 10 entries on average, is an indi-
cation of an integer benchmark (results in Tables IV and V).

After the cache miss period ends (start of normal period) the
ROB, LQ, SQ, and register file occupancies decrease. We there-
fore propose to reduce the size of ROB, LQ, SQ, and register file
by half after a cache miss period ends and once the augmented
half part is become empty.

Cache miss period ends if one of the two following conditions
met:

• the L2 cache miss is either serviced or flushed (part of a
misprediction path);

• all pending DL1 misses are either serviced or flushed.
Most processors have exclusive registers to monitor the state

of cache misses. In a case where these registers are not available,
we need a 2-bit saturating counter for keeping the number of
pending DL1 misses and a 1-bit registers for keeping the L2
miss.

In the next section we explain how to detect whether the aug-
mented part is empty for each of ROB, LQ, SQ, and register file.

A. Reducing the Effective Width of Issue and Wakeup

We propose reducing the size of the wakeup and issue width
from 4 to 2. Fig. 2 shows the circuit level implementation for one
row of the instruction queue. At each cycle, the match lines are
precharged high which allows the individual bits associated with
an instruction tag to be compared with the results broadcasted
on the taglines. Upon a mismatch, the corresponding matchline
is discharged. Otherwise, the match line stays at Vdd, which in-
dicates a tag match. At each cycle, since we may have up to
four instructions broadcasted on the taglines, we need to have
four sets of one-bit comparators for each one-bit cell, as shown
in Fig. 2. All four matchlines must be ORed together to detect
a match on any of the broadcasted tags. The result of the OR

sets the ready bit of an instruction source operand showing that
it is ready. Using spice measurements of a 32-entry IQ layout

HOMAYOUN et al.: REDUCING POWER IN ALL MAJOR CAM AND SRAM-BASED PROCESSOR UNITS 2087

Fig. 3. (a) Baseline issue/wake up logic and (b) modified issue/wake up logic.

our results in accordance with [14], [22], confirm that matchline
discharge is the major energy consumption activity responsible
for more than 58% of the energy consumption in the instruction
queue. As the matchline must go across the entire width of the
instruction queue, it has a large wire capacitance. Adding the
one-bit comparators diffusion capacitance makes the equivalent
capacitance of matchline large. Precharging and discharging this
large capacitor is responsible for the majority of power con-
sumption in the instruction queue.

Previous studies have shown that a broadcasted tag has on av-
erage one dependent instruction in the instruction queue [27]. In
other words, most of the time, all the instruction queue match-
lines are discharged except one. For our configuration, among
32 4 matchlines in the instruction queue on average in each
cycle, only one is not discharged. Discharging the other match-
lines will cause significant power dissipation in the instruction
queue.

Results in Fig. 1 showed the average issue rate (and of course,
the wakeup rate) to be far less than one for scenario I. In other
words, out of four taglines, on average only one carries the
broadcasted data from the functional units to all entries in the
instruction queue. This means that precharging the other match-
lines is not useful. We can thus prevent precharging such match-
lines by using a gated-Vdd transistor as shown in Fig. 3(b).
Therefore, the question is how to determine which set of match-
lines associated with specific tagline should be disabled rather
than precharged. Note that when the precharge line is disabled,
the matchline is forced to drive “0” to the OR logic to avoid set-
ting the ready bit.

The matchlines are being precharged when the clock is low
and are conditionally discharged immediately after the results
have been broadcasted on the taglines (when the clock is high).
Precharging the matchline has to be done before the tags are
broadcasted on the taglines. In order to meet this deadline, we
need to know the matchlines associated with taglines which do
not carry tags. This would allow us to disable them. In Fig. 3(b),
we show the circuit modification needed to reduce the wakeup
width from 4 to 2 and hence the disabling/precharging and dis-
charging of half of the matchlines. By multiplexing the data bus
to taglines 1 and 3 we can safely turn off other matchlines as-
sociated with the rest of the taglines. It should be noted that the
multiplexing is done only during those periods for which the
average issue/wakeup width is small. Multiplexing the data bus

over taglines when the average issue rate is more than two can
significantly degrade the performance. Note that the delay of the
demultiplexer used is only few pico seconds, far less than the op-
erating clock period (500 ps). We assume that such a delay does
not impact the processor operating clock frequency.

The worth case scenario in our design is the case in which
more than half of taglines are broadcasting tags during scenario
I where only half of matchlines are active. To respond to such an
event, we buffer (referring as auxiliary broadcast buffer) half of
the tags and broadcast them whenever an active becomes avail-
able. As explained in [54], to wakeup a dependent instruction,
the scheduler uses a countdown timer which is initialized with
the instruction latency. Once the counter reaches one, the cor-
responding buffer broadcasts tags to all instructions in the in-
struction queue. In a case where the counter reaches one but the
tagline is not available the tags are buffered and will be broad-
casted as soon as the corresponding tagline becomes available.
Considering the very low average issue/wakeup rate during sce-
nario I, such worse case scenario happens very rarely. While
it is extremely rare, it is also possible that the auxiliary broad-
cast buffer becomes full. Our experimental results show that a
four-entry broadcast buffer is sufficient to minimize such occur-
rence. In the very rare case that the broadcast buffer fills up, the
issue stage is stalled until the broadcast buffer become available.

Reducing the wakeup/issue width during normal program ex-
ecution (when no cache miss is pending) requires a large number
of auxiliary broadcast buffers and comes at the cost of a large
power overhead which could adversely impact the performance.
This is another reason why we only apply dynamic issue and
wakeup width adaptation during scenario I.

B. Dynamically Resizing ROB and Register Files

Fig. 4 shows the circuit level implementation of an SRAM.
To read or write an entry each cycle all the bit lines must be
precharged high (fired). For write operations, the high voltage
on the bit lines induces a logic 1 into a cell for which the word
line is fired. To read the content of an entry, one of bit line or

will be conditionally discharged. The sense amplifier
detects such a difference and will drive it to the output buffer. Bit
lines thus must run across the entire ROB or register file height.
As we may have multiple accesses to the same cell in a cycle,
the read bit line and the write bit line thus need to be separated
[28]. Hence, if we are to read entries at each cycle and write

2088 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

Fig. 4. ROB SRAM circuit.

to entries in the same cycle, we must have bit lines
(register file is single ended). In our design of register files, we
have (data width is 64 bits) bit lines for register
files and bit lines for ROB. Precharging and
discharging the large number of bit lines are the major sources
of power dissipation in these two structures [16], [28].

Using a modified version of CACTI4 which models a
single-ended multiported SRAM [15] in Fig. 5 we report the
breakdown of dynamic energy (for read operations) and leakage
power of the register file components. The bit lines are the
major consumers of power. It should be noted that most of the
leakage of bit lines is due to the leakage currents of memory
cells, which flow through the two off pass transistor to the bit
lines. Accordingly, by eliminating the leakage in memory cells,
we can eliminate the bit line leakage.

As shown, the ROB and register file utilization is relatively
low. Hence, one approach to reduce power dissipation in these
two units would be to turn off the unused entries and their associ-
ated wordline drivers using circuit techniques such as gated-Vdd
or gated Vss and eliminating the leakage power dissipation vir-
tually completely (sleep mode).

The transition from sleep to active mode adds a one-cycle
delay to the ROB or register file access which has significant per-
formance impact. The algorithms proposed in the previous sec-
tion reduce the performance impact of frequently activating and
deactivating the entries. Resizing the ROB could be achieved by
partitioning it into several independent units with separate sense
amps, prechargers, and input and output drivers as explained in
[16]. Reference [16] proposed to partition the ROB into eight
units. This requires eight times more sense amps precharge lines
and input and output drivers compared to the non-partitioned
structure. The cost in terms of power and area is not negligible.
To avoid adding to the complexity of ROB and register files, we
use the divided bit line technique [26] proposed for SRAMs to
reduce the bit line capacitance and hence its dynamic power.

Fig. 5. (a) Dynamic energy and (b) leakage power of the register file.

As shown in Fig. 6, two or more SRAM cells are combined
together to divide the bit line into several sub-bit lines. In
the nondivided bit line structure the bit line capacitance is

diffusion capacitance of pass transistors wire capacitance
(usually 10% of total diffusion capacitance) where is the
total number of rows (in our case 128 for ROB and 128 for
register files). In the divided bit line scheme the equivalent
bit line capacitance is reduced to diffusion capacitance
wire capacitance, where is the number of bit line segments
(sub-bit lines). As bit line dynamic power dissipation is propor-
tional to , reducing the effective capacitance would linearly
reduces the bit line dynamic power. It should be noted that the
overhead of this technique is adding a set of pass transistors per
sub-bit line (shown in Fig. 6 as segment control switch). As a
side effect, the large number of segments increases the area and
power overhead.

Since this technique is incorporated in CACTI [15], we used
the toolset to find the best number of bit line segments for area
and power optimizations. We found 8 bit line segments for reg-
ister files and the ROB results in minimal area and power over-
head. To downsize the ROB, the select signal of the lower par-
tition is being AND together with the downsize signal. Doing
that, no write and read can be done to/from the partition and
the entire partition can be turned off safely. To turn off the en-
tire partition we use the gated Vdd technique [25] to suppress
the voltage in all memory cells of the partition and eliminating
its leakage almost completely. We also use a similar technique
to eliminate leakage in the wordline driver of the disabled parti-
tion. Beginning of a cache miss period triggers upsizing the unit

HOMAYOUN et al.: REDUCING POWER IN ALL MAJOR CAM AND SRAM-BASED PROCESSOR UNITS 2089

Fig. 6. Divided bit line circuit.

by deasserting the downsize signal and turning on the disabled
partition. The overhead of downsizing and upsizing is one cycle
(gated-Vdd overhead). The end of a cache miss period triggers
downsizing the ROB. Note that the downsize signal is asserted
only when the segment is empty.

The benefits of such resizing is in reducing both dynamic
and leakage power. Leakage is suppressed by turning off the
entire segment of memory cells and wordline driver. Dynamic
power is reduced due to a smaller equivalent capacitance on the
bit lines. The same hardware modification is applied to register
files.

The approach applied to ROB can also be applied to IRF and
FRF when running integer and floating point benchmarks re-
spectively. In addition, the downsize signal is kept asserted al-
ways for IRF when running floating point benchmarks and for
FRF when running integer benchmarks. It should be noted that
once the cache miss period ends and the augmented half (lower
partition) becomes empty, the size of ROB and register file is re-
duced back to half of their size. This requires detecting when the
lower partition becomes empty after the end of cache miss pe-
riod. This can be accomplished by using an additional bit in each
row (entry) of the lower partition. This bit is set when an entry
in the lower partition is used (register write) and reset when the
entry is released (during commit). By ORing these bits we can
detect when the partition is empty. Note that the logic to OR all
bits in the lower partition is not on the critical path, as the down-
size decision is done in parallel to accessing ROB and register

file. We assume that the additional bit in each row (entry) of
the lower partition does not increase its access delay beyond the
clock period.

C. Dynamically Resizing Load and Store Queue

LQ (SQ) is basically a CAM+RAM structure which has a
similar circuit implementation to the instruction queue (shown
in Fig. 2). Our result indicates that matchline discharge and
tagline broadcast are the major energy consumption activity in
a 32 64 bits LQ and SQ. This is in agreement with the results
reported in [38], [40]–[44]. Specifically the tagline broadcast is
responsible for almost 36% of energy consumption in the LQ
and SQ during an associative search operation. As the tagline
must go across the entire height of the LQ and SQ, it has a large
wire capacitance. It also has to drive a large number of one-bit
comparators. The equivalent tagline capacitance is equal to

where is the number of CAM rows and is the
length of a tagline. Driving this large capacitor is responsible
for a large portion of power consumption in the LQ and SQ.
To reduce the power dissipation of the LQ and SQ one can dy-
namically reduce their effective size; which reduces the
equivalent gate capacitance of the taglines. The circuit modifi-
cation to dynamically adapt the size of LQ (and SQ) is shown
in Fig. 7. For this purpose, the LQ (and SQ) is divided into two
segments of 16 entries each which are connected through trans-
mission gates as shown in Fig. 7. This allows the upper segment
tagline to become isolated from the lower segment tagline if the
pass gate is off. During the normal period the lower segment
is power gated and the transmission gate is turned off to iso-
late the lower bitline segment from the upper bitline segment.
During this period the tags are only broadcasted to the the upper
segment entries. Since the lower tagline segment is floating, the
equivalent tagline capacitance during normal period is decided
by the upper segment tagline. Therefore, the tagline delay in this
case remains close to the tagline delay of a 16-row LQ (and SQ).
The only difference is the delay added by the source capacitance
of the pass gate, which is negligible.

In addition, we need to be able to detect when the lower seg-
ment is empty (for downsizing at the end of cache miss period
when the added segment is empty). To do that we have aug-
mented the lower segment with one extra bit per entry. This bit
is set when an LQ (and SQ) entry is taken and is being reset
when the entry is released. By ORing these bits we can detect
when the segment is empty. Similar to ROB and RF, the logic
to OR all bits in the lower partition of LQ (and SQ) is not on the
critical path, as the downsize decision is done in parallel to ac-
cessing LQ (and SQ). We also assume that the additional bit in
each row of the lower partition does not increase its access delay
beyond the clock period. Since the remaining components of LQ
delay change very slightly, the LQ access delay remains close
to that for a 16-row LQ when the upper segment is isolated (the
same hold true for SQ). Once the LQ (and SQ) is downsized we
will safely power gate all entries in the lower segment to reduce
their leakage power.

2090 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

Fig. 7. LQ (and SQ) implementation for dynamic adaptation.

TABLE VI
PROCESSOR ORGANIZATION

V. EXPERIMENTAL METHODOLOGY

To evaluate the proposed approach, we estimate the leakage
and dynamic power reduction, the total energy-delay reduction,
and the IPC change. Table VI describes the processor architec-
ture, the clock frequency is 2 GHz. SPEC2K benchmarks were
compiled with the O4 flag using the Compaq compiler for the
Alpha 21264 processor and executed with reference data sets.

The architecture was simulated using an extensively modified
version of SimpleScalar 4.0 [23]. The benchmarks were fast-
forwarded for two billion instructions, then fully simulated for
two billion instructions. A modified version of CACTI4 [15]
was used for estimating power in the and the Register
files in 65-nm technology. For estimation of energy in IQ, LQ,
and SQ we used spice simulation on the actual VLSI layouts
of the IQ, LQ, and SQ. The power in the Instruction Queue,
LQ, and SQ was evaluated using SPICE and the TSMC 65-nm
technology with Vdd at 1.08 V.

VI. RESULTS

Power savings and performance changes associated with our
approach are shown in Figs. 8–10. The approach is used for the

Fig. 8. Percent time with size reduction for: (a) IRF, FRF; (b) ROB and issue/
wakeup width; and (c) LQ and SQ.

ROB, register files, LQ, SQ, and issue/wakeup width simulta-
neously. Fig. 8 shows the fraction of execution time when the
ROB, IRF, and FRF, LQ, SQ, and issue/wakeup width were re-
duced to half their size for each benchmark.

Table VII shows cache miss rates for DL1 and L2 caches.
Larger cache misses result in more frequent unit upsizing and
therefore a smaller fraction of execution time where units can be
downsized to half of their original size. The results in Fig. 8 cor-
relate well with the results in Table VII. In floating point bench-
marks compare to integer benchmarks, due to a large DL1 and
L2 cache miss rates, there is less opportunity to downsize RF,
ROB, LQ, and SQ. Compare to other floating point benchmarks,
in equake and wupwise there is more opportunity to downsize
units. In fact in these two benchmarks in spite of large L2 miss
rate, a small DL1 miss rate results in overall smaller number
of cache misses (DL1 and L2) and therefore there is more op-
portunity to keep any of RF, ROB, LQ, and SQ downsized. IPC
reduction is shown in Fig. 9. Leakage and dynamic power re-
duction for individual units is shown in Fig. 10. On average, the
performance loss is 1.1% for integer benchmarks and 2.4% for

HOMAYOUN et al.: REDUCING POWER IN ALL MAJOR CAM AND SRAM-BASED PROCESSOR UNITS 2091

Fig. 9. IPC degradation due to resource resizing.

Fig. 10. Dynamic and leakage power reduction in: (a) ROB and instruction
queue; (b) IRF and FRF; (c) LQ and SQ.

floating-point benchmarks. In wupwise and mgird we observe
the highest performance degradation. To explain the large per-
formance degradation in wupwise we refer to results presented
earlier in Fig. 8. As shown, in wupwise FRF, ROB, LQ, and SQ
spends a large portion of the execution time downsized. Using

TABLE VII
CACHE MISS RATES FOR DL1 AND L2 CACHE

a smaller size of register file, reorder buffer and load and store
queue increases the chances of processor stalls which in turn im-
pacts performance noticeably. For mgrid the story is different as
FRF, ROB, LQ, and SQ spend only a very small portion of ex-
ecution time downsized. In fact in mgrid the reorder buffer and
floating point register file is almost full most the time (having av-
erage occupancy of more than 90 entries as reported in Tables I
and V). As reported in Table I, in mgrid there is a very small
variation in size of ROB during scenario I and II. So In fact
reducing the size of ROB results in the processor being stalled
more frequently. This in fact is the reason of a large performance
degradation in mgrid. To minimize the IPC reduction one solu-
tion is to monitor average occupancy run-time in all ROB, LQ,
SQ, IRF, FRF, and IQ. IF the average occupancy is large (for
instance more than half of the unit capacity), we can avoid ap-
plying resource resizing. Doing so would reduce the chances
of processor being stalled because of unavailable resources and
thus it impact performance less.

The issue/wakeup width is reduced from 4 to 2 for 21% of
integer benchmarks’ life time (maximum is 88% for).
It is higher for floating-point benchmarks: 48% on average
(maximum 90% for). This difference is a result of higher
L2 miss rate in floating point benchmarks compared to integer
benchmarks (note that the issue/wakeup width is reduced only
during scenario I which is L2 miss period).

The same figure shows that ROB and Integer register file are
kept in the low power mode for 51% of integer benchmarks life
time, while ROB and FRF are kept in the low power mode for
26% of the floating-point benchmarks lifetime. As explained
earlier, our proposed algorithm keeps FRF and IRF in the low
power mode for the entire lifetime of integer benchmarks and
floating-point benchmarks, respectively (bars showing 100% in
Fig. 8).

In floating-point benchmarks the instruction queue benefits
considerably from our technique: power reduction reaches 45%
(24% on the average). The average savings are 11% for in-
teger benchmarks. For reorder buffer, our technique affects more
integer benchmarks; 19% dynamic power reduction and 23%
leakage power savings. As for floating-point benchmarks, the
leakage and dynamic power savings reach 10% and 9%, re-
spectively. The average dynamic and leakage power savings
(floating-point and integer benchmarks) for IRF is 26% and
30%, respectively (20% and 24% for FRF).

2092 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

Fig. 11. Total energy-delay reduction. (a) ROB and register file. (b) LSQ and
issue queue.

Results for LQ and SQ are presented in Figs. 8 and 10. In
integer benchmarks LQ and SQ power reduce more noticeably
compare to floating point benchmarks. This is due to the fact
that in integer benchmark there is more opportunity for resizing
as results in Fig. 8 show. The store queue power reduces slightly
more than the load queue. Note that LQ/SQ can be downsized
only when a cache miss period is over and when their lower
segment is empty. The lower segment of SQ is becoming empty
faster than the lower segment of LQ. Therefore the store queue
is kept in low power mode slightly more than the load queue.
The average dynamic power reduction in LQ and SQ is 10%
and 11%, respectively, in integer benchmark. This is lower in
floating point benchmark: almost 5% for both LQ and SQ.

The leakage power reduces noticeably; by as much as 45% in
integer benchmark and 42% in floating point benchmark in both
LQ and SQ.

Fig. 11 shows the energy-delay product reduction. In most
benchmarks, our technique reduces the total energy-delay
product by up to 48% (in IQ for). Some of the benchmarks
show a slight increase in their energy-delay. For ROB and FRF,
this is the case for lucas and mgrid with 3% and 1% increase,
respectively. The increase in energy-delay product is in fact
stems from either large performance degradation which makes
the delay larger (for mgrid) or small energy improvement in
present of some performance degradation (for lucas) which
increases the overall energy and delay product.

For the instruction queue, the energy-delay product increases
for , , and with 1.5%, 2.3%, and 0.8% re-
spectively. For IRF the energy-delay decreases across all bench-
marks. As reported in Fig. 10 a large leakage and dynamic power
reduction is observed for IRF which makes the overall energy

delay product smaller across all benchmarks. For LQ this is the
case for lucas and mgrid with 2.7% and 0.88% increase respec-
tively. For the same benchmarks the energy-delay product in-
creases slightly in SQ; in lucas by 1.7% and in mgrid by 0.56%.
These are the benchmarks in which some noticeable perfor-
mance degradation is observed; this is specifically the case for
mgrid with almost 3.6% performance impact.

Overall the energy delay reduces more noticeably in integer
benchmarks compare with floating point benchmarks. This is
due to the fact that the performances degrade smaller/negligible
in integer benchmarks compare to floating point benchmarks
as shown in Fig. 9. On average the total energy-delay product
decreases by 19%, 20%, 32%, 24%, 24%, and 10% for ROB,
IRF, FRF, LQ, SQ, and instruction queue respectively in integer
benchmarks. In floating point benchmarks this is 8%, 31%, 7%,
10%, 11%, and 21%, respectively. The overall average energy-
delay product reduces by 15%, 26%, 20%, 17%, 18%, and 15%,
respectively.

VII. CONCLUSION AND FUTURE WORK

This paper presented a centralized mechanism to simulta-
neously reduce both leakage and dynamic power in all major
on-core CAM and SRAM-based processor units; reorder buffer,
register files, instruction queue, and load and store queue. It pro-
posed to dynamically adjust the size of these units during cache
miss periods. It also showed how to modify the circuitry for
each of these units to apply this mechanism. The required hard-
ware modifications are minimal and do not require significant
redesign and verification efforts.

Applying the new algorithm, the total energy-delay product
is reduced, on average, by 15%, 26%, 20%, 17%, 18%, and 15%
for the reorder buffer, the integer register file, the floating-point
register file, the instruction queue and the load and the store
queue, respectively, for SPEC2K benchmarks. This comes at
the cost of a 0.9% and 2.2% performance loss for integer and
floating-point benchmark on average, respectively.

Our future work is to investigate ways to utilize this algorithm
for other processor structures, such as BTB, load/store queue,
L1 and L2 caches.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the U.S. National Science Foun-
dation.

REFERENCES

[1] R. Gonzalez, A. Cristal, A. Veidenbaum, and M. Valero, “A content
aware register file organization,” in Proc. 31st Int. Symp. Comput. Arch.
(ISCA), 2004, p. 314.

[2] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based
on the ratio of off-chip access to on-chip computation times,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 24, no. 1, pp.
18–28, Jan. 2005.

[3] M. A. Ramirez, A. Cristal, A. Veidenbaum, L. Villa, and M. Valero, “A
new pointer-based instruction queue design and its power-performance
evaluation,” in Proc. IEEE Int. Conf. Comput. Des. (ICCD), 2005, pp.
647–653.

[4] C. Hsu and W. Feng, “Effective dynamic voltage scaling through
CPU-boundedness detection,” in Proc. 4th IEEE/ACM Workshop
Power-Aware Comput. Syst., 2004, p. 135.

HOMAYOUN et al.: REDUCING POWER IN ALL MAJOR CAM AND SRAM-BASED PROCESSOR UNITS 2093

[5] H. Li, C.-Y. Cher, T. Vijaykumar, and K. Roy, “VSV: L2-miss-driven
variable supply-voltage scaling for low power,” in Proc. Int. Symp. Mi-
croarch., 2003, pp. 19–28.

[6] E. Borch, E. Tune, S. Manne, and J. Emer, “Loose loops sink chips,”
in Proc. 8th Int. Symp. High Perform. Comput. Arch., Feb. 2002, pp.
299–310.

[7] D. Balkan, J. Sharkey, D. Ponomarev, and A. Aggarwal, “Address-
value decoupling for early register deallocation,” in Proc. 35th Int.
Conf. Parallel Process. (ICPP), 2006, pp. 337–346.

[8] I. Park, M. D. Powell, and T. N. Vijaykumar, “Reducing register ports
for higher speed and lower energy,” presented at the Int. Symp. Mi-
croarch. (MICRO-35), Istanbul, Turkey, 2002.

[9] H. Homayoun, S. Pasricha, M. Makhzan, and A. Veidenbaum, “Im-
proving performance and reducing energy-delay with adaptive resource
resizing for out-of-order embedded processors,” presented at the ACM
SIGPLAN/SIGBED Conf. Lang., Compilers, Tools for Embed. Syst.
(LCTES), Tucson, AZ, 2008.

[10] M. Fleischmann, “Crusoe power management: Cutting x86 operating
power through longrun,” in Embed. Processor Forum, 2000, p. 195.

[11] J. H. Tseng and K. Asanović, “Banked multiported register files for
high-frequency superscalar microprocessors,” in Proc. 30th Int. Symp.
Comput. Arch., 2003, pp. 62–71.

[12] H. Homayoun and A. Baniasadi, “Using lazy instruction prediction
to reduce processor wakeup power dissipation,” presented at the 2nd
Workshop Unique Chips Syst., in Conjunction With IEEE Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), Austin, TX, 2006.

[13] E. Tune, R. Kumar, D. M. Tullsen, and B. Calder, “Balanced multi-
threading: Increasing throughput via a low cost multithreading hier-
archy,” in Proc. 37th Annu. Int. Symp. Microarch. (MICRO-37), Port-
land, OR, 2004, pp. 183–194.

[14] A. Buyuktosunoglu, D. H. Albonesi, P. Bose, P. W. Cook, and S. E.
Schuster, “Tradeoffs in power-efficient issue queue design,” in Proc.
Int. Symp. Low Power Electron. Des., Aug. 2002, pp. 184–189.

[15] Hewlett-Packard Company, Palo Alto, CA, “CACTI4,” [Online]. Avail-
able: http://quid.hpl.hp.com:9081/cacti/

[16] D. Ponomarev, G. Kucuk, and K. Ghose, “Energy-efficient design of
the reorder buffer,” presented at the Int. Workshop Power Tim. Model.,
Opt. Simulation (PATMOS), Seville, Spain, 2002.

[17] J. L. Ayala, M. Lopez-Vallejo, A. Veidenbaum, and C. A. Lopez, “En-
ergy aware register file implementation through instruction predecode,”
in Proc. IEEE Int. Conf. Appl.-Specific Syst., Arch., Processors (ASIP),
2003, pp. 86–96.

[18] D. Ponomarev, G. Kucuk, and K. Ghose, “Dynamic allocation of data-
path resources for low power,” presented at the Workshop Complexity-
Effective Des. (WCED), Göteborg, Sweden, 2001.

[19] H. Homayoun, S. Pasricha, M. Makhzan, and A. Veidenbaum, “Dy-
namic register file resizing and frequency scaling to improve embedded
processor performance and energy-delay efficiency,” presented at the
45th Des. Autom. Conf., Anaheim, CA, 2008.

[20] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas, E.
G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Se-
meraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Schuster,
“Dynamically tuning processor resources with adaptive processing,”
IEEE Comput., vol. 36, no. 12, pp. 49–58, Dec. 2003.

[21] I. Bahar and S. Manne, “Power and energy reduction via pipeline bal-
ancing,” in Proc. Int. Symp. Comput. Arch. (ISCA), 2001, pp. 218–229.

[22] R. Canal and A. Gonzalez, “Reducing the complexity of the issue
logic,” presented at the Int. Conf. Supercomput., Naples, Italy, 2001.

[23] SimpleScalar LLC, “SimpleScalar4 Tutorial,” [Online]. Available:
http://www.simplescalar.com/tutorial.html

[24] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, “Reducing
the complexity of the register file in dynamic superscalar processors,”
presented at the Int. Symp. Microarch., Austin, TX, 2001.

[25] M. D. Powell, S. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated Vdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” presented at the IEEE Int. Symp. Low Power Elec-
tron. Des., Rapallo, Italy, 2000.

[26] A. Karandikar and K. K. Parhi, “Low power SRAM design using hier-
archical divided bit-line approach,” in Proc. Int. Conf. Comput. Des.,
1998, pp. 82–88.

[27] M. Huang, J. Renau, and J. Torrellas, “Energy-efficient hybrid wakeup
logic,” in Proc. Int. Symp. Low Power Electron. Des., Aug. 2002, pp.
196–201.

[28] V. V. Zyuban and P. M. Kogge, “The energy complexity of register
files,” presented at the Int. Symp. Low Power Electron. Des., Monterey,
CA, 1998.

[29] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power require-
ments of instruction scheduling through dynamic allocation of multiple
datapath resources,” presented at the 34th IEEE/ACM Int. Symp. Mi-
croarch. (MICRO-34), Austin, TX, 2001.

[30] J. S. Hu, N. Vijaykrishnan, and M. J. Irwin, “Exploring wakeup-free
instruction scheduling,” presented at the 10th Int. Conf. High-Perform.
Comput. Arch. (HPCA-10), Madrid, Spain, 2004.

[31] J. Alastruey, T. Monreal, V. Viñals, and M. Valero, “Microarchitectural
support for speculative register renaming,” presented at the Proc. 21st
IEEE Int. Parallel Distrib. Process. Symp., Long Beach, CA, 2007, “,”
in .

[32] D. Balkan, J. Sharkey, D. Ponomarev, and K. Ghose, “SPARTAN, spec-
ulative avoidance of register allocation to transient values for perfor-
mance and energy efficiency,” in Proc. 15th Int. Conf. Parallel Arch.
Compilation Techn. (PACT), 2006, pp. 265–274.

[33] D. Folegnani and A. González, “Energy-effective issue logic,” pre-
sented at the 28th Annu. Int. Symp. Comput. Arch., Göteborg, Sweden,
May 2001.

[34] J. Abella, R. Canal, and A. González, “Power- and complexity-aware
issue queue designs,” IEEE Micro, vol. 23, no. 5, pp. 50–58, Sep.–Oct.
2003.

[35] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective su-
perscalar processors,” presented at the 24th Annu. Int. Symp. Comput.
Arch., Denver, CO, 1997.

[36] D. Ernst, A. Hamel, and T. Austin, “Cyclone: A broadcastfree dynamic
instruction scheduler selective replay,” presented at the 30th Annu. Int.
Symp. Comput. Arch., San Diego, CA, 2003.

[37] R. Canal and A. Gonzalez, “Reducing the complexity of the issue
logic,” presented at the Int. Conf. Supercomput., Naples, Italy, 2001.

[38] I. Park, C. L. Ooi, and T. N. Vijaykumar, “Reducing design complexity
of the load/store queue,” presented at the Int. Symp. Microarch., San
Diego, CA, 2003.

[39] J. Abella and A. González, “SAMIE-LSQ: Set-associative multiple-
instruction entry load/store queue,” presented at the IEEE Int. Parall.
Distrib. Process. Symp. (IPDPS), Rhodes Island, Greece, 2006.

[40] T. Sha, M. Martin, and A. Roth, “NoSQ: Store-load communication
without a store queue,” presented at the Int. Symp. Microarch. (Micro),
Chicago, IL, 2007.

[41] Y. Tsai, C. J. Hsu, and C. H. Chen, “Power-efficient and scalable load/
store queue design via address compression,” presented at the ACM
Symp. Appl. Comput., Ceara, Brazil, 2008.

[42] F. Castro, D. Chaver, L. Pinuel, M. Prieto, M. C. Huang, and F. Tirado,
“A power-efficient and scalable load-store queue design,” presented
at the Int. Workshop Power Tim. Model. Opt. Simulation (PATMOS),
Leuven, Belgium, 2005.

[43] J. Sharkey, K. Ghose, D. V. Ponomarev, and O. Ergin, “Power-effi-
cient wakeup tag broadcast,” presented at the Int. Conf. Comput. Des.
(ICCD), San Jose, CA, 2005.

[44] A. Buyuktosunoglu, D. Albonesi, S. Schuster, and D. Brooks, “A cir-
cuit level implementation of an adaptive issue queue for power-aware
microprocessors,” presented at the Great Lakes Symp. VLSI Syst.
(GLSVLSI), West Lafayette, IN, 2001.

[45] Y. Han, I. Koren, and C. A. Moritz, “Temperature aware floor-
planning,” presented at the Workshop Temp. Aware Comput. Syst.,
Madison, WI, 2005.

[46] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau, “Power model
validation through thermal measurements,” presented at the Int. Symp.
Comput. Arch., San Diego, CA, 2007.

[47] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” presented at the
ISCA, San Diego, CA, 2003.

[48] H. Homayoun, M. Makhzan, J. L. Gaudiot, and A. Veidenbaum, “A
centralized cache miss driven technique to improve processor power
dissipation,” presented at the Int. Symp. Syst., Arch., Model. Simula-
tion (SAMOS VIII), Samos, Greece, 2008.

[49] J. Hasan, A. Jalote, T. Vijaykumar, and C. Brodley, “Heat stroke:
Power-density-based denial of service in SMT,” presented at the Int.
Symp. High-Perform. Comput. Arch., San Francisco, CA, 2005.

[50] Intel Corporation, Santa Clara, CA, “Intel,” [Online]. Available: http://
www.intel.com/technology/architecture-silicon/next-gen/

[51] A. Aggarwal, M. Franklin, and O. Ergin, “Defining wakeup width for
efficient dynamic scheduling,” presented at the Int. Conf. Comput. Des.
(ICCD), San Jose, CA, 2004.

[52] TaliMoreshet and R. Iris Bahar, “Power-aware is-sue queue design for
speculative instructions,” in Proc. 40th Conf. Des. Autom. (DAC), New
York, 2003, pp. 634–637.

2094 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

[53] J. Carretero, P. Chaparro, X. Vera, J. Abella, and A. González,
“End-to-end register data-flow continuous self-test,” presented at the
Int. Symp. Comput. Arch. (ISCA), Austin, TX, 2009.

[54] M. D. Brown, J. Stark, and Y. N. Patt, “Select-free instruction sched-
uling logic,” in Proc. 34th Int. Symp. Microarch., 2001, pp. 204–213.

Houman Homayoun (M’10) received the B.S. de-
gree in electrical engineering from Sharif University
of Technology, Tehran, Iran, in 2003, the M.S. de-
gree in computer engineering from University of Vic-
toria, Victoria, BC, Canada, in 2005, and the Ph.D.
degree in computer science from the University of
California, Irvine (UC-Irvine), in 2010.

His research is on power-temperature and re-
liability-aware memory and processor design
optimizations and spans the areas of computer archi-
tecture, circuit design and VLSI-CAD, where he has

published over 30 technical papers on the subject. His research is among the
first in the field to address the importance of cross-layer power and temperature
optimizations in SRAM memory peripheral circuits.

Dr. Homayoun was named a 2010 National Science Foundation Computing
Innovation Fellow by the Computing Research Association (CRA) and the Com-
puting Community Consortium (CCC). He was a recipient of the four-years
UC-Irvine computer science department chair fellowship.

Avesta Sasan (S’05) received the B.S. degree
(summa cum laude) in computer engineering, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of California, Irvine, in 2005,
2006, and 2010, respectively.

His research interests include low power design,
process variation aware architectures, fault tolerant
computing systems, nano-electronic power and
device modeling, VLSI signal processing, processor
power and reliability optimization and logic-ar-
chitecture-device co-design. His latest publication,

research outcomes, and updates can be found on http://www.avestasasan.com.

Jean-Luc Gaudiot (F’99) received the diplôme
d’Ingénieur from the École Supeérieure d’Ingénieurs
en Electrotechnique et Electronique, Paris, France,
in 1976, and the M.S. and Ph.D. degrees in computer
science from the University of California, Los
Angeles, in 1977 and 1982, respectively.

He is currently a Professor and a chair of the
Electrical and Computer Engineering Department,
the University of California, Irvine (UCI). Prior to
joining UCI in January 2002, he was a Professor
of electrical engineering with the University of

Southern California since 1982, where he served as a Director of the Computer
Engineering Division for three years. He has also worked on microprocessor
systems design with Teledyne Controls, Santa Monica, CA (1979–1980), and
research in innovative architectures with the TRW Technology Research Center,
El Segundo, CA (1980–1982). He consults for a number of companies involved
in the design of high-performance computer architectures. His research inter-
ests include multithreaded architectures, fault-tolerant multiprocessors, and
implementation of reconfigurable architectures.

From 2006 to 2009, Dr. Gaudiot was the first Editor-In-Chief of the IEEE
Computer Architecture Letters, a new publication of the IEEE Computer So-
ciety, which he helped found to the end of facilitating short, fast turnaround of
fundamental ideas in the Computer Architecture domain. From 1999 to 2002,
he was the Editor-In-Chief of the IEEE TRANSACTIONS ON COMPUTERS. In June
2001, he was elected chair of the IEEE Technical Committee on Computer Ar-
chitecture, and re-elected in June 2003 for a second two-year term. He is a
member of the ACM and the ACM SIGARCH. He has also chaired the IFIP
Working Group 10.3 (Concurrent Systems). He was elevated to the rank of an
AAAS fellow in 2007.

Alex Veidenbaum (M’08) received the Ph.D. degree
in computer science from the University of Illinois at
Urbana-Champaign, Urbana-Champaign, in 1985.

He is currently a Professor with the Department of
Computer Science, University of California, Irvine.
His research interests include computer architecture
for parallel, high-performance, embedded and low-
power systems and compilers.

Prof. Veidenbaum is a member of the IEEE Com-
puter Society and the ACM.

